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The Generalized LASSO
Volker Roth

Abstract—In the last few years, the support vector machine
(SVM) method has motivated new interest in kernel regression
techniques. Although the SVM has been shown to exhibit excellent
generalization properties in many experiments, it suffers from
several drawbacks, both of a theoretical and a technical nature:
the absence of probabilistic outputs, the restriction to Mercer
kernels, and the steep growth of the number of support vectors
with increasing size of the training set. In this paper, we present
a different class of kernel regressors that effectively overcome
the above problems. We call this approach generalized LASSO
regression. It has a clear probabilistic interpretation, can handle
learning sets that are corrupted by outliers, produces extremely
sparse solutions, and is capable of dealing with large-scale
problems. For regression functionals which can be modeled as
iteratively reweighted least-squares (IRLS) problems, we present
a highly efficient algorithm with guaranteed global convergence.
This defies a unique framework for sparse regression models in the
very rich class of IRLS models, including various types of robust
regression models and logistic regression. Performance studies for
many standard benchmark datasets effectively demonstrate the
advantages of this model over related approaches.

Index Terms—Kernel regression, probabilistic interpretation,
robust loss functions, sparisity, support vector machines (SVMs).

I. INTRODUCTION

THE PROBLEM of regression analysis is one of the fun-
damental problems within the field of supervised machine

learning. It can be stated as estimating a real valued function,
given a sample of noisy observations. In the usual setting of su-
pervised learning, the data is obtained as independently iden-
tically distributed (i.i.d.) pairs of feature vectors and
corresponding targets . For regression problems in par-
ticular, the real-valued targets are considered corrupted versions
of a set of unobserved values under an additive noise
model: , where the noise random variables
are distributed according to some density function . Prior
knowledge about this noise distribution is crucial for quanti-
fying the approximation accuracy, i.e., for choosing an adequate
loss function.

Viewed as a function in , the conditional expectation of
given is called a regression function. Estimation of this func-
tion is referred to as the central problem of regression analysis.

A very successful approach to the regression problem is the
support vector machine (SVM).1 It models the regression func-
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1For a recent overview on the SVM and related techniques, see [1].

tion by the following expansion, employing a Mercer kernel

(1)

In the SVM regression setting, the approximation quality is
measured in terms of an -insensitive loss function. Deviations
smaller than a predefined value produce no costs at all, while
larger deviations are penalized linearly

for

for .
(2)

Implicit with this loss function is a model of noise in which the
data are corrupted by uniform noise on the interval , cf.
the discussion in Section III-C. The model complexity is con-
trolled by: 1) choosing an adequate kernel function, i.e., an ad-
equate mapping from the input space into some feature space

and 2) by introducing a spherical Gaussian prior over the
weights. Viewed in a regularization context, this allows us
to interpret SVM regression as a ridge regression model [2].
However, these special assumptions about the noise and the
prior over the weights bear some disadvantages.

• Due to the unsmooth shape of the -insensitive loss func-
tion, it is difficult to analytically derive error bars for the
predictions, see [3] for a related discussion.

• The solutions are usually not very sparse, i.e., the per-
centage of support vectors usually is relatively high. Even
worse, the number of support vectors is strongly correlated
with the sample size.

• The use of kernel functions is restricted to those that sat-
isfy Mercer’s condition. This restriction may be viewed
of minor interest, but for distance measures resulting from
matching algorithms, we often derive “quasi” kernels with
some negative eigenvalues. For instance, alignment-scores
in string matching are an example of this kind.

In this paper, an alternative approach to sparse kernel regres-
sion is presented which overcomes these drawbacks. We refer
to this method as generalized least absolute shrinkage and se-
lection operator (LASSO) regression.2 In regression problems,
it allows us to employ a large class of loss functions in accor-
dance with our prior knowledge about the noise. Of particular
interest among these loss functions are those which correspond
to a robust density according to Huber’s theorem, [5]. Under

2The acronym LASSO was introduced in [4].
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very general conditions, such robust loss functions guarantee
the smallest loss in a worst case scenario.

In order to make the generalized LASSO applicable to large-
scale problems, we suitably adapt an efficient LASSO algorithm
that has been proposed in [6]. The main contribution here is
that we show the global convergence of this algorithm for all
iteratively reweighted least squares (IRLS) problems. A second
contribution of this paper concerns the problem of estimating
the prediction variance for robust loss functions. By a theoretical
analysis of the relationship between the LASSO and adaptive
ridge regression, we present a method for analytically computing
Lagrange parameters associated with the optimization problem.
These parameters are the main ingredient for deriving error
bars within a probabilistic framework.3

Since the class of IRLS problems also includes generalized
regression methods like logistic regression (LOGREG), the pro-
posed algorithm allows us to naturally extend the regression
framework to classification problems.

One of the most outstanding features of the generalized
LASSO estimates is their extreme sparsity. Usually, the largest
fraction of the expansion coefficients in (1) becomes zero.
This sparsity has the following main advantages.

• Concerning the learning phase, it can be exploited to de-
velop highly efficient training algorithms that successively
build the final kernel expansion without solving the full

-dimensional problem.
• Once we have successfully trained a regression function,

we can make predictions for new observations very effi-
ciently, since only a few kernels with
must be evaluated.

• New observations must be compared with only a small
subset of input vectors via the kernel function.

We conclude this paper with performance studies for both
synthetic and real-word benchmark datasets. The results effec-
tively demonstrate that the generalized LASSO model combines
several advantages: on a conceptual level, it allows us to quan-
tify a confidence interval around the predicted values in a proba-
bilistic way. Moreover, it is capable of dealing with situations in
which the learning set is corrupted by a large amount of outliers.
On a more technical level, the generalized LASSO can handle
large-scale problems in a highly efficient way. Compared to the
SVM, the solutions are usually sparser by one or two orders of
magnitude, which allows us to make predictions in extremely
short time.

II. RELATED WORK

A related approach to Bayesian kernel regression has been
presented in [7]. This model is referred to as the relevance vector
machine (RVM). From a technical point of view, the RVM uses
the identical kernel expansion as the SVM (1), but in this case
the kernels themselves are interpreted as entries of feature vec-
tors within a generalized linear model

(3)

The additional last entry plays the role of the intercept in (1).

3For potential problems with these variance estimates see the discussion
following (18).

The key concept of the RVM is the combination of a quadratic
loss function with automatic relevance determination (ARD)
priors4 over the expansion coefficients . Similar to the gener-
alized LASSO estimator proposed in this work, the RVM pro-
duces extremely sparse solutions. The use of a quadratic loss
function allows us to interpret the RVM fits in a probabilistic
way. Overcoming this shortcoming of the SVM, however, has
introduced some new problems, notably the high computational
costs during the training phase, and the sensitivity to outliers in
the training set. It should be noticed, however, that some strate-
gies for overcoming these shortcomings have been proposed
in the literature recently, [9], [10]. Furthermore, also the SVM
has been generalized to squared loss functions and iteratively
reweighted least-squares functionals, allowing probabilistic in-
terpretations, see, e.g., [11]–[14].

A whole set of similar approaches to sparse regression falls
under the nomenclature adaptive ridge regression. All models of
this kind essentially perform generalized ridge regression, [2],
with either Bayesian priors, see e.g., [15], [16], or with some
constraints on the shrinkage weights. A method of the latter kind
has been proposed in [17], where the sum of inverse shrinkage
weights is constrained to a predefined value. Minimizing a re-
gression functional under such constraint can be viewed as bal-
ancing the penalty on each variable, while keeping the mean
penalty constant. We will discuss this model in detail in Sec-
tions III and IV-B.

A different class of sparse regressors falls into the category of
-penalized functionals, see, e.g., the work presented in [18].

The LASSO [4] is another popular method of this kind. It natu-
rally links the class of -constrained models to that of adaptive
ridge models: in [17] it has been proven that for any adaptive
ridge model there exists an equivalent LASSO model. From our
point of view, the most interesting property of the LASSO is its
“built-in” sparsifying mechanism: the regression fits are sparse
and interpretable, in the sense that many variables are “pruned”
from the model. The main problems, on the other hand, are the
following: 1) for most LASSO algorithms, the computational
costs are very high for kernel models, where the number of pa-
rameters equals the number of samples; 2) applied to IRLS prob-
lems with additional subiterations (e.g., as proposed in [19]), it
is unclear if global convergence takes place; and 3) a proba-
bilistic interpretation of the fits is difficult, in particular in the
case of robust loss functions.

The main ideas of the LASSO, however, can be adopted for
our purposes, i.e., for constructing sparse kernel models that can
be interpreted in a probabilistic way. The overall procedure can
be outlined as follows: we show that an efficient subset-algo-
rithm for the LASSO, introduced in [6], can be extended to the
class of IRLS models, while global convergence remains guar-
anteed. Based on the work presented in [17], the LASSO can be
linked to a Bayesian regression model employing ARD priors.
We propose a method for analytically deriving the Lagrange pa-
rameter that makes this link explicit. This allows us to estimate
the prediction variance of the estimator within a well-defined
probabilistic framework.

4ARD priors are formalized in the next section. For a general introduction to
the ARD principle the reader is referred to [8].
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III. SPARSE BAYESIAN KERNEL REGRESSION

Applying a Bayesian method to the regression problem re-
quires us to specify a set of probabilistic models of the data,
see, e.g., [20]. A member of this set is called a hypothesis
which will have a prior probability . The likelihood of hy-
pothesis is , where represents the data given as
input-output pairs . For regression problems, each

corresponds to a regression function . Under the assump-
tion that the targets are generated by corrupting the values of

by additive Gaussian noise of variance , the likelihood of
model is given by

(4)

A preference for smooth regression functions is encoded by in-
troducing priors over the coefficients .
In a regularization context, such prior information can be inter-
preted as biasing maximum likelihood parameter estimates in
order to reduce the estimator’s variance. The common choice of
a spherical Gaussian prior distribution with covariance

leads to the well-known class of ridge regression models,
[2]. For instance, the standard formulation of support vector re-
gression can be viewed as a method of this kind.

Contrary to ridge regression, the key concept of both the gen-
eralized LASSO and the RVM is the use of automatic relevance
determination (ARD) priors of the following form

(5)

In this case, each expansion coefficient has its own prior vari-
ance . Denoting with the augmented kernel “design” ma-
trix, i.e., , this
prior model leads us to a posterior of the form

(6)

with (inverse) covariance matrix
and mean vector . From the form of the
likelihood (4) and the prior (5) it is clear that minimizes the
quadratic form

(7)
where we have defined for the sake of simplicity.

The mean prediction for a new input is given by

(8)

The uncertainty of the prediction is measured by the variance
about the posterior mean

(9)

The total predictive variance is the sum of the noise variance
and the above variance about the mean, since both sources of
variation are uncorrelated by assumption.

A. Inferring the Prior Parameters

Given the above class of ARD models, there are now different
inference strategies for the prior parameters:

• In [7] the RVM was proposed as a (partially) Bayesian
strategy: integrating out the expansion coefficients in the
posterior distribution, one obtains an analytical expres-
sion for the marginal likelihood , or evidence,
for the hyperparameters. For ideal Bayesian inference
one should define hyperpriors over and , and integrate
out these parameters. Since closed-form solution for this
marginalization in most cases do not exist, however, it is
common to use a Gaussian approximation of the posterior
mode. The most probable parameters are chosen by
maximizing . Given a current estimate for the

vector, the parameters are derived as

(10)

These values are then substituted into the posterior (6) in
order to get a new estimate for the expansion coefficients

(11)

During iterated application of (10) and (11), it turns out
that some parameters approach infinity, which means
that the variance of the corresponding priors
becomes zero, and in turn the posterior
becomes infinitely peaked at zero. As a consequence, the
coefficients are shrinked to zero, and the corresponding
variables (the columns of the kernel matrix ) are removed
from the model.

• Adaptive Ridge (AdR) regression, [17], constitutes a dif-
ferent type of parameter updates. The key concept of AdR
is to select the parameters by minimizing the functional
(7) under a constraint of the form

(12)

where is a predefined value. This constraint connects the
individual variances of the ARD prior by requiring that
their mean variance is proportional to . The concep-
tual idea behind (12) is to start with an ridge-type estimate
( ) and then introduce a method of automatically
balancing the penalization on each variable, while keeping
the average penalty constant.

Using the standard Lagrangian method, one derives the
following update rules.

(13)

(14)

Similar to the RVM model, during iterated application of
these update rules many coefficients are shrinked to
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zero, so that the corresponding variables are removed from
the model.

In order to interpret AdR in a Bayesian way, it is useful
to exploit its algebraic equivalence to the LASSO (see
[4] and [17] and the discussion in Section IV-B). The
LASSO is simply an -constrained least-squares problem
in which the hyperparameters no longer appear

(15)

The constraint value determines the approximation
accuracy and can thus be viewed as a model-selection
parameter. Returning to our Bayesian viewpoint of re-
gression, we can interpret the equivalence between AdR
and LASSO by way of the following marginalization pro-
cedure (cf. [16] and [21]): given exponential hyperpriors

we can analytically integrate out the hyperparameters
from the prior distribution over the weights

(16)

Together with the Gaussian likelihood (4), this marginal-
ization leads us to the desired constrained LASSO-type
functional in log-space

(17)

where we have defined the Lagrange parameter .
From the above, we conclude that both the RVM and the LASSO
employ some Bayesian marginalization steps: in the case of
the RVM, one marginalizes over the weights , and updates
the hyperparameters by maximizing the likelihood. For the
LASSO, one defines exponential hyperpriors and integrates out
the hyperparameters. The model complexity is then controlled
by the Lagrange parameter (or by the constraint value ),
which may be chosen adaptively by some model selection cri-
terion. It should be noticed, however, that without taking into
account the above marginalization procedure, the LASSO itself
may be more considered a penalized likelihood model, rather
than a true Bayesian technique.

As stated earlier, both the RVM and the LASSO fits are usu-
ally very sparse, in the sense that most of the parameters
will tend to infinity. To deal with these infinite parameters when
computing variance estimates according to (9), it is useful to in-
troduce the permutation matrix that collects the nonzero en-
tries of (or the finite entries of , respectively) in the first
components, i.e., . We use the same permutation to
collect the corresponding features in the vectors , which are
the rows of the rearranged design matrix . With
this notation, the predicted function value of a new observation
reads , and we can measure the uncertainty
of the prediction as

(18)

where is an estimate for the variance of the Gaussian noise in
the least-squares problem (7). While (18) is the “correct” proba-
bilistic variance estimate, a potential problem with this formula
is that it gives an estimated variance of zero for variables with
zero (cf. [4]). Thus, kernels with do not contribute
to increase the estimate of variance although these coefficients
might be nonzero for other i.i.d. observations. The variance es-
timates presented in this paper should thus be considered as an
approximative version of the “true” estimates. It should be no-
ticed, that in [6] a different strategy for estimating the variance
has been proposed which overcomes this problem. For kernel
models, however, the latter approach is inapplicable, since it re-
quires a full rank design matrix, whereas the set of augmented
feature vectors defined in (3) always leads to rank-deficient de-
sign matrices.

B. Generalized LASSO as an IRLS Problem

A central assumption so far was the Gaussian noise model
that directly lead us to problems of minimizing least-squares
functionals. If the true noise density deviates from the Gaussian
model, however, the use of such quadratic loss functions may
be clearly suboptimal. Since strict prior knowledge about nor-
mality of the underlying noise process is hardly available in
practice, the more general situation where we have only partial
prior information was investigated in [5]. As a key result, it has
been proven that the famous Huber’s robust loss function

for

for

(19)

is optimal (in the sense that it guarantees the smallest loss in a
worst case scenario), if the true noise density is a mixture of two
components, one of which is known to be Gaussian distributed
and the other one is an arbitrary density. Huber’s loss function
penalizes large deviations only linearly. Thus, it is superior to
its quadratic counterpart in situations where the data contains
outliers which are generated by an unknown and possibly highly
fluctuating noise source.

In spite of the fact, that for Huber’s loss function the poste-
rior distribution of the coefficients is no longer Gaussian, we
can still approximate error bars for the predictions. The key con-
cept here is that the minimization problem can be reformulated
as an IRLS problem, which allows us to estimate the predic-
tion variance based on this transformed least-squares problem.
Suppose we are given an estimate of the parameters . Many
of them usually will tend to infinity, so that the coefficients
must vanish and the corresponding variables (the columns of )
are removed from the model. With the notation of the permuta-
tion matrix , the robust analog of the least-squares functional
(7) reads

(20)

For a wide class of loss functions, the stationary weight vector
that minimizes (20) can be found by an iterative algorithm,

originally introduced by HUBER, see [5]. A global convergence
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proof for a wide class of differentiable loss functions is given in
[22]. This algorithm is outlined in the following: computing the
partial derivatives of (20), we obtain

(21)
where denotes the diagonal matrix

, with the auxiliary function
. For the optimal solution the gradient

must vanish, which suggests the following natural
successive-substitutions iteration: at any iteration level, the
new estimate for the vector is derived as

(22)

A necessary condition for convergence of this procedure is

(23)

Formally, (22) defines normal equations of a least-squares
problem with design matrix and dependent vari-
ables . Once the iterations have converged, i.e., once
the optimal fixed, we can predict the function value of a new
observation with feature vector as .
Furthermore, in analogy to (9) we can measure the uncertainty
of the prediction based on the variance of the expansion coeffi-
cients in the transformed least-squares problem:

(24)
where is an estimate for the variance of the Gaussian noise
in the transformed problem.

The IRLS framework, however, also allows us to extend the
LASSO principle to classification problems: it is well known
in the literature, that LOGREG can be reformulated as a IRLS
problem, cf. [23]. In LOGREG, we want to approximate the
binary targets for a Bernoulli error model

where denotes the “success” probability,
and . We can also interpret
this as approximating the targets with a linear function
and a cost model according to

The gradient of can be written as , where
is a vector with entries , and

is a diagonal matrix
. Forming a variable , we can iteratively opti-

mize a LOGREG model with ARD prior by the update equations

(25)

These, however, are the normal form equations of a regularized
least squares problem with input matrix and dependent
variables . Exploiting the identity between AdR models

and the LASSO, we can rewrite the above two types of general-
ized regression problems as -constrained IRLS problems

for robust regression

for LOGREG.
(26)

C. Relations to SVM Regression

Both the generalized LASSO estimates and the SVM model
lead to regression functions that are sparse insofar, as they only
depend on a possibly small subset of kernel functions. Thus,
(1) usually consists of many zero coefficients. But it is worth
noticing that the mechanism that forces some coefficients to
vanish is quite different in both models. The sparsity for LASSO
estimates with smooth loss functions results from an automated
selection of regression variables for a given problem. From a
Bayesian viewpoint, this determination of important variables
depends only on the ARD prior, whereas the form of the likeli-
hood is readily determined by the noise model. Given such noise
model, Huber’s theorem, allows us to choose an asymptotically
optimal loss function, cf. [5],[24].

In the SVM framework, this is somewhat different. Here,
the choice of the loss function does not necessarily reflect the
knowledge about the noise. It is rather selected in order to en-
force sparse solutions independent of the expected noise distri-
bution.5 For SVM regression, the sparsity results directly from
the shape of the -insensitive loss function. The gap deter-
mines the approximation accuracy and coincides with an tube
around the regression fit. Within this tube, all data produce iden-
tically zero costs, independent of their location. Hence, the cor-
responding input vectors do neither influence the regression fit
(all dot products with these vectors have zero weights ), nor
influence the expansion coefficients of the remaining vectors
outside the tube. The identical fit would be obtained, if they
were removed from the sample.

For LASSO estimates, however, the nonzero optimal coeffi-
cients still depend on all input vectors. This can be seen e.g.,
in (13): if during the iterations a coefficient tends to infinity,
only the corresponding column (and not also the row!) of the
“design matrix” will be deleted from the model. Therefore,
even an input vector with influences the nonzero
coefficients due to its appearance in the remaining row of .

Contrary to LASSO regression, for SVM models the reduc-
tion of variables can not be interpreted as a method to decrease
variance by adding some bias to maximum likelihood estimates.
Deleting a variable must be payed for with excluding an input
vector from the sample, which implies a complete loss of infor-
mation contained in this vector. It is obvious that this can only be
desirable, if this vector does not provide any further information
about the problem, i.e., if its deviance from the regression func-
tion is not significant and can be explained as a pure noise event.

5To be exact, only the parameterized family of �-insensitive loss functions is
selected, and the adaptivity to the assumed noise distribution is limited to the
selection of the parameter � within this family.
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Implicit with this interpretation is the following noise model: the
data are assumed to be affected by uniform noise on the interval

, which may be the result of quantization or clipping ef-
fects during the measurement process. Note that the -insensi-
tive loss function has the same structure as the functions that
are robust according to Huber’s theorem. The associated noise
model consists of two components, one of which is uniformly
distributed. However, formally the -insensitive loss does not
belong to the family of robust estimators, since the uniform dis-
tribution does not possess a smooth derivative, cf. [24, p. 448].
But one can define smooth approximations for which this inter-
pretation is valid. A different interpretation of the noise model
can be found in [25], where it is shown that the -insensitive loss
corresponds to a model of Gaussian noise with fluctuating mean
and variance. It turns out, that the noise mean is uniformly dis-
tributed on the interval . Note that both interpretations
are consistent, since in the latter model errors smaller than do
not count because they may be entirely due to the bias of the
Gaussian noise.

If this kind of noise model is in accordance with our prior
knowledge, we can combine both methods in the following way:
instead of applying the usual quadratic ridge-type regularizer,
we may use the LASSO method of penalizing the norm of
the coefficients in order to reduce the variance of the SVM es-
timates. This gives a model that combines the -insensitive loss
function of SVM regression with the ARD mechanism of the
LASSO. Algorithms for models of this kind have been studied
in the SVM literature, see e.g., [26], [27], [28]. The unsmooth
shape of the -insensitive loss function, however, makes it im-
possible to apply the optimization algorithm and the variance
estimation procedure presented in this paper.

IV. ALGORITHMS FOR THE GENERALIZED LASSO

In the last section we introduced two different types of sparse
kernel regressors, namely the RVM and AdR models. Since
we have restated generalized regression problems in an IRLS
setting, in principle the update equations of either type can be
solved by introducing an additional loop of IRLS subiterations.
Both algorithms, however, share two main drawbacks:

i) Even for quadratic loss functions, convergence is rather
slow, thus many iterations are needed. This problem becomes
even worse, if robust loss functions are employed, due to the
additional subiterations.

ii) If during the iterations a coefficient tends to zero, the
final estimate will also be zero. Thus, small coefficients have
no chance to “recover,” which implies that the iterations must
be started from the full set of variables. Solving the
update equations for the new weights then means solving a
system of linear equations in variables, which
is very time consuming for large-scale problems.

In the case of AdR regression, the latter problem can
partially be overcome by applying approximative conjugate
gradient methods for computing the matrix-vector products

in (13), cf. [29, p. 83]. Because
of problem i), however, the over-all procedure still remains
rather time consuming. For the original RVM algorithm, even
this speedup is not suitable, since here the update equations

of the hyperparameters (10) require us to explicitly invert the
matrix anyway.

While in [9] a new algorithm for more efficient RVM updates
has been introduced, in this paper we present an alternative
approach by optimizing the generalized LASSO functional.
This of course requires efficient optimization strategies for the
LASSO functional. Among several LASSO algorithms that
have been proposed in the literature, in the following we will
focus on the methods described in [4] and [6].

In [4] two quadratic programming algorithms for the LASSO
have been proposed, one of which is stated as a problem in

variables and constraints, the other one as a problem in
variables and constraints ( denotes the dimen-

sionality of the feature vectors). However, both algorithms are
only efficient for small and moderate sizes of , which unfor-
tunately usually is not the case for kernel regressors with

input dimensions. In real-world applications with several
thousands of input vectors, the first algorithm involving
constraints becomes inapplicable. The second algorithm also
bears no advantage over the RVM/AdR updates, since solving a
quadratic program in variables is even more difficult
than solving a linear system in variables. Moreover,
applied to IRLS problems with additional subiterations, it is un-
clear if the algorithms converge in general.

In [6] and [30] a different LASSO algorithm has been in-
troduced that effectively overcomes these numerical problems.
Unfortunately, the algorithm has been stated only for quadratic
loss functions. In the following we will extend this efficient al-
gorithm for general loss functions. The main contributions here
are: 1) it is shown that the convergence proof of the algorithm in
[6] can be extended to all loss functions associated with IRLS
functionals and 2) an efficient procedure for estimating the vari-
ance of generalized LASSO regressors is presented.

Assuming that the loss function is differentiable, the La-
grangian for the general LASSO problem can be rewritten as

(27)

According to the Kuhn–Tucker conditions, at the optimal solu-
tion the subdifferential must vanish, cf. [31]

(28)

if

if .
(29)

In (29), denotes the vector of residuals. Since
is continuous by assumption and the region of feasible vectors

is compact (the -sphere), a solution is guaranteed to exist.
Furthermore, if the constraint is active, the solution vector lies
on the boundary of the feasible region, i.e., it satisfies .

We now present an efficient subset selection algorithm for the
generalized LASSO problem. For the special case of a quadratic
loss function, it reduces to the algorithm given in [6]. For the
derivation it is useful to introduce some notations: from the form
of in (29) it follows that , which together with (28)
implies

(30)
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Furthermore, denote by a sign vector. The al-
gorithm can now be outlined as follows: given the current es-
timate , the key idea is to calculate a new search direction

locally around . This local problem reads

(31)
For quadratic loss functions, this problem can be solved analyt-
ically (cf. [6]).6 Note that in (31) is fixed, and the transormend
quantities are defined with respect to the matrices

in the case of robust regression, or
for LOGREG, cf. (26).

For more general loss functions, (31) defines a “simple”
nonlinear optimization problem in variables (note that is
fixed). The problem is simple for the following reasons:

1) it is usually a low-dimensional problem, ;
2) for a wide class of differentiable loss functions it defines

a convex optimization problem;
3) according to the Kuhn–Tucker conditions, either the con-

straint is inactive, or the solution lies on the constraint
boundary. In the latter case (if the unconstrained solution
is not feasible), we have to handle only one simple linear
equality constraint, , with .
Efficient solution strategies for problems of this kind can
be found in standard textbooks on nonlinear optimization
(see, e.g., [32]).

The main advantage of the optimization algorithm is that the
iteration can be started from by choosing an initial to
insert into and solving the resulting one-variable subproblem
(31). Thus, the optimal is found by starting from a small
variable set rather than by pruning a large set which would
impose severe computational problems and even could be
ill-conditioned. With the concept of sign feasibility (cf. [31]),
the algorithm proceeds as summarized in Algorithm 1.

Check if is sign feasible, i.e., if .
Otherwise

• A1) Move to the first new zero component in direction ,
i.e., find the smallest , and corresponding

such that and set .
• A2) There are two possibilities.

a) Set and recompute . If is sign
feasible for the revised , set and
proceed to the next stage of the algorithm.

b) Otherwise update by deleting , resetting and
accordingly, and recompute for the revised

problem.

• A3) Iterate until a sign feasible is obtained.

Once sign feasibility is obtained, we can test optimality by ver-
ifying (28): calculate

6For the algorithm in [6], it is necessary to center the design matrix K and to
exclude the intercept � from the ` -penalty.

where . By construction for ,
and if

then is the desired solution. Otherwise, one proceeds as
follows:

• B1) Determine the most violated condition, i.e., find the
index such that has maximal absolute value.

• B2) Update by adding to it and update by appending
a zero as its last element and by appending .

• B3) Set , compute a new direction by solving
(31) and iterate.

LASSO algorithm for robust loss functions.

A. Convergence of the Algorithm

In [6] a convergence proof is presented for the case of
quadratic loss functions. This proof, however, can be easily
extended to IRLS problems, as long as we guarantee that
both the transformed design matrix and the transformed
residuals remain finite as the optimization proceeds. Note,
however, that this is always the case for all robust loss functions
which satisfy the convergence condition (23) for IRLS updates.
For the LOGREG model, the guarantee follows directly from
the fact that the entries of the diagonal matrix in (26) are
bounded by one, since they are products of probabilities. The
proof in [6] consists of two parts, the first of which concerns
justification of steps A1)–A3). All arguments in [6] for this
part are independent of the loss function, as long as it is
differentiable. First, note that the current can be assumed
suboptimal for the problem (31), otherwise this portion of the
algorithm is skipped. This implies, however, that is a descent
direction, so that the objective function is reduced in every
step, and no cycling is possible. Note that there are only finitely
many possible configurations of , and the final must be sign
feasible.

The second part of the proof concerns the case if the current
is sign feasible, but not optimal. Then, the augmented vector

is also suboptimal for the augmented problem (31) with
updated by adding , and augmented to . Hence,

the solution, say , of the augmented problem will be
a descent direction for the augmented problem. In this part of
proof, however, it remains to show that for robust loss functions
primal feasibility is ensured during the steps B1)–B3). Other-
wise, we could not conclude that is also a descent
direction for the original problem (26).

The key ingredient is that -constrained IRLS problems for-
mally have the same Karush–Kuhn–Tucker conditions as least-
squares LASSO problems: if the constraint in problem (31) is
active, the KKT conditions read (cf. [33])

(32)

Equation (32) implies and . With
these two identities, we can now simply follow the further proof
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Fig. 1. Fitting the noisy sinc function. Left: best LASSO fit with quadratic loss function (bold curve). The 1-standard-deviation confidence interval is depicted
by the dashed lines around the fit. Right: overfitting effects due to a too complex model.

Fig. 2. Fitting the noisy sinc function (the thin solid curve) with 30% outliers. Left: best LASSO fit with quadratic loss function (the bold solid curve), and
estimated error bars (the dashed curves around the fit). Right: same situation for Huber’s robust loss function.

given in [6]: since is a descent direction for the aug-
mented problem, we have

On the other hand, feasibility for (31) requires that
. Multiplying by and adding the former inequality

yields . Now since , choosing
yields . This implies that the

linearized constraint for the augmented problem is equivalent
to the norm constraint for small enough displacements in the di-
rection . This in turn ensures that primal feasibility is
maintained during the algorithm.

B. Variance Estimates

In [17] it has been shown that AdR regression and LASSO
are identical in the sense that for every constraint value in
(26) there exists a parameter in (12) such that the solutions of
both models coincide. Concerning both technical issues of op-

timization and analytical variance estimates, however, there are
pronounced differences: for the LASSO there exists the highly
efficient subset selection algorithm presented in the last section,
which to our knowledge is not applicable to AdR. Concerning
analytic variance estimates, however, the situation is different:
due to the non-Gaussian shape of the LASSO prior, there is no
closed-form solution for the prediction variances. Having solved
the AdR update (14) for the hyperparameters , on the other
hand, we can simply use the standard formula (9). Our goal is,
thus, to first solve the LASSO problem and then to find a way
to identify the corresponding AdR functional that would have
produced the same solution. Variance estimates can then be ob-
tained within the standard Bayesian setting.

In order to find the corresponding AdR functional it is
necessary to shed light on the exact relationship between both
methods. Once the iterations (14) have converged, we can
resubstitute the optimal hyperparameters into the functional
(7):

(33)



24 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 1, JANUARY 2004

Interpreting as a Lagrange parameter, this functional corre-
sponds to a constrained minimization problem

(34)

Defining we arrive at the -constrained
LASSO problem (15), the corresponding functional of which
is given in (17). We notice that the Lagrange parameters in both
problems are connected in the following way.

(35)

Note that this identity holds for any differentiable loss function.
In order to compute variance estimates of LASSO predictions,
(35) can be exploited as summarized in .

1) Given the LASSO constraint (selected according to some
model selection criterion), run the subset selection algorithm
for the generalized LASSO.

2) Determine the Lagrange parameter by (30), and in turn
calculate of the corresponding AdR functional by (35).

3) Compute the parameters of the ARD prior by evaluating
(14).

4) Estimate the variance of the Gaussian noise in the trans-
formed least-squares problem by the empirical deviations of
the fitted values from the transformed targets.

5) Given a new observation, evaluate (24) and add the esti-
mated noise variance in order to obtain the total predictive
variance.

Algorithm 2: estimating the predictive variance.
The fact that we can analytically compute by (35) constitutes

the main advantage over the very similar variance estimation
procedure proposed in [4]: in the latter approach it was suggested
to stepwise adjust by iteratively solving a ridge-regression
problem. For IRLS problems with additional sub-iterations,
in particular, this can be a very time-consuming process.

One concluding remark concerning the relation of the above
procedure to variance estimates in the RVM algorithm: in the
RVM framework the noise is estimated by maximizing the
marginal likelihood, whereas step 4 here can be considered
somewhat more heuristic.

V. EXPERIMENTS

A. Toy Examples: Noisy Sinc-Function

In the first experiment, we consider the problem of fitting the
noisy sinc-function. In Fig. 1, we have sampled 11 points from
the sinc-function, and we have added Gaussian noise with fixed
variance . In accordance with the Gaussian noise dis-
tribution, the standard LASSO model with quadratic loss func-
tion is chosen. In all experiments of this kind RBF kernels are
employed. The variance is estimated as proposed in Algorithm
2: in step 1, the constraint turned out to be optimal
for predicting the function values of 1000 test points, measured
in terms of the mean squared error with respect to the orig-
inal sinc-function. In this special case, knowing the true noise
variance made it possible to skip step 4 in the variance estima-
tion procedure, and to use the known value in step
5. Taking into account that the learning set is extremely small
for the given task, both the fit and the one-standard-deviation

TABLE I
RESULTS FOR FRIEDMAN’S BENCHMARK FUNCTIONS. MEAN PREDICTION

ERROR AVERAGED OVER 100 RANDOMLY GENERATED 240/1000
TRAINING/TEST SPLITS, AND NUMBER OF SUPPORT/RELEVANCE

VECTORS. THE SVM/RVM RESULTS ARE TAKEN FROM [37]

confidence interval plotted in the left graph seem to be reason-
able. In the right graph it is demonstrated, how the choice of a
far too complex model affects the variance of the estimates. In
this severe overfitting situation ( ), the uncertainty re-
gion becomes huge in areas where we have little data evidence.
The predictive information becomes vanishingly small with in-
creasing model complexity.

In the following two experiments we concentrate on situations,
in which the learning set is additionally corrupted by 30%
outliers, drawn from a uniform distribution on . The
optimal LASSO fit employing a quadratic loss function is
depicted in the left graph of Fig. 2 (optimality is again measured
on a test set of size 1000). The quadratic shape of the loss
function imposes the problem that the distant outliers gain
disproportionate influence on the solution. The only possible
workaround is to restrict the model complexity by highly
regularizing the problem ( ). This, however, leads
to a clear underfitting situation with respect to the original
sinc-function. The estimated function is readily expanded in
terms of only three relevance vectors, i.e., all but three variables
are removed from the model. Concerning the variance estimates,
modeling the noise distribution as a Gaussian introduces a
second problem: the empirically estimated noise variance (step
4) becomes very high, and the error bars on the predictions
are so large that even the sign of the predicted function values
appears unreliable.

Both problems can be overcome by employing a robust loss
function of Huber’s type: penalizing distant outliers only lin-
early allows us to choose a model of adequate complexity while
simultaneously reducing the outlier’s influence. Concerning the
prediction accuracy, the robust LASSO fit depicted in the right
graph outperforms its quadratic counterpart significantly (the
mean squared error reduces from 0.31 to 0.17). Moreover, im-
plicit with the use of a robust loss function is the interpretation
of data points far away from the regression fit as “untypical”
events. Compared to standard least-squares functionals, the in-
fluence of these untypical events is reduced by assigning smaller
“weights” to them in the functional (26). The resulting vari-
ance estimates depicted by the dashed lines appear much more
adequate for the given problem.

B. Friedman’s Benchmark Functions

In this section, the main focus concerns a comparison of the
prediction performance of LASSO regression relative to both
the SVM and the RVM for Friedman’s benchmark functions.
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TABLE II
RESULTS FOR THE “HOUSE-PRICE-8L,” “BANK-32-FH” AND “ABALONE” DATASETS FROM THE DELVE REPOSITORY. IN THE SECOND ROW, R STANDS FOR RVM,

S FOR SVM AND L FOR LASSO. THE TIMES ARE MEASURED ON A 500 MHz PC. COLUMNS 2–4 SHOW THE MEAN SQUARED PREDICTION ERROR ON A

TEST SET OF SIZE 4000 (FOR “ABALONE” SIZE 2000), THE LAST 3 COLUMNS SHOW THE TIME IN SECONDS FOR THIS PREDICTION

Fig. 3. Computation times for the “house-8L” dataset. Solid lines depict
training times, dashed lines depict prediction times for a test set of size 4000.

They have been introduced in [34] and have become a widely
used benchmark for regression models (see, e.g., [35] and [36]).

Friedman is a nonlinear prediction problem with ten in-
dependent variables that are uniformly distributed in

where is normal distributed noise. The function,
however, depends only on five variables, and the predictor has
to distinguish the variables that have no prediction ability to

from the others.
Friedman and both have four independent variables

that are uniformly distributed in the following ranges

Fig. 4. Size of the LASSO-subproblems versus iteration number for the
“house-8L” dataset.

Function and are defined as

where the noise is adjusted to give 3 : 1 ratio of signal power to
noise power.

The prediction results for the three functions are summarized
in Table I. The results are averaged over 100 randomly generated
training sets of size 240 and test sets of size 1000. The perfor-
mance is measured in terms of mean squared error with respect
to the original functions before the noise was added. Since only
relatively small learning sets are considered, we postpone a de-
tailed analysis of computational costs to the real-world experi-
ments in the next section.
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TABLE III
CLASSIFICATION RESULTS FOR UCI BENCHMARK DATASETS. NUMBER OF

SVS/RVS AND PREDICTION ERRORS, AVERAGED OVER 100 TRAINING/TEST

SPLITS (STANDARD ERRORS IN BRACKETS)

It should be noticed that all three models attain a very sim-
ilar level of accuracy. The prediction differences can be readily
explained by the statistical fluctuations when randomly gener-
ating the training/test data. Distinct differences, however, occur
in the number of support/relevance vectors: the models em-
ploying ARD priors produce much sparser solutions than the
SVM, in accordance with our theoretical considerations and
with the above results from the toy examples.

C. Real-World Regression Problems

As real-world examples, we present results for the
“house-price-8L,” “bank-32-fh,” and “abalone” datasets
from the DELVE benchmark repository.7 We compared both
the prediction accuracy and the computational costs of RVM,
SVM,8 and LASSO for different sample sizes. The results are
summarized in Table II. In all experiments RBF kernels are
used, and the inputs are standardized to have unit variance.
The model parameters (width of RBF kernel and regularization
parameter) are selected by minimizing the prediction error
on a randomly chosen set of 1000 test examples. The final
prediction results are reported on a test set of size 4000.

The LASSO results for the first three experiments refer to
a quadratic loss function. It is worth noticing that within the
whole DELVE archive for regression benchmarks we could
not find a single problem for which a robust loss function
significantly improved the accuracy. This, however, only
means that for the task of discriminating between robust and
nonrobust regression models, these benchmark datasets are too
“well-behaved” in the sense that they obviously contain no or
only very few outliers. In order to present at least one highly
disturbed large-scale problem, we artificially corrupted 30%
of the training patterns from the abalone dataset by uniform
noise on the interval . For this last experiment,

7The datasets are available via http://www.cs.toronto.edu/~delve/delve.html.
8We used the SVMTorch V 3.07 implementation (see [38]).

we used a robust LASSO estimator employing a loss function
of Huber’s type.

From Table II we conclude, that

• For the original benchmark datasets, the prediction accu-
racy of all models is comparable. After adding outliers, the
robust models outperform the RVM significantly.

• The ARD models are sparser than the SVM by 1–2 orders
of magnitude.

• The RVM has severe computational problems for large
training sets.

• The LASSO combines the advantages of efficiently han-
dling large training sets and producing extremely sparse
solutions.

Concerning the training times, the reader should notice that
we are comparing the highly tuned SVMTorch optimization
package, [38], with our straight forward LASSO implementa-
tion, which we consider to yet possess ample opportunities for
further optimization.

Fig. 3 shows a schematic plot of the computation times for
the “house-8L” dataset. Solid lines depict training times, dashed
lines depict prediction times for a test set of size 4000. In the
training phase, both SVM and LASSO are clearly superior to
the RVM. The curve labeled “AdR-train” depicts the training
times for a AdR model with conjugate gradient approximation,
cf. Section IV. Note that the costs for the exact AdR algorithm
are almost identical to those of the RVM, since in both cases a

matrix must be inverted, see (11) and (13).
For the purpose of efficiently predicting function values of

new observation, however, the ARD models outperform the
SVM significantly. Note that the prediction time solely depends
on the number of nonzero expansion coefficients, which for
ARD models roughly remains constant with increasing size of
the training set.

In a last regression experiment, we have plotted the size of
the subproblems (31) during the iterations for the “house-8L”
dataset with a learning set of size 2000. The “smooth” curve
in Fig. 4 shows that the optimal variable set is found without
solving unnecessarily large subproblems in intermediate states
of the iteration.

D. Classification Experiments

We conclude the experiments section with several benchmark
classification problems. Our main focus here concerns a com-
parison of the LOGREG version of LASSO with the SVM. We
have chosen several UCI benchmark datasets,9 since they have
been widely used for benchmarking in the literature. Table III
reports prediction errors and number of support/relevance vec-
tors, averaged over 100 training/test splits. In each experiment
the model parameters (width of RBF kernel and regularization
constant) are selected by minimizing the averaged test error on
five randomly chosen splits. We conclude, that the LOGREG-
LASSO model attains a level of prediction accuracy compa-
rable with a “state-of-the-art” SVM, while using significantly
less vectors in the kernel expansion.

9Available at http://www.ics.uci.edu/~mlearn/MLSummary.html (ex-
cept BANANA). We used the normalized versions of these datasets from
http://www.first.gmd.de/~raetsch/.
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VI. DISCUSSION

Sparsity is an important feature of kernel regression models,
since it simultaneously allows us to efficiently learn a regression
function and to efficiently predict function values of new
examples. For the SVM, highly tuned training algorithms
have been developed during the last years. However, the SVM
approach still suffers from the steep growth of the number of
support vectors with increasing size of the training set. From
a more conceptual viewpoint, the difficulty of analytically
deriving error bars may be considered an even more severe
shortcoming.

The key idea to overcome these drawbacks is to apply the
Bayesian methodology to kernel regression models. In combi-
nation with the mechanism of ARD, interpretable and extremely
sparse solutions can be obtained. The RVM has been introduced
in [7] as a first method of this kind. For the RVM (at least in
its original version), however, the probabilistic modeling of the
data has introduced two new problems: since the update equa-
tion for the hyperparameters (10) requires us to explicitly invert
a large matrix, the learning phase has become very costly. It is,
thus, difficult to apply the RVM to large-scale real-world prob-
lems. A second shortcoming results from the prior assumptions
about the noise by which the data are corrupted. In order to make
probabilistic interpretations possible, a simple Gaussian noise
model is assumed. Implicit with such a Gaussian noise model is
measuring the approximation accuracy by a quadratic loss func-
tion. However, if the noise assumption is violated in the sense
that the learning set contains a considerable amount of outliers,
these outliers will exhibit a disproportionate influence on the es-
timated regression function. It should be noticed, however, that
recent work on the RVM addresses these shortcomings (see [9]
and [10]).

In this paper we present a different type of kernel regressors
which overcome the above problems. Given the identical ARD
prior model, one can analytically integrate out the hyperparam-
eters by defining exponential hyperpriors. This leads us to the
LASSO method which optimizes a -constrained regression
functional. Reformulating the relevance determination problem
in the LASSO framework makes it possible to use a highly ef-
ficient subset algorithm introduced in [6].

We have shown that this algorithm can be generalized to the
class of IRLS models, including robust regression models and
logistic regression. The use of robust loss functions which pe-
nalize distant outliers only linearly constitutes a significant ad-
vantage for handling highly corrupted learning sets. We further
have proposed an efficient method for deriving variance esti-
mates for this class of robust kernel regressors. The key idea
here is that we can analytically derive the Lagrange parameter
associated with the LASSO problem. This parameter allows us
to use the standard Bayesian variance estimates in transformed
least-squares problems. The fact that the LOGREG model is
also part of the IRLS class, naturally extends the robust regres-
sion framework with penalty to the case of binary targets in
classification.

Experiments for both synthetic and real-world benchmark
datasets have effectively demonstrated that the generalized
LASSO combines several important features.

• The user is provided with probabilistic outputs, even if
robust loss functions are employed. This makes it possible
to estimate a confidence region around the fitted values.

• We can identify vectors in the training set that are con-
sidered relevant, in the sense that new observations must
only be pairwise compared via the kernel function with
these “relevance” vectors.

• Both robust regression models and LOGREG classifiers
can be optimized using the same subset algorithm.

• Concerning the computational costs during the learning
phase, this algorithm performs comparable to highly tuned
“state-of-the-art” SVM optimization packages for several
benchmark problems. Moreover, we strongly believe that
implementations of this algorithm possess ample opportu-
nities for further optimization, and might undergo a devel-
opment similar to that of the SVM algorithms during the
last couple of years.

• Concerning the time needed for making predictions, the
LASSO outperforms the SVM drastically, due to the ex-
treme sparsity of its solutions. This may be of particular
interest for prediction tasks with real-time requirements.
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