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Abstract

Motivation: In the event of an outbreak of a disease caused by an initially unknown pathogen, the ability 
to characterize anonymous sequences prior to isolation and culturing of the pathogen will be helpful. We 
show that it is possible to classify viral sequences by genome type (dsDNA, ssDNA, ssRNA positive 
strand, ssRNA negative strand, retroid) using amino acid distribution.
Results: In this paper we describe the results of analysis of amino acid preference in mammalian viruses. 
The study was carried out at the genome level as well as two shorter sequence levels: short (300 amino 
acids) and medium length (660 amino acids).  The analysis indicates a correlation between the viral 
genome types dsDNA, ssDNA, ssRNA positive strand, ssRNA negative strand, and retroid and amino acid 
preference. We investigated three different models of amino acid preference. The simplest amino acid 
preference model, 1-AAP, is a normalized description of the frequency of amino acids in genomes of a 
viral genome type. A slightly more complex model is the ordered pair amino acid preference model (2-
AAP), which characterizes genomes of different viral genome types by the frequency of ordered pairs of 
amino acids. The most complex and accurate model is the ordered triple amino acid preference model (3-
AAP), which is based on ordered triples of amino acids. The results demonstrate that mammalian viral 
genome types differ in their amino acid preference.
Availability: The tools used to format and analyze data and supplementary material are available at 

http://www.cse.sc.edu/~rose/aminoPreference/index.html
Contact: rose@cse.sc.edu

Introduction 
While searching for features that might distinguish coding from non-coding sequence, we observed that 
in-frame amino acid distributions of the mammalian viral genomes were strongly correlated with viral 
genome type.  These results are the subject of this paper.

We describe the three amino acid models that we have investigated and present results that demonstrate 
the correlation between amino acid preference in mammalian viruses and viral genome type. The three 
models are single amino acid preference (1-AAP), ordered pair amino acid preference (2-AAP), and 
ordered triple amino acid preference (3-AAP). By pair amino acid preference we mean the preference for 
certain ordered amino acid pairs. Likewise, triple amino acid preference is used to describe the preference 
for certain ordered amino acid triples.

Three types of analysis are conducted. At the genome level, cross-validation is used to demonstrate the 
predictive capability of amino acid preference of viral genome type. Next at the sequence level, two types 
of resampling analysis are used to investigate the correlation of amino acid preference and viral genome 
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type. Bootstrapping of short sequences is done to examine whether the amino acid preference observed at 
the genome level appears throughout at the shorter sequence level. This type of analysis explores the local 
features of the genome. Direct bootstrapping of amino acid preference distributions is done to establish a 
type of upper boundary on the correlation that one would expect if all subsequences of a genome were 
generated by the genome amino acid preference distribution. This later study calibrates the analysis of the 
sequence bootstrapping. Taken together, these resampling approaches examine the difference between the 
local distributions of subsequences and the aggregate distribution of the genome. Finally, decimated 
models focusing on subsets of amino acids that are statistically significantly correlated with viral genome 
type are examined.

In the following methodology section the construction of data sets, models, and model testing and cross-
validation is presented. The subsequent results section describes the analyses in which amino acid 
preference models are used to classify short mammalian viral sequence fragments (corresponding to 300 
amino acids and 660 amino acids) according to the viral genome types dsDNA, ssDNA, ssRNA positive 
strand, ssRNA negative strand, and retroid. The results section concludes with a comparison of full 3-
AAP models and reduced feature set (decimated) 3-AAP models.

Methodology

Data 

The sequence data used to build and test the AAP models was obtained from NCBI. We gathered a total 
of 236 complete mammalian viral genomes that were available in the summer of 2003. For those viruses 
for which multiple examples of a given virus are available, only one example was included to avoid 
biasing the dataset towards overrepresented genomes. The breakdown of viruses by genome type is 60 
dsDNA, 42 retroid, 16 ssDNA, 42 ssRNA negative strand, and 76 ssRNA positive strand. A list of the 
particular viruses included in the dataset can be found at 
http://www.cse.sc.edu/~rose/aminoPreference/classificationFilesUsed.htm.

Building Models 

Each genome file was processed individually to extract coding sequences. The coding sequences were 
then used to produce amino acid preference distributions on a per genome basis for each of the three types 
of amino acid preference models that we investigated. In particular, each file was parsed to retrieve for 
each gene the start location, skip information (when present), stop location, strand information, and 
coding nucleotide sequence (FASTA format). The coding nucleotide sequences were translated into the 
corresponding amino acid representation.

Amino Acid Distribution Data

Having extracted the coding sections of each genome, amino acid distributions were then tabulated. The 
tabulation was carried out for the three model types: 1) amino acid preference (1-AAP), 2) ordered pair 
amino acid preference (2-AAP), and 3) ordered triple amino acid preference (3-AAP).

In the case of 1-AAP data, a histogram of the amino acids present in a genome was tabulated over all the 
amino acid sequences found in the genome. The histogram was then normalized to produce an amino acid 
distribution summing to 1.

In the case of 2-AAP and 3-AAP models, overlapping pairs and triples were extracted from the coding 
sections of genomes. If <a1a2a3…an> is a contiguous sequence of n amino acids, there are n-1 pairs in the 
sequence, i.e., <a1a2>, <a2a3>,…, <an-1an>. For 2-AAP data, the number of occurrences of each of the 400 
(202) possible ordered pairs for a genome was tabulated. The histogram is then normalized to sum to 1. 
Similarly, in each contiguous sequence of n amino acids, there are n-2 ordered triples, i.e., <a1a2a3>, 
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<a2a3 a4>,…, < an-2an-1an>. The 3-AAP data for a genome was computed by tabulating the number of 
occurrences of each of the 8000 (203) possible ordered triples and then normalizing the resulting 
distribution.

SVM Training Datasets and Model Generation

Motivated by the observation in preliminary studies that amino acid distribution correlates with viral 
genome type we constructed and evaluated classifiers derived from AAP distributions.  In the analysis,
we used a supervised learning method based on the support vector machine (SVM), which belongs to the 
class of kernel-based learning methods (Vapnik, 1998). As the focus of this study is to test the hypothesis 
that amino acid preference is correlated with viral genome type rather than to determine which 
classification method is optimal1 for this class of problem, we did not investigate alternative classification 
methods.

The SVM package that was used, SVMlight, was developed by Thorsten Joachims (Joachims, 1999; 
Joachims, 2002). This package is available for download at http://svmlight.joachims.org/. The format of 
the training data for this package is the class membership, which can be 1 or -1 for positive or negative 
example, followed by the feature vector.

Multiple two-class problems were formulated such that each class is contrasted with the remaining 
classes. For example, the training file for an SVM model that is used to distinguish ssRNA positive strand
1-AAP from other viral genome types based on the single amino acid preference contains the positive 
examples, i.e., 1-AAP data from the ssRNA positive strand genome distributions and the negative 
examples, i.e., the 1-AAP distributions of all other viral genome type genomes. Each positive example in 
the training dataset is represented by a 1, denoting a positive example, followed by the 20 features 
(percentages of each amino acid). Likewise, each negative example in the training dataset is represented 
by a -1, denoting a negative example, followed by the 20 features.  

The initial analysis was performed using the 2-AAP model and sequences of 300 and 660 amino acids 
(Smith et al., 2001)2. The results produced by the 2-AAP model prompted us to also investigate 1-AAP 
and 3-AAP models. The motivation for investigating 1-AAP models was to uncouple the effects of  
individual amino acids from that of ordered pairs on classification. Finally, in spite of our concern that 
short query sequences of 300 to 660 amino acids might not contain enough information to support 3-AAP 
models, whose feature space has a dimension of 203, we also created 3-AAP models for each of the five 
viral genome types.

Test Data and Cross-Validation

The performance and robustness of the models was evaluated by cross-validation (Kohavi, 1995; Stone, 
1974). Cross-validation was carried out by taking the total available set of genome datasets and 
partitioning it into 10 approximately equal-sized sets. The genomes in each partition are randomly 
selected. The contents of each partition, as well as the size of each partition in terms of the number of 
genomes, amino acids, pairs of amino acids and triples of amino acids of each genome type is listed in 
Table 1. (Note significant differences in genome length that exist between different viral genome types 
are illustrated in Table 1. For example, single stranded DNA viruses can be roughly two orders of 
magnitude shorter than double stranded DNA viruses.) 

1 SVM training is a quadratic programming problem. Empirically, training for triple preference models using 236 
samples (our database of full genomes) to train models for each of the 5 different genome types took 4 minutes 50 
seconds wall clock time on a single 1.3GHz Itanium processor with 1GB of local memory. Classifying 1000 
examples (equivalent to our sequence or distribution bootstrapping experiments) took 15 minutes wall clock time.
2 A 300 amino acid sequence equates to 900 base pairs of nucleic acid sequence, an approachable read length for 
modern sequencing technology. If sequenced from both ends, 600 ~ 660 residues could be obtained.

http://svmlight.joachims.org/
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Each partition contained approximately one tenth of the available genomes of each viral genome type. We 
then used 9 partitions to train the models and tested with the remaining partition. This was repeated nine 
times, leaving in turn a different partition of the data out of the training set and using it to validate the 
resulting models.

Table1: Partitions used in 1-AAP, 2-AAP, and 3-AAP model cross-validation
Partitions

1 2 3 4 5 6 7 8 9 10
genomes 6 6 6 6 6 6 6 6 6 6
singles 180424 147320 230772 144057 120428 94641 113584 111139 189290 137450
pairs 179814 146882 230072 143655 120130 94329 113194 110885 188747 137118dsDNA
triples 179204 146444 229372 143253 119832 94017 112804 110631 188204 136786
genomes 5 5 4 4 4 4 4 4 4 4
singles 14199 17894 11131 8059 7731 8407 11513 11398 8910 9300
pairs 14175 17860 11111 8044 7712 8391 11495 11377 8892 9279Retroid
triples 14151 17826 11091 8029 7693 8375 11477 11356 8874 9258
genomes 2 2 2 2 2 2 1 1 1 1
singles 2671 5018 3639 2729 1769 1939 2006 2148 1359 2174
pairs 2665 5005 3632 2722 1755 1935 2003 2144 1357 2170ssDNA
triples 2659 4992 3625 2715 1741 1931 2000 2140 1355 2166
genomes 5 5 4 4 4 4 4 4 4 4
singles 22118 20569 17701 17116 16059 18489 21652 19315 15312 14534
pairs 22084 20537 17669 17092 16040 18461 21624 19289 15289 14521

ssRNA 
negative 
strand

triples 22050 20505 17637 17068 16021 18433 21596 19263 15266 14508
genomes 8 8 8 8 8 8 7 7 7 7
singles 20910 30664 23500 38402 42292 37384 26139 32531 22615 36982
pairs 20897 30645 23490 38376 42267 37359 26125 32514 22604 36949

ssRNA 
positive 
strand

triples 20884 30626 23480 38350 42242 37334 26111 32497 22593 36916

Table 1: The 236 mammalian viral genomes representing five genome types were partitioned into ten sets, each containing approximately one 
tenth of the viral genomes of each genome type. The number of genomes, singles, pairs, and triples of amino acids is indicated by genome type 
for each of the ten sets.

Bootstrapping

The bootstrap was used to evaluate the degree to which amino acid preference distributions of short
sequences conform to the model. The models were derived from all 236 genomes in our data set. Two 
levels of granularity of bootstrapping were then carried out. One type of bootstrap involved randomly 
selecting query sequences from the same dataset, computing normalized 1-AAP, 2-AAP, and 3-AAP 
distributions from the query sequences and then using the models to classify them. In the second type of 
bootstrap, 1-AAP, 2-AAP, and 3-AAP distributions were directly sampled from randomly selected 
genome distributions and classified.3

Bootstrapping Sequences

In the case of sequence bootstrapping, the models were evaluated with respect to their accuracy in 
classifying 1000 short bootstrapped sequences. This was carried out twice:  for sequences 300 amino
acids long and for sequences 660 amino acids long. Each sample was generated by randomly selecting a 
viral genome (with replacement) from our database and then randomly sampling the genes within it. An 
analysis of the distribution of gene lengths in our data set revealed that 53.3% of the annotated genes are 
shorter than 300 amino acids and 84.9% are shorter than 660 amino acids.  In order to avoid having a bias 
that would exclude short genes, each bootstrapped sample is made of an ensemble of randomly sampled 
gene fragments. These gene fragments are 60 amino acids long for aggregate samples of 300 amino acids 

3 The built-in Java Random class (java.util.Random) as implemented in Java version 1.4 was used. We downloaded 
the NIST RNG Statistical Test Suite (http://csrc.nist.gov/rng/) from the U.S. National Institute of Standards and 
Technology and verified that the random numbers generated are uniformly random.
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and aggregate samples of 660 amino acids4. The analysis of gene lengths indicated that only 1.9% of 
annotated genes are shorter than 60 amino acids. 

More precisely, the following sampling approach was adopted. The 300 amino acid long sequences were 
derived by randomly selecting five genes (with replacement), and then randomly selecting 60 contiguous 
amino acids from each gene5. Thus each sample is made up of independently sampled subsequences from 
the selected genome. Each sample was then processed to produce normalized 1-AAP, 2-AAP, or 3-AAP 
distributions. In order to avoid artifacts as a result of concatenating two sequences, pairs and triples were 
only extracted from the contiguous 60 amino acid subsequences. In other words, no sampled pairs or 
triples spanned two subsequences. Thus from the five 60 subsequence 295 amino acid pairs were sampled 
for 2-AAP models and 290 amino acid triples were sampled for 3-AAP models.

In a similar manner, the 660 amino acid long samples were derived by randomly selecting 11 genes with 
replacement and selecting 60 contiguous amino acids from each gene. Again, no pairs or triples of amino 
acids spanning two sequences were sampled. Thus 649 amino acid pairs were sampled for 2-AAP models 
and 638 amino acid triples were sampled for 3-AAP models.  These samples were processed to produce 
normalized 1-AAP, 2-AAP, and 3-AAP distributions.

Bootstrapping Distributions

In addition to bootstrapping sequences, we also directly bootstrapped distributions to test the models 
induced from the training data. In sequence bootstrapping, the distribution of the randomly selected 
sequence does not necessarily match the aggregate distribution of its genome. The intent in bootstrapping 
a distribution is to create a sample distribution reflecting the sparseness of the derived sample sets from 
short bootstrapped sequences in the previous section but that conforms to the genome distribution. (We 
refer to a distribution derived from a sparse sample set as a “sparse distribution” in subsequent
discussions.) The implicit hypothesis is that the individual viral genome distributions reflect the 
distribution of their viral genome type. If this is true, then there is the expectation that sparse distributions 
randomly sampled from randomly selected genome distributions should also be correctly classified by the 
corresponding model. Moreover, classification performance should be higher than for bootstrapped 
sequences since the amino acid preference of actual sequences within a genome may vary from that of the 
genome as a whole.

Each of the models, 1-AAP, 2-AAP, and 3-AAP, was evaluated with 1000 bootstrap samples. Each 
bootstrap sample is created by first selecting a random virus from the database. Next a normalized 
distribution is tabulated from the coding sequences in the selected viral genome, according to the 
description in the section Amino Acid Distribution Data. Finally, the required number of singles, pairs, or 
triples is randomly sampled from the distribution. To illustrate random sampling from a distribution, 
consider the normalized distribution of pairs of amino acids in a genome. The sum of the probabilities of 
the pairs of amino acids is 1. Denoting the distribution of the 400 possible amino acid pairs as P1,..,P400, 
we can randomly sample this distribution by generating a random number R ~ Uniform(0,1), such that 

10 ≤≤ R  and selecting the least j such that ∑ =
≤

j

i iPR
1

. The count corresponding to the jth amino acid 

pair is incremented. This process is then repeated for the n required samples resulting in a sample 

4 By using ensembles of randomly sampled gene fragments, we essentially treat individual genes within a genome as 
independent; consequently, our analysis overlooks any potential positional correlation between successive genes 
along the genome.
5 We do not mean to imply that one would sample sequences in a laboratory by pooling subsequences. Since our 
interest in this study focuses on general amino acid preference over all genes, we did not wish to exclude shorter 
genes from our analysis. Consequently, we have adopted a pooling method which allows us to include contributions 
from all but the shortest (< 60 aa) of annotated genes in our data set.
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distribution. The resulting distribution is then normalized. If the numbers R are uniformly random, then 
the expected distribution of samples will be proportional to the distribution that was sampled.

In order to facilitate comparisons with the results of bootstrapping sequences 300 and 660 amino acids 
long, comparable distributions were directly bootstrapped from genome distributions. In the bootstrapping 
sequence tests, sequences that were 300 amino acids long produced 1-AAP distributions of 300 amino 
acids, 2-AAP distributions of 295 pairs and 3-AAP distributions of 290 triples. Corresponding randomly 
sampled distributions with the same numbers were created. Specifically, we bootstrapped sampled 1-AAP 
distributions containing 300 amino acids, 2-AAP distributions containing 295 pairs, and 3-AAP 
distributions containing 290 triples. Likewise, we created bootstrapped 1-AAP, 2-AAP, and 3-AAP 
distributions of the same numbers as that derived from the 660 amino acid sequences. In this case the 1-
AAP distributions contained 660 amino acids, the 2-AAP distributions contained 649 pairs, and the 3-
AAP distributions contained 638 triples.

Results and Discussion
The performance of the models under each of the three types of evaluation methods described in the 
methodology section is presented in this section. The cross-validation results demonstrate the degree to 
which the different models are able to classify viral genomes on the basis of aggregate genome amino 
acid preference distributions. The bootstrapped sequence results demonstrate the performance of these 
models on much sparser distributions. Finally, the bootstrapped distribution results show the degree to 
which sparse distributions that are representative of the distribution space around that of the individual 
genome distributions are correctly classified. This tests the hypothesis that individual viral genome 
distributions reflect the distribution of their viral genome type.

Cross-Validation

The results of the cross-validation tests are shown in Table 2, Table 3, and Table 4 for 1-AAP, 2-AAP and 
3-AAP models, respectively. The most remarkable aspect of Table 1 is how well the 1-AAP model 
performs in the cases of retroid, ssRNA negative strand, and ssRNA positive strand viral types. Recall that 
the cross-validation tests entail the classification of genome distributions. It is therefore a surprising result 
that individual amino acid preferences at the genome level with no structural information are enough to 
achieve this degree of accuracy in classification. A nonparametric analysis of variants (Kruskal and 
Wallis, 1952; Zar, 1998) reveals that four of the amino acids (L, Q, V, and W) have a p-value of less than 
10-15 and therefore their distribution is strongly correlated with viral genome type. For example, in our 
study set of viral genomes Valine consistently occurs with greater frequency in the ssRNA positive strand
genomes than in the other genome classes.

The second interesting result is the misclassification of dsDNA and ssDNA viruses. The major trend is the 
misclassification of these viruses as ssRNA positive strand. Out of 60 dsDNA viruses, 29 are misclassified 
as ssRNA positive strand. Similarly, 10 out of 16 ssDNA viruses are misclassified as ssRNA positive 
strand. 

Consideration of amino acids pairs, as shown in Table 3, results in a significant overall improvement of 
classification from 69% to 91.5%. Out of 236 viral genomes only 163 are correctly classified by 1-AAP 
models as shown in Table 2. In contrast, 216 out of 236 are correctly classified by 2-AAP models as 
shown in Table 3. In particular, the classification rate for dsDNA viruses increases from 20% for the 1-
AAP model to 88% for the 2-AAP model. Less dramatic are the improvements in classification rates of 
ssRNA negative strand from 73% to 90% and ssDNA from 18% to 50%. These results suggest that in 
addition to correlation between single amino acid distribution and viral genome type, there is also 
correlation with structure in the distribution, e.g., amino acid pairs.

The 3-AAP models increased the overall classification performance to 97.46% correct, i.e., 230 out of 
236 viral genomes were correctly classified. This result is quite surprising. While one might expect that 



Page 7 of 14

adding further structural constraints would improve classification, the feature space for triples is very 
large: the number of ordered triples is 8000 (203), a number larger than the number of ordered triples in 
many of the retroid and ssDNA genomes in the data set. Consequently, we were initially doubtful that 
smaller genomes would contain enough information to provide representative distributions for 
classification based on the 3-AAP model. The cross-validation results suggest that a subset of the 8000 
ordered triples are adequate for accurate classification of the viruses in the data set.

Table 2: Summary of 1-AAP model cross-validation
dsDNA Retroid ssDNA ssRNA Negative ssRNA Positive Total % Correct

dsDNA 12 9 0 10 29 60 20.00
Retroid 0 41 0 0 1 42 97.62
ssDNA 0 3 3 0 10 16 18.75
ssRNA Negative 0 1 0 31 10 42 73.81
ssRNA Positive 0 0 0 0 76 76 100.00

Table 3: Summary of 2-AAP model cross-validation
ssDNA Retroid ssDNA ssRNA Negative ssRNA Positive Total % Correct

dsDNA 53 0 0 0 7 60 88.33
Retroid 0 42 0 0 0 42 100.00
ssDNA 1 2 8 0 5 16 50.00
ssRNA Negative 0 1 0 38 3 42 90.48
ssRNA Positive 1 0 0 0 75 76 98.68

Table 4: Summary of 3-AAP model cross-validation
dsDNA Retroid ssDNA ssRNA Negative ssRNA Positive Total % Correct

dsDNA 58 0 0 0 2 60 96.67
Retroid 0 42 0 0 0 42 100.00
ssDNA 1 0 14 0 1 16 87.50
ssRNA Negative 0 0 0 41 1 42 97.62
ssRNA Positive 1 0 0 0 75 76 98.68

Tables 2, 3, and 4: Performance of cross-validation testing over 10 runs for the 1-AAP, 2-AAP, and 3-AAP models, respectively. 

Bootstrapping of Sequences

The results of the bootstrapping of sequences 300 amino acids long for 1-AAP, 2-AAP, and 3-AAP 
models are shown in Figure 1. (A detailed breakdown of the classification results similar to Tables 2, 3, 
and 4 for these models can be found in the supplementary material.) In contrast to cross-validation tests, 
which employ distributions generated from entire genomes, these tests evaluate the performance of the 
models by using distributions generated from short bootstrapped sequences. It is not surprising that the 
performance of the 1-AAP model is lower for this testing set than it is for that of genome distributions. 
Out of 1000 bootstrapped sequences, 564 are correctly classified, i.e., 56.4%. In comparison, 69% of the 
genome distributions are correctly classified in the 1-AAP cross-validation tests.  Nonetheless, in the case 
of the ssRNA positive strand viruses in this test set, amino acid distributions based on sequences 300 
amino acids long provide enough information to correctly classify 86.75% of them. 

The same bootstrapped 300 amino acid sequences were processed to generate 2-AAP test distributions for 
evaluating the 2-AAP models. The results of these tests are shown in Figure 1. The overall number of 
correctly classified sequences compared with 1-AAP improved from 56.4% to 77.7%. While this is a 
significant improvement over the 1-AAP models, it does not approach the performance of the 2-AAP 
models on genome distributions as shown in Table 3, i.e., 77.7% versus 91.5%. The obvious reason is the 
sparseness of the sample set relative to the number of categories in the distribution. In this case, the 
sample distribution is derived from a sequence that contains 295 amino acid pairs. The total number of 
possible distinct pairs for 2-AAP models is 400 (202). With a sample set of this size at least 25% of the 
possible pairs are guaranteed not to appear in any given sequence.

Finally, the bootstrapped 300 amino acid sequences were processed to generate 3-AAP distributions for 
evaluating the 3-AAP models. The sample distributions in this case are derived from 290 ordered amino 
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acid triples. This is a very small number compared to the total possible number of distinct triples, i.e., 203. 
(We observed all 8000 possible triples in our data set). In comparison to the distributions for 1-AAP and 
2-AAP models, these distributions are derived from sample sets that are extremely sparse. For a given 
sequence, no more than 290 out of 8000 of the possible triples will appear. Nonetheless, for the 3-AAP 
models, 941 out of 1000 bootstrapped sequences are correctly classified. This result is additional evidence 
that a small subset of the 8000 possible triples is responsible for the high classification accuracy of viral 
genomes in our data set. This is explored in greater detail at the end of this section.
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Figure 1:  Performance of the 1-AAP, 2-AAP, and 3-AAP models on distributions derived from bootstrapped sequences 300 amino acids long.

In addition to bootstrapping sequences 300 amino acids long, we also bootstrapped sequences 660 amino 
acids long. The results of the bootstrapping of sequences 660 amino acids long for 1-AAP, 2-AAP, and 3-
AAP models are shown in Figure 2. These results together with those for the shorter 300 amino acid 
sequences indicate of the sensitivity of our models to short sequences within the range of length that can 
be expected prior to sequence assembly.  As in the case of shorter 300 amino acid sequences, the 3-AAP 
models perform better than 2-AAP, which in turn are an improvement over 1-AAP models. In comparison 
with the results of the shorter 300 amino acid sequences, the results for 660 amino acid sequences show 
consistent improvement. The overall performance of the 1-AAP models improve from 56.4% to 61.1%.
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Figure 2:  Performance of 1-AAP, 2-AAP, and 3-AAP models on distributions derived from bootstrapped sequences 660 amino acids long.
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The 2-AAP models are able to correctly classify 83.1% of the distributions compared to 77.7% for the 
shorter sequences. For the 2-AAP model, each 660 amino acid sequence is sampled as eleven 60 amino 
acids subsequences resulting in a total of 649 amino acid pairs. We note that while the result is a sparse 
distribution given that there are 400 possible amino acid pairs, the 2-AAP models perform reasonably 
well. The best classification results are produced by the 3-AAP models. The overall performance 
improves from 94.1% for sequences 300 amino acids long to 97.5% for sequences 660 amino acids long.

Bootstrapping of Distributions

The motivation for bootstrap sampling of genome distributions is to examine the degree to which sparse 
distributions representative of individual genome distributions are correctly classified. This tests the 
hypothesis that individual viral genome distributions reflect the distribution of their viral genome type as 
learned by the SVM models. The results of the bootstrapping of very small distributions comparable to 
that derived from sequences 300 amino acids long are shown for 1-AAP, 2-AAP, and 3-AAP models in 
Figure 3. In comparison to the results for bootstrapped sequences, the classification performance for 
bootstrapped distributions displays a consistent improvement for all models. Specifically, the 1-AAP 
results improve from 56.4% to 62%, the 2-AAP results improve from 77.7% to 86.5%, and the 3-AAP 
results improve from 94.1% to 98.4%.

The results of the bootstrapping of small distributions comparable to that derived from sequences 660 
amino acids long are shown for 1-AAP, 2-AAP, and 3-AAP models in Figure 4. In comparison to the 
results for bootstrapped sequences shown in Figure 2, the classification performance for bootstrapped 
distributions displays a consistent improvement for all models.  The 1-AAP results improve from 61.1% 
to 66.7%. The 2-AAP results improve from 83.1% to 91.5%. Finally, the 3-AAP results improve from 
97.5% to 99.4%.
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Figure 3:   Performance of the 1-AAP, 2-AAP, and 3-AAP models on sparse distributions sampled from 1000 bootstrapped genome distributions
equivalent to 300 amino acids.
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Figure 4:  Performance of the 1-AAP, 2-AAP, and 3-AAP models on sparse distributions samples from 1000 bootstrapped genome distributions
equivalent to 660 amino acids.

From these results one may draw two conclusions. First, the sparse bootstrapped distributions are closer 
to the viral genome type distribution learned by the SVM models than the distributions derived from 
bootstrapping actual viral sequences from our data set. Second, the 3-AAP model is able to achieve good 
performance with extremely sparse distributions. The 3-AAP models achieve 98.4% correct classification 
as shown in Figure 3 with sparse distributions in which fewer than 3.7% of the 8000 possible triples are 
present in any sample. Likewise, the 99.4% correct classification results shown in Figure 4 is achieved 
with sparse distributions in which fewer than 7.9% of the 8000 possible triples are present in any sample. 
This suggests that only a small subset of the 8000 possible triples may actually be required for good 
classification performance.

Decimated 3-AAP Models

In order to estimate the number of triples that are significant for classifying genomes according to viral 
genome type, an analysis of variance was performed. A preliminary analysis of the data using the R 
statistics package (Ihaka and Gentleman, 1996; Dalgaard, 2002) indicated that the triple amino acid 
distributions do not satisfy normality assumptions. We then analyzed distributions for normality with the 
Kolmogorov-Smirnov test. The results confirmed the lack of normality. Of the 8000 triple amino acid 
distributions, only 8 are normal in all 5 viral genome types. Hence the Kruskal-Wallis test, a 
nonparametric analysis of variance (Neter et al., 1996; Kruskal and Wallis, 1952; Zar, 1998) rather than 
ANOVA was performed. The Kruskal-Wallis test was used to establish which amino acids triples exhibit 
a statistical difference between viral genome types. Next, we used a multiple comparison procedure 
(Conover, 1998) based on the Kruskal-Wallis rank sums to find where the differences occur. Table 5
shows the number of significant triples for p-values from 10-5 down to 10-9 as determined by the multiple 
comparison procedure.

Number of Features in Decimated 3-AAP Models
Input Features

Full 3-AAP 8000
Decimated 3-AAP, p < 10-5 1530
Decimated 3-AAP, p < 10-6 927
Decimated 3-AAP, p < 10-7 529
Decimated 3-AAP, p < 10-8 310
Decimated 3-AAP, p < 10-9 197

Table 5: Number of features in decimated 3-AAP models for different p-values compared to the full 3-AAP models. 
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Decimated 3-AAP distributions were constructed for p-values < 10-5, 10-6, 10-7, 10-8, and 10-9 by taking 
the original 3-AAP genome distributions and decimating them by deleting all triples except for those 
triples with p-values less than the selected cutoff and renormalizing. Next, decimated 3-AAP SVM 
models were trained from the decimated distributions. The classification performance of these decimated 
3-AAP models was then evaluated by subjecting them to the same cross-validation, sequence bootstrap, 
and distribution bootstrap tests used for the full 3-AAP models. The performance of these decimated 
models is compared with that of the full 3-AAP models (8000 input features) in Figure 5. In this figure, 
the bootstrapped sequences are 660 amino acids long. The bootstrapped distributions are based on 
sampling 638 triples.
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Figure 5: Summary of overall performance of the decimated 3-AAP models for different p-values compared to the full 3-AAP models. 

The overall cross-validation performance of the decimated 3-AAP models shown in Figure 5 for p-values
0.01, 0.001, 0.0001, and 0.00001 compares well with the results achieved by the full 3-AAP models. In 
contrast there is a greater change in classification performance for bootstrapped sequences and 
bootstrapped distributions. This is an expected result. The cross-validation results are based on 
distributions derived from entire genomes and consequently are information rich. In contrast, the 
bootstrapped results are based on sparse distributions derived from sets containing only 630 amino acid 
triples. 

Two inferences can be made from the results shown in Figure 5. First, the cross-validation results suggest 
that models derived from small subsets of the possible 8000 features (amino acid triples) are robust and 
able to discriminate between viral genome types provided that the query distributions are derived from 
large sample sets. Second, query distributions derived from a sparse sampling of a viral genome’s 
distribution provide adequate information for determining genome type provided that the models are 
derived from a rich selection of distribution features.

Examples of Amino Acid Preference

Figure 6, shows the mean prevalence of five amino acid triples in the different viral genome types. These 
five triples were selected from the set of triples with p-value < 0.0001. As can be seen in the figure, the 
mean prevalence for a given amino acid triple can differ significantly between pairs of viral genome type. 
For example, the triple RYF has a mean prevalence of roughly 7.29 * 10-6 for retroid genomes versus 
2.79 * 10-4 for double stranded DNA genomes. Likewise, the triple SLI has a mean prevalence of roughly 
1.03 * 10-3 for single stranded RNA negative genomes versus 2.34 * 10-4 for single stranded DNA
genomes. Table 6 lists a subset of most significant amino acid triples selected by the multiple 
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comparisons test on the results of the Kruskal-Wallis test. The triples are listed by the pairs of genome 
type that they most strongly distinguish and p-value. A complete listing of amino acid triples with p-value 
< 0.01 is available with the supplementary material.
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Figure 6:  Example of prevalence of selected amino acid triples in the different viral genome types. 

dsDNA

vs

Retroid

p < 10-12

dsDNA

vs

ssDNA

p < 10-6 

dsDNA

vs

ssRNA-

p < 10-8 

dsDNA

vs

ssRNA+

p < 10-12

Retroid

vs

ssDNA

p < 10-6 

Retroid

vs

ssRNA-

p < 10-9 

Retroid

Vs

ssRNA+

p < 10-10 

ssDNA

vs

ssRNA-

p < 10-7 

ssDNA

vs

ssRNA+

p < 10-6 

ssRNA-

vs

ssRNA+

p < 10-8 

RYF LLL RHY HFF FND SLI VVA LSI GDD ESL

MFF LFL NEY HFC FPF IEG TGV TPW VLA PPG

ENV VEV CPA CFF SLY SFF LVT GLI KWW LIQ

IYF LDI PDP ECM PLP PPP DTT GGG GVV NLN

YFY RLD YCH LFN LLA YLI VVV SLS VGL DLN

FYF RLF CCA IYY TNK PGP QLL IDL LAV DHS

QMF LFC GDM FYH AST TEF PPS LIA AVV DNL

HVE RLL IAW CSY KAI EFE MGQ LND GFL LIK

FCE LFK RYC IFF QAL IED LYP LSG GRV SLK

RVF LSF MPM RYI RRR DVD WNP DQK ILK

FFF AFL TPP CMS AEF VVK IGS ALL KLC

YPD ARP SHF YEW GDN SVG WHC AAV SKS

FWL RNA LES DLG IEI

DED SAD SDD AVL CQK

FYL VRD NGV PTG APT

NID PRT

LDG

Table 6: Most significant amino acid triples as determined by a multiple comparisons test of Kruskal-Wallis rank sums. 
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Conclusion
Evidence suggests that structure in amino acid preference can be used to predict viral genome type. Three 
types of models that examine different degrees of structure in amino acid preference have been 
investigated. Of these, the model imposing the greatest structural constraints, the 3-AAP model, exhibits 
the best classification performance. Future investigation will address the observed local inhomogeneities
in amino acid preference. The small differences in the sequence and distribution bootstrap results suggest 
that these inhomogeneities are of limited scope. A related issue is the evaluation of the robustness of our 
methods for assessing amino acid preference to sequence inaccuracy. Finally, this paper reports on the 
observation that amino acid distribution predicts viral genome type. The mechanism that has resulted in 
the observed relation between amino acid preference and viral genome type has yet to be investigated.
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