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ABSTRACT
Summary: Several papers have been published where non-
linear machine learning algorithms, e.g. artificial neural net-
works, support vector machines and decision trees, have been
used to model the specificity of the HIV-1 protease and extract
specificity rules. We show that the dataset used in these stud-
ies is linearly separable and that it is a misuse of nonlinear
classifiers to apply them to this problem. The best solution
on this dataset is achieved using a linear classifier like the
simple perceptron or the linear support vector machine, and it
is straightforward to extract rules from these linear models. We
identify key residues in peptides that are efficiently cleaved by
the HIV-1 protease and list the most prominent rules, relating
them to experimental results for the HIV-1 protease.
Motivation: Understanding HIV-1 protease specificity is
important when designing HIV inhibitors and several different
machine learning algorithms have been applied to the prob-
lem. However, little progress has been made in understanding
the specificity because nonlinear and overly complex models
have been used.
Results: We show that the problem is much easier than what
has previously been reported and that linear classifiers like
the simple perceptron or linear support vector machines are
at least as good predictors as nonlinear algorithms. We also
show how sets of specificity rules can be generated from the
resulting linear classifiers.
Availability: The datasets used are available at http://www.hh.
se/staff/bioinf/
Contact: denni@ide.hh.se

1 INTRODUCTION
Machine learning algorithms like artificial neural networks
(ANNs) and support vector machines (SVMs) have, over the
last decade, become popular tools for data mining protein
databases and predicting protein properties. The success of
ANN algorithms on, e.g. predicting secondary structure, sig-
nal peptides and peptidase cleavage (Baldi and Brunak, 2001)
from a primary sequence have inspired many to apply ANN
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algorithms to other problems within this field. This has, unfor-
tunately, not always been done in a good principled way and
datasets that were clearly unsuitable for this type of exer-
cise have been used. This has resulted in overly complicated
models that have been unnecessarily hard to interpret. We
demonstrate this on the problem of modeling HIV-1 protease
clevage site specificity, which is an example of a prob-
lem poorly suited for a nonlinear approach, but nevertheless
several ANN and SVM models have been presented.

Understanding HIV-1 protease cleavage site specificity is
very desirable, because efficiently cleaved substrates are also
excellent templates for the synthesis of tightly binding chem-
ically modified inhibitors (Beck et al., 2000). The HIV-1
protease cleavage specificity is, however, a challenging prob-
lem because of the high context sensitivity and broadness (i.e.
the fact that inhibitors are not able to prevent the cleavage
completely). No perfect rule is yet known that determines if
and where a peptide will be cleaved by the HIV-1 protease,
although many studies have been done on this subject.

Thompson et al. (1995) were the first to apply an ANN
to the HIV-1 protease cleavage specificity problem. They
used a standard feed-forward multilayer perceptron (MLP),
achieving a classification accuracy of ∼88% on a test set with
39 out-of-sample peptides. Cai and Chou (1998) later repeated
the work of Thompson et al. (1995) using an expanded dataset
and a standard MLP with eight hidden units. They reported
a classification accuracy of 92% correct on a test set with 63
peptides, concluding that the MLP was ‘superior…in deal-
ing with nonlinear problems such as predicting HIV protease
cleavage sites’ (Cai and Chou, 1998). Narayanan et al. (2002)
repeated the experiment using the same data and the same
MLP architecture as Cai and Chou (1998) but trying different
splits of training and test sets; they achieved the same classi-
fication accuracy as Cai and Chou. Naraynan et al.(2002) also
tried using a decision tree (with poor results) in order to extract
rules for the HIV-1 protease cleavage. The decision tree was
never able to predict the cleavage as well as the neural net-
work. Cai et al. (2002) recently applied SVMs to the problem,
trying several different kernel types (linear, polynomial and
Gaussian), concluding that a Gaussian kernel was best but that
the resulting predictor was inferior to the MLP they presented
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in 1998. The results with Gaussian kernels reported by Cai
et al. (2002) are not significantly better than the results with
linear kernels. Yet, Cai et al.stated that ‘the SVM has grasped
the complicated relationship between the oligopeptides and
cleavability’ and that the SVM has a ‘strong ability in deal-
ing with nonlinear problems such as predicting HIV protease
cleavage sites’ (Cai et al., 2002).

In this paper, we show that (contrary to what has been stated
earlier) the HIV-1 protease cleavage site specificity problem is
a linear problem that can be solved with a simple linear model
and that specificity rules can be generated from this. We also
discuss why this may not be so surprising for a problem/dataset
of this type. The lack of evidence that the problem is nonlinear
may mean that protease specificity problems in general are not
likely to be nonlinear and we discuss why this may be so, or
it may be a result of the fact that the dataset is not very large
(a general problem in this domain). From an Occam’s razor
point of view, however, it is wiser to use new data to try to
disprove the linear rules rather than to prove nonlinear rules.

2 SYSTEM AND METHODS
2.1 Lock and key
The standard paradigm for protease–peptide interaction is the
‘lock and key’ model where a sequence of amino acids fits as
a key to the active site in the protease, which in the HIV-1 pro-
tease case is estimated to be eight residues long. The protease
active site pockets are denoted by S (Schechter and Berger,
1967)

S = S4S3S2S1S1′S2′S3′S4′ (1)

corresponding to residues P in the peptide

P = P4P3P2P1P1′P2′P3′P4′ . (2)

The scissile bond is located between positions P1 and P1′ , and
Pi can take on any one of the following 20 amino acid val-
ues {A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W,Y,V}.
There are 208 possible values for string P. If the amino acids
in P (the ‘key’) fit the positions in S (the ‘lock’), then the pro-
tease will cleave the octamer between positions P1 and P1′ . It
is the goal of the machine learning algorithm to learn this ‘lock
and key’ rule from a set D of N experimental observations

D ≡ {(P(n), d(n))}n=1,..., N , (3)

where P(n) are observed octamers and d(n) are correspond-
ing class labels (d = 1 for cleaved octamers and d = 0 for
uncleaved octamers).

2.2 Preprocessing
It is standard procedure, at least when ANN models are used
to learn protein properties, to map sequence P to a sparse
orthonormal representation (Qian and Sejnowskij, 1988).

Each amino acid is then represented by a 20-bit vector with
19 bits set to zero and one bit set to one, and each amino acid
vector orthonogal to all other amino acid vectors. This places
an octamer P in one of the corners X of a 20 × 8 = 160
dimensional hypercube

P(n) −→ X(n). (4)

Vector X fulfills the following eight constraints:

X · 1[(i−1)·(20+1)−(i·20)] = 1, i = 1, . . . , 8, (5)

where 1i−j is a 160-dimensional binary vector with positions
i through j set to one and the remaining set to zero. These
constraints reduce the effective dimensionality of the problem
from 160 down to 152.

Some consequences of using the orthonormal representa-
tion are listed below:

• The space is very high dimensional.

• All the octamers are mapped to corners in a hypercube.
There are no observations inside the hypercube and linear
interpolation is not useful.

• The number of possible octamers is 208 � 2160 so the
hypercube is extremely sparsely populated even if one
has access to all possible octamers.

• A nonlinear problem in a hypercube must be of ‘XOR’
type, i.e. distant corners in the hypercube belong to the
same category whereas closer corners belong to opposite
categories.

The properties given above are general for any problem that is
mapped to the orthonormal sparse representation. In addition,
there may be other properties that are specific for the prob-
lem domain. For this particular problem domain, predicting
protein properties from an amino acid sequence, shift invari-
ance has a profound effect on the distribution of data in the
hypercube. Shift invariance means that the category remains
unchanged if we shift peptide P one position to the left or
right. For instance, the peptide KVFGRCELAAAMKRHGLDN
is not cleaved by HIV-1 protease, which means that all the
octamers KVFGRCEL, VFGRCELA,…, MKRHGLDN belong to
the uncleaved category. These octamers differ only by a one
position shift and they all belong to the same category, so
the uncleaved category is shift invariant. The cleaved cat-
egory, however, is not shift invariant because we believe
the cleaving to occur at one specific site (between residues
P1 and P1′ ) and not in nearby sites. Shift invariance places
octamers that belong to the same category in very distant
parts in the hypercube. Take the octamers KVFGRCEL and
VFGRCELA for example. Their corresponding X representa-
tions differ by eight bits, which (due to the constraints)
is the maximum possible Hamming distance between two
peptides in the hypercube, yet they belong to the same
category.
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Intuitively, if both categories display shift invariance then
the observations could be so mixed up that it is hard to separate
them in a simple way, e.g. with a linear classifier. How-
ever, if any one or both of the categories do not display
shift invariance, then the odds should be more in favor of
a linear classifier. Examples of protein property prediction
problems that display shift invariance for both categories are
secondary structure prediction, signal peptide prediction and
protein family classification. These are problem areas where
it is likely that nonlinear, e.g. ANN, approaches are suitable.
Protease specificity problems, on the other hand, should be
more amenable for linear classifiers.

2.3 Classification algorithms
A linear classifier tries to find a relationship of the form

d(n) = �[W · X(n) + w0] (6)

between X(n) and d(n). Here, W is a vector of free para-
meters, the dot represents the vector scalar product, w0 is a
threshold term and � is the Heaviside function (step function).
Popular examples of linear classifiers are the simple per-
ceptron, the linear SVM (LSVM) and linear logistic regression
(Duda et al., 2001; Ripley, 1996). We have used the simple
perceptron and the linear SVM in our experiments, because
they are very fast and well suited for problems with binary
inputs. Furthermore, the simple perceptron is guaranteed to
find a linear solution if one exists.

A nonlinear classifier tries to find a relationship of the form

d(n) = �[W, X(n)] (7)

between X(n) and d(n). Here, W is a vector of free parameters
and � is a nonlinear function producing zero or one as output.
Popular examples of nonlinear classifiers are the multilayer
perceptron, the SVM and decision trees (Duda et al., 2001;
Quinlan, 1986). We have used multilayer perceptrons in our
experiments for comparison with previous results.

Common for both linear and nonlinear classifiers is that the
parameter vector W is tuned by minimizing an error measure.
However, the tuning process is typically orders of magnitudes
faster for linear classifiers than for nonlinear classifiers.

It is good scientific practice to begin by excluding the simple
things first, i.e. the possibility that a simple algorithm can
solve the problem should be ruled out before a more complic-
ated algorithm is tried. A linear classifier is simpler than a
nonlinear classifier, because a linear classifier can solve fewer
classification problems than the nonlinear classifier. This is
usually expressed in terms of the Vapnik–Chervonenkis (VC)
dimension and classifier capacity (Hertz et al., 1991; Lee et al.,
1997).

2.4 Interpreting the linear classifier
A benefit with a linear model is that it is more easily inter-
preted than a nonlinear one and can be used to generate rules

that can guide further experiments. Multilayer perceptrons
are considerably more difficult to interpret (Tickle et al.,
1998).

If the number of amino acid positions in P is ‘large’ (at
least four) then it is possible to approximate the distribution
of the linear argument W · X +w0 with a normal distribution.
This normal distribution has mean µ = w0 + ∑K

k=1 µk and
variance σ 2 = ∑K

k=1 σ 2
k , where

µk = 1

20

20∑

i=1

wi+(k− 1)·20, (8)

σ 2
k = 1

20

20∑

i=1

w2
i+(k− 1)·20 − µ2

k , (9)

and wj are the components of the parameter vector W. The
µk will be identical if the training has been properly done, as a
consequence of the constraints in Equation (5) since vector W
should lie in the same subspace as the patterns X(n).

The normal distribution approximation yields

p(W · X + w0 > 0) ≈ 1 − erf[−µ/(σ
√

2)]
2

(10)

for the probability for cleaving, where erf is the error function.
Furthermore, if an amino acid is fixed in position m, corres-
ponding to parameter wj in W, then the cleaving probability
becomes

p(W · X + w0 > 0 | pos. m fixed)

≈ 1 − erf[−(µ−m + wj)/(σ−m

√
2)]

2
, (11)

where µ−m is the mean value when µm is excluded from the
sum, and σ 2−m is the variance when σ 2

m is excluded from the
sum. This allows us to rank the importance of amino acids
in different positions, based on the ratio of expressions (11)
and (10). If the ratio is very large or very small, then the fixed
amino acid in position m is important for the linear cleaving
decision. A ratio 	1 means that the fixed amino acid increases
the probability for cleaving. A ratio �1 means that the fixed
amino acid decreases the probability for cleaving.

The process can be carried further, fixing two amino acids,
etc., as long as there are sufficiently many unfixed positions
for the normal approximation to hold.

2.5 Data
We have used the dataset published by Cai and Chou (1998).
The same data were used by Cai and Chou (1998); Narayanan
et al. (2002), and Cai et al. (2002). It is, with minor modi-
fications, a superset of the datasets used in studies previous
to 1998 (Thompson et al., 1995; Chou, 1996). It contains
362 observations with 114 cleaved and 248 non-cleaved. The
probability for linear separability, without any knowledge of
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how the samples are distributed among the two categories,
is 0.12% and linear separability is thus not trivially obvious
(Hertz et al., 1991).

3 RESULTS
3.1 Learning the HIV-1 protease data
The first experiment was to use the simple perceptron (Duda
et al., 2001), as implemented in the Matlab neural network
toolbox, on the entire dataset of 362 observations. This was
done to check whether the dataset was linearly separable or
not. The simple perceptron algorithm is guaranteed to con-
verge in a finite number of steps to a linear solution if a linear
solution exists, and it converged very quickly (within seconds)
to a perfect solution, proving that the full HIV-1 protease data-
set is linearly separable. This experiment showed that there
exists at least one (probably more) hyperplane that separates
the cleaved octamers from the non-cleaved ones, and that the
available data do not support the point that the HIV-1 protease
cleavage site specificity is a nonlinear problem, contrary to
what has been claimed before.

The second experiment was to successively remove posi-
tions Pi from the octamers P and see if the problem remained
linear. We found that positions P3 and P3′ or P3 and P4′ could
be removed without changing the linear separability of the
data. We therefore used the two cases P4P2P1P1′P2′P4′ and
P4P2P1P1′P2′P3′ in our subsequent experiments.

The third experiment was to try different classifiers, two
linear and three nonlinear, on the data, using different size
training sets and estimating the generalization errors using
cross-validation. The linear classifiers were the simple per-
ceptron, as above, and the LSVM, implemented in the OSU
SVM Matlab Toolbox version 3.00. The nonlinear classifiers
were multilayer perceptrons with two, four and eight hidden
units, again using the Matlab neural network toolbox. The
cross-validation was done in the following way: Ntrain samples
were drawn, without replacement, from the dataset D. These
samples were then used to train the classifier until the training
error was zero (perfect classification of the training data). The
prediction was then tested on the remaining samples. This
was repeated 100 times for every training set size, and the test
error was averaged over the 100 runs. The test error is binomi-
ally distributed and the 95% confidence bars for the average
test error were computed. The results for P4P2P1P1′P2′P4′

are shown in Figure 1. The results for P4P2P1P1′P2′P3′ were
very similar (data not shown). The significance limits were too
wide to yield any significant differences between the classifi-
ers, but the linear classifiers had on average a lower test error
and a higher Matthews correlation coefficient than the nonlin-
ear classifiers. Furthermore, the more hidden units there were
in the MLP, the worse the average test error tended to be. The
conclusion was that nothing was gained with an MLP com-
pared with using a linear classifier. Cai and Chou (1998) and
Narayanan et al. (2002) report an error rate of ∼7–8% with

an MLP with eight hidden units and with a training dataset
size of about 289–300 patterns. This is better than the MLP8
results in Figure 1, but not significantly better than the linear
models.

3.2 Specificity rules
The fourth experiment was to extract rules from the two
linear classifiers using the technique described in the Meth-
ods section. All the 362 available observations were used
to construct the linear classifiers for the analysis, expect-
ing this to yield the best possible linear separation of the
cleavable and noncleavable peptides (overtraining is less of a
problem with simple classifiers). The simple perceptron solu-
tion depended on the order in which the observations were
presented and we therefore averaged the solution over 100
models, each trained with a different random pattern order.
The LSVM, however, had no such dependency, prompting
us to construct only a single LSVM model using the 362
samples.

The base level probabilities for cleaving when no amino
acid was fixed, expression (10), were 5.3 and 11.4% from
the simple perceptron and the LSVM, respectively, for the
P4P2P1P1′P2′P4′ case. For the P4P2P1P1′P2′P3′ case, they
were 4.4 and 11.3%. We list the 5% most cleavable and non-
cleavable single amino acid patterns in Table 1. Because the
two linear algorithms use different training methods, hyper-
planes from them are different. Consequently, there are two
slightly different sets of rules. The most important positions
for cleaving are P2, P1, P1′ and P2′ . A glutamate (E) or glutam-
ine (Q) in position P2′ increases the probability for cleaving.
A phenylalanine (F), tyrosine (Y) or leucine (L) in position
P1 increases the probability for cleaving. A proline (P) in pos-
ition P1′ increases the probability for cleaving. A valine (V)
or alanine (A) in position P2 also increases the probability for
cleaving.

There are 6000 possible pairs. Here, we only picked
the 20 pairs of amino acids that had the strongest
impact on the cleaving/non-cleaving decision, which are
listed in Table 2. Possible motifs that emerge are: for
positions (P1, P2′ ) xxx[FYML]x[EQ]xx; for positions
(P2,P1) xx[VA][FYM]xxxx and for positions (P2, P2′ )
xx[VA]xxExx.

3.3 Validation
The fifth and final experiment was to test the classifiers and the
rules in Tables 1 and 2 on experimental data collected after
the HIV-1 protease data were published.

Some very interesting new data for HIV-1 protease have
been collected using bacteriophage peptide display libraries
(Smith et al., 1995), which is a procedure that comes close to
random sampling of the peptide space. Beck et al. (2000)
used a phage display library to screen for sequences effi-
ciently cleaved by the HIV-1 protease, and list 45 efficiently
cleaved sequences. Of these, 42 (93%) contain one or more
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Fig. 1. Cross-validation test errors for models that use the input P4P2P1P1′P2′P4′ . The top panel shows the test errors (% misclassified) and
the bottom panel shows the Matthews correlation coefficient on the test sets.

of the single amino acids listed in the top left half of Table 1
and 39 (87%) contain one or more of the amino acids in the top
right half. All P4P2P1P1′P2′P4′ classifiers predict 41 of the
45 sequences to be cleavable, and the four sequences where

errors are made lie close to the linear decision boundary. For
the P4P2P1P1′P2′P3′ case, the simple perceptron and linear
SVM predict 38 and 39 sequences to be cleaved, respectively,
and 41 sequences for MLPs.
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Table 1. The 12 single amino acids and positions that influence the cleaving/non-cleaving decision the most, arranged in order of decreasing importance

P4P2P1P1′P2′P4′ P4P2P1P1′P2′P3′
Simple perceptron LSVM Simple perceptron LSVM
Sequence pc (%) Sequence pc (%) Sequence pc (%) Sequence pc (%)

xxxxxExx 37 xxxxxExx 40 xxxxxExx 25 xxVxxxxx 36
xxxFxxxx 33 xxxFxxxx 38 xxxFxxxx 21 xxAxxxxx 35
xxxYxxxx 20 xxVxxxxx 34 xxxLxxxx 18 xxxFxxxx 35
xxxxxQxx 19 xxAxxxxx 32 xxxYxxxx 17 xxxxxExx 34
xxxxPxxx 19 xxxxxQxx 30 xxxxPxxx 16 xxxYxxxx 34
xxVxxxxx 18 xxxxxxxK 29 xxxxxQxx 16 xxxxPxxx 30

xxxKxxxx 0.2 xxxxxKxx 0.5 xxxKxxxx 0.0 xxxKxxxx 0.2
xxxxxKxx 0.2 xxxKxxxx 1.1 xxxxxKxx 0.1 xxKxxxxx 0.7
xxKxxxxx 0.4 xxFxxxxx 1.1 xxKxxxxx 0.2 xxxDxxxx 0.9
xxQxxxxx 0.5 xxxxxSxx 1.5 xxQxxxxx 0.2 xxQxxxxx 1.2
xxxxCxxx 0.7 xxQxxxxx 1.5 xxxQxxxx 0.4 xxFxxxxx 1.2
xxFxxxxx 0.7 xxKxxxxx 1.5 xxxxCxxx 0.5 xxxxxKxx 1.7

The columns denoted pc show the estimated probability for cleaving. The lower half shows those amino acids that inhibit cleavage, and the top half shows the amino acids that
promote cleavage.

Table 2. The 20 pairs of amino acids and positions that influence the cleaving/non-cleaving decision the most, arranged in order of decreasing importance

P4P2P1P1′P2′P4′ P4P2P1P1′P2′P3′
Simple perceptron LSVM Simple perceptron LSVM
Sequence pc (%) Sequence pc (%) Sequence pc (%) Sequence pc (%)

xxxFxExx 91 xxxFxExx 82 xxxFxExx 73 xxVFxxxx 80
xxxYxExx 81 xxVxxExx 79 xxxLxExx 69 xxVYxxxx 79
xxxLxExx 76 xxAxxExx 78 xxxYxExx 66 xxAFxxxx 78
xxxFxQxx 75 xxVFxxxx 77 xxxxPExx 61 xxAYxxxx 78
xxVxxExx 74 xxAFxxxx 75 xxVxxExx 58 xxVxxExx 74
xxxxPExx 74 xxxYxExx 73 xxxFxQxx 58 xxxFxExx 74
xxVFxxxx 70 xxxMxExx 73 xxxFPxxx 58 xxxYxExx 74
xxxFPxxx 70 xxxFxQxx 72 xxxMxExx 55 xxAxxExx 74
xxIxxExx 69 xxxxxExK 72 xxVFxxxx 55 xxVMxxxx 73
xxxMxExx 67 FxxxxExx 70 xxxLxQxx 53 xxAMxxxx 72

xxxKxKxx ≈0 xxFxxKxx ≈0 xxxKxKxx ≈ 0 xxKKxxxx ≈0
xxKKxxxx ≈0 xxxKxKxx ≈0 xxKKxxxx ≈ 0 xxQKxxxx ≈0
xxQKxxxx ≈0 xxQxxKxx ≈0 xxQKxxxx ≈ 0 xxFKxxxx ≈0
xxKxxKxx ≈0 xxKxxKxx ≈0 xxxKCxxx ≈ 0 xxYKxxxx ≈0
xxxKxSxx ≈0 xxxxCKxx ≈0 xxKxxKxx ≈ 0 xxxKCxxx 0.01
xxQxxKxx ≈0 CxxxxKxx ≈0 xxxKxHxx ≈ 0 xxKDxxxx 0.01
xxxTxKxx ≈0 xxFKxxxx ≈0 xxxKNxxx ≈ 0 xxxKxKxx 0.01
xxFKxxxx ≈0 xxYxxKxx ≈0 xxxKxGxx ≈ 0 xxxKNxxx 0.01
xxxKCxxx ≈0 xxxxxKxV ≈0 xxQxxKxx ≈ 0 xxGKxxxx 0.01
xxxPxKxx ≈0 xxFxxSxx ≈0 xxxQxKxx ≈ 0 xxxKKxxx 0.01

The columns denoted pc show the estimated probability for cleaving and ‘≈ 0%’ means that the probability for cleaving is <0.01%.

Beck et al. (2001) list 38 sequences that they tried cleaving
with both HIV-1 protease and feline immunodeficiency virus
(FIV) protease. Of these, 13 were not cleaved and 25 were
cleaved by HIV-1 protease. All 25 (100%) cleaved sequences
contain at least one of the profiles listed in Table 1, and 16

(64%) of the 25 cleaved sequences contain one of the pair
profiles listed in Table 2. All classifiers correctly predict all
cleavable sequences to be cleavable, except the simple per-
ceptron with one misclassification in the P4P2P1P1′P2′P3′

case. All classifiers predict less than half of the non-cleaved

1707



T.Rögnvaldsson and L.You

sequences correctly in the P4P2P1P1′P2′P4′ case and more
than half of them correctly in the P4P2P1P1′P2′P3′ case.

Tözsér et al. (2000) tried variations on the MA/CA cleavage
site in HIV and the CA/NC cleavage site in human T-cell leuk-
emia virus (HTLV). They list 49 sequences which they tried
for cleavage by the HIV-1 protease. Three of the sequences
were definitely not cleaved by the HIV-1 protease, eight
were not determined and the remaining 38 were cleaved to
varying degrees. We grouped the 38 cleaved ones into three
groups: strong (40 < kcat/Km, eight cases), medium (10 <

kcat/Km ≤ 40, 10 cases) and weak (0 < kcat/Km ≤ 10,
20 cases). All 38 (100%) cleaved octamers contain one or
more of the single amino acids listed in Table 1. All classifiers
predict two of the non-cleaved sequences correctly but miss
the third. For cleaved sequences, all misclassified sequences
belong to weakly cleaved sequences.

The overall prediction accuracies on these three out-of-
sample datasets (124 new patterns in total) were, on average,
87% for the two linear classifiers (92.1% sensitivity, 92.9%
specificity and 43.1% correlation coefficient) and 89% for
the three MLP models (93.9% sensitivity, 93.5% specificity
and 49.8% correlation coefficient). The simple perceptron and
the MLP models were all combined into committees with
100 members for the predictions. The difference was not
significant when tested with McNemar’s test (Ripley, 1996).

4 DISCUSSION
Linear algorithms are, in general, less complex than nonlin-
ear algorithms. From an Occam’s razor perspective, linear
classifiers should therefore be ruled out before nonlinear clas-
sifiers are used. Our experiments show that there is no support
in the commonly used HIV-1 protease cleavage dataset for a
nonlinear algorithm, and we see no point in advocating the
use of neural networks, non-LSVMs or decision trees for this
problem before a dataset is available that supports nonlinear
models. The experiments also show that even a linear clas-
sifier is under-specified by the full dataset, since two residue
positions (P3 and P3′ or P3 and P4′ ) could be removed and the
problem was still linearly separable.

The rules listed in Tables 1 and 2 make sense from a chem-
ical point of view. glutamate (E) and glutamine (Q) are similar
amino acids, so exchanging one for the other in the P2′ pos-
ition should not make a big difference. Phenylalanine (F),
tyrosine (Y), methionine (M) and leucine (L) are also some-
what similar amino acids and it makes sense that exchanging
one for the other would not cause dramatic changes. Similarly,
valine (V) and alanine (A) are also quite similar and exchan-
ging one for the other in position P2 should not matter much.
In addition, those amino acids in our rules fit the cleavage
pocket very well (Beck et al., 2000, 2001; Tözsér et al.,
2000).

The out-of-sample tests on the data published by Beck
et al. (2000, 2001) are interesting since their data represent an

Table 3. Cleavage specificity rules mentioned in the references (the
table shows those amino acids and positions that are characteristic for
cleaved octamers)

Pos. Beck et al. (2001) Beck et al. (2000) Tözsér et al. (2000)

P4 S S S T
P3 F L
P2 V
P1 F Y F Y L M
P1′ P
P2′ E Q E
P3′ T S

almost random sampling of the peptide space, searching for
very cleavable sequences. The data from these two references
support the single amino acid rules in Table 1 since 67 out of
the 70 (96%) listed cleavable peptides contain one of the rules
in the table. The probability for this to happen by chance is
<10−18 (considering the fact that some octamers occur more
than once in the lists).

Table 3 lists rules that are described in Beck et al. (2000,
2001) and Tözsér et al. (2000). Our predicted rules match
very well with them, which supports the validity of Table 1
and also of Table 2. It is also worth noting that a decision tree
does not come up with rules that are anywhere nearly as clear
as the ones in Table 1 (Narayanan et al., 2002).

The out-of-sample performance of the linear classifiers
(average 87% correct) is most likely not representative for ran-
dom data and should not be compared with previously reported
accuracies of 92%. All the negative (non-cleavable) test cases
were, by experimental design, similar to cleavable sequences.
Beck et al. (2001) selected sequences that were cleaved either
by HIV-1 protease of FIV protease, which is similar to HIV-1
protease. Thus, the negative cases were sequences cleaved
by FIV protease but not by HIV-1 protease, which probably
are sequences that are difficult to predict the cleaving for.
Similarly, Tözsér et al. (2000) varied single amino acids in
two template sequences taken from the HIV and the HTLV
polyproteins.

To conclude, the linear classifiers proved to be as good
as nonlinear classifiers on this dataset. This simplified the
interpretation considerably, making it possible to generate
specificity rules that can be tested in the laboratory and used
to falsify/verify the hypothesis of linearity. Furthermore, the
linear classifiers are so fast to work with that analyzing a data-
set and producing rules from it is done in a few hours, or less
(of course, depending on the size of the data).

We emphasize that linearity is not equivalent to con-
text independence. The linear decision rule leaves room
for a lot of context dependence, as illustrated in Table 2,
but it is straightforward to extract rules for this context
dependence.
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