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Abstract
The Group-Lasso method for finding impor-
tant explanatory factors suffers from the poten-
tial non-uniqueness of solutions and also from
high computational costs. We formulate condi-
tions for the uniqueness of Group-Lasso solu-
tions which lead to an easily implementable test
procedure that allows us to identify all poten-
tially active groups. These results are used to
derive an efficient algorithm that can deal with
input dimensions in the millions and can approx-
imate the solution path efficiently. The derived
methods are applied to large-scale learning prob-
lems where they exhibit excellent performance
and where the testing procedure helps to avoid
misinterpretations of the solutions.

1. Introduction

In many practical learning problems we are not only inter-
ested in low prediction errors but also in identifying im-
portant explanatory factors. These explanatory factors can
often be represented as groups of input variables. Com-
mon examples are k-th order polynomial expansions of the
inputs where the groups consist of products over combina-
tions of variables up to degree k. Such expansions compute
explicit mappings into feature spaces induced by polyno-
mial kernel functions of the form k(x,y) = (1 + x · y)k.
Another popular example are categorical variables that are
represented as groups of dummy variables.

A method for variable selection which has gained particular
attention is the Lasso (Tibshirani, 1996) which exploits the
idea of using !1-constraints in fitting problems. The Group-
Lasso (Yuan & Lin, 2006) extends the former in the sense
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that it finds solutions that are sparse on the level of groups

of variables, which makes this method a good candidate
for situations described above. The Group-Lasso estimator,
however, has several drawbacks: (i) in high-dimensional
spaces, the solutions may not be unique. The potential
existence of several solutions that involve different vari-
ables seriously hampers the interpretability of “identified”
explanatory factors; (ii) existing algorithms can handle in-
put dimensions up to thousands (Kim et al., 2006) or even
several thousands (Meier et al., 2008), but in practical ap-
plications with high-order interactions or polynomial ex-
pansions these limits are easily exceeded; (iii) contrary to
the standard Lasso, the solution path (i.e. the evolution of
the individual group norms as a function of the constraint)
is not piecewise linear, which precludes the application of
efficient optimization methods like least angle regression

(LARS) (Efron et al., 2004).

In this paper we address all these issues: (i) we derive
conditions for the completeness and uniqueness of Group-
Lasso estimates, where we call a solution complete, if it
includes all groups that might be relevant in other solu-
tions (meaning that we cannot have “overlooked” relevant
groups). Based on these conditions we develop an easily
implementable test procedure. If a solution is not com-
plete, this procedure identifies all other groups that may be
included in alternative solutions with identical costs. (ii)
These results allow us to formulate a highly efficient active-

set algorithm that can deal with input dimensions in the
millions. (iii) The solution path can be approximated on
a fixed grid of constraint values with almost no additional
computational costs. Large-scale applications using both
synthetic and real data illustrate the excellent performance
of the developed concepts and algorithms. In particular,
we demonstrate that the proposed completeness test suc-
cessfully detects ambiguous solutions and thus avoids the
misinterpretation of “identified” explanatory factors.
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2. Characterization of Group-Lasso Solutions
for Generalized Linear Models

This section largely follows (Osborne et al., 2000), with the
exception that here we address the Group-Lasso problem
and a more general class of likelihood functions.

According to (McCullaghand & Nelder, 1983), a general-
ized linear model (GLM) consists of three elements:
(i) a random component f(y;µ) specifying the stochastic
behavior of a response variable Y ;
(ii) a systematic component η = x!β specifying the vari-
ation in the response variable accounted for by known co-
variates x; and
(iii) a link function g(µ) = η specifying the relationship
between the random and systematic components.
The random component f(y;µ) is typically an exponential
family distribution

f(y; θ,φ) = exp(φ−1(yθ − b(θ)) + c(y,φ)), (1)

with natural parameter θ, sufficient statistics y/φ, log par-
tition function b(θ)/φ and a scale parameter φ > 0.

Note that in the model (1) the mean of the responses µ =
Eθ[y] is related to the natural parameter θ by µ = b′(θ).
The link function g can be any strictly monotone differen-
tiable function. In the following, however, we will consider
only canonical link functions for which g(µ) = η = θ. We
will thus use the parametrization f(y; η,φ).

From a technical perspective, an important property of this
framework is that log f(y; η,φ) is strictly concave in η.
This follows from the fact that the one-dimensional suffi-
cient statistics y/φ is necessarily minimal, which implies
that the log partition function b(η)/φ is strictly convex, see
(Brown, 1986; Wainwright et al., 2005).

The standard linear regression model is a special case de-
rived from the normal distribution with φ = σ2, the iden-
tity link η = µ and b(η) = (1/2)η2. Other popular mod-
els include logistic regression (binomial distribution), Pois-
son regression for count data and gamma- ( or exponential-,
Weibull-) models for cost- or survival analysis.

Given an i.i.d. data sample {x1, . . . ,xn}, xi ∈ Rd, ar-
ranged as rows of the data matrix X , and a corresponding
vector of responses y = (y1, . . . , yn)!, we will consider
the problem of minimizing the negative log-likelihood

l(y,η,φ) = −
∑

i

log f(yi; ηi,φ)

= −
∑

i

φ−1(yiηi − b(ηi)) + c(yi,φ).
(2)

We assume that the scale parameter is known, and for the
sake of simplicity we assume φ = 1. Since η = xTβ, the

gradient of l can be viewed as a function in either η or β:

∇ηl(η) = −(y − g−1(η)),

∇βl(β) = −X!∇ηl(η) = −X!(y − g−1(Xβ)),
(3)

where g−1(η) := (g−1(η1), . . . , g−1(ηn))!. The corre-
sponding Hessians are

Hη = W, Hβ = X!WX, (4)

where W is diagonal with elements Wii = (g−1)′(ηi) =
1/(g′(µi)) = µ′(ηi) = b′′(ηi).

For the following derivation, it is convenient to partition X ,
β and h := ∇βl into J subgroups: X = (X1, . . . , Xj),

β =






β1
...

βJ




 , h =






h1
...

hJ




 =






X!
1 ∇ηl

...
X!

J ∇ηl




 . (5)

As stated above, b is strictly convex in θ = η, thus b′′(ηi) >
0 which in turn implies that Hη $ 0 and Hβ % 0. This
means that l is a strictly convex function in η. For general
matrices X it is convex in β, and it is strictly convex in β
if X has full rank and d ≤ n.

Given X and y, the Group-Lasso minimizes the negative
log-likelihood viewed as a function in β under a constraint
on the sum of the !2-norms of the subvectors βj :

minimize l(β) s.t. g(β) ≥ 0, (6)

where g(β) = κ−
∑J

i=1 ‖βj‖. (7)

Here g(β) is implicitly a function of the fixed parameter κ.

Considering the unconstrained problem, the solution is not
unique if the dimensionality exceeds n: every β∗ = β0 +ξ
with ξ being an element of the null space N(X) is also a
solution. By defining the unique value

κ0 := minξ∈N(X)

∑J
i=1 ‖β

0
j + ξj‖, (8)

we will require that the constraint is active i.e. κ < κ0.
Note that the minimum κ0 is unique, even though there
might exist several vectors ξ ∈ N(X) which attain this
minimum. Enforcing the constraint to be active is essential
for the following characterization of solutions. Although it
might be infeasible to ensure this activeness by computing
κ0 and selecting κ accordingly, practical algorithms will
not suffer from this problem: given a solution, we can al-
ways check if the constraint was active. If this was not
the case, then the uniqueness question reduces to checking
if d ≤ n (if X has full rank). In this case the solutions
are usually not sparse, because the feature selection mech-
anism has been switched off. To produce a sparse solution,
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one can then try smaller κ-values until the constraint is ac-
tive. In section 3 we propose a more elegant solution to this
problem in the form of an algorithm that approximates the
solution path, i.e. the evolution of the group norms when
relaxing the constraint. This algorithm can be initialized
with an arbitrarily small constraint value κ0 which typically
ensures that the constraint is active in the first optimization
step. Activeness of the constraint in the following steps can
then be monitored by observing the decay of the Lagrange
parameter when increasing κ, cf. Eq. (14) below.

Under the assumption l > −∞ a minimum of (6) is guar-
anteed to exist, since l is continuous and the region of feasi-
ble vectors β is compact. The assumption l > −∞ simply
means that the likelihood is finite (f < +∞) for all param-
eter values θ which is usually satisfied for models of practi-
cal importance (see (Wedderburn, 1973) for a detailed dis-
cussion), and we will restrict our further analysis to models
of this kind1. Since we assume that the constraint is active,
any solution β̂ will lie on the boundary of the constraint
region. It is easily seen that

∑J
j=1 ‖βj‖ is convex which

implies that g(β) is concave. Thus, the region of feasible
values defined by g(β) ≥ 0 is convex. If d ≤ n, the ob-
jective function l will be strictly convex if X has full rank,
which additionally implies that the minimum is unique. In
summary, we can state the following theorem:

Theorem 1. If κ < κ0 and X has maximum rank,

then the following holds: (i) A solution β̂ exists and∑J
i=1 ‖β̂j‖ = κ for any such solution. (ii) If d ≤ n,

the solution is unique.

The Lagrangian for problem (6) reads

L(β,λ) = l(β) − λg(β). (9)

For a given λ > 0, L(β,λ) is a convex function in β. Un-
der the assumption l > −∞ a minimum is guaranteed to
exist, since g goes to infinity if ‖β‖ → ∞.

The vector β̂ minimizes L(β,λ) iff the d-dimensional null-
vector 0d is an element of the subdifferential ∂βL(β,λ).
Let dj denote the dimension of the j-th subvector βj

(i.e. the size of the j-th subgroup). The subdifferential is

∂βL(β,λ) = ∇βl(β) + λv = X!∇ηl(η) + λv, (10)

with v = (v1, . . .vJ)! defined by

vj =
βj

‖βj‖
, if βj += 0dj

and

vj ∈ {a ∈ R
dj : ‖a‖ ≤ 1}, else.

(11)

Thus, β̂ is a minimizer for λ fixed iff

0d = X!∇ηl(η)|η=bη + λv (with η̂ = Xβ̂), (12)

1Technically we require that the domain of l is R
d, which im-

plies that Slater’s condition holds.

for some v of the form described above. Hence, for all j
with β̂j += 0dj

it holds that

‖X!
j ∇ηl(η)|η=bη‖ = λ. (13)

For all other j with β̂j = 0dj
it holds that

‖X!
j ∇ηl(η)|η=bη‖ ≤ λ which implies

λ = maxj ‖X!
j ∇ηl(η)|η=bη‖. (14)

Lemma 1. Let β̂ be a solution of (6). Let λ = λ(β̂) be

the associated Lagrangian multiplier. Then λ and ĥ =
∇βl(β)|

β=bβ
are constant across all solutions β̂(i) of (6).

Proof. Since the value of the objective function l(η(i)) =
l∗ is constant across all solutions and l is strictly convex
in η = Xβ and convex in β, it follows that η̂ must
be constant across all solutions β̂(i), which implies that

∇βl(β)|
β=bβ

= X!∇ηl(η)|η=bη is constant across all so-
lutions. Uniqueness of λ follows now from (14).

Theorem 2. Let λ be the Lagrangian parameter associated

with some (any) solution β̂ of (6) and let ĥ be the unique

gradient vector at the optimum. Let B = {j1, . . . , jp} be

the unique set of indices for which ‖ĥj‖ = λ. Then β̂j =

0dj
∀j +∈ B across all solutions β̂(i) of (6).

Proof. A solution with β̂j += 0dj
for at least one j +∈ B

would contradict (13).

Assume that an algorithm has found a solution β̂ of (6)

with the set of “active” groups A := {j : β̂j += 0}. If

A = B = {j : ‖ĥj‖ = λ}, then there cannot exist any
other solution with an active set A′ with |A′| > |A|. Thus,
A = B implies that all relevant groups are contained in

the solution β̂. Otherwise, the additional elements in B
which are not contained in A define all possible groups that
potentially become active in alternative solutions.

Note that A = B guarantees that we cannot have “over-
looked” relevant groups, which is typically sufficient in
practical applications. We will call such a solution com-

plete. However, A might still contain redundant groups,
and we might be additionally interested if we have found
a unique (an thus minimal) set A. The following theorem
characterizes a simple test for uniqueness under a further
rank assumption of the data matrix X .

Theorem 3. Assume that every n × n submatrix of X has

full rank. Let A be the active set corresponding to some

solution β̂ of (6) and let XA be the n × s submatrix of X
composed of all active groups. Assume further that A is

complete, i.e. A = B. Then, if s ≤ n, β̂ is the unique

solution of (6).
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Proof. Since the set B is unique, the assumption A = B
implies that the search for the optimal solution can be re-
stricted to the space S = Rs. If s ≤ n, XA must have full
rank by assumption. Thus, l(βS) is a strictly convex func-
tion on S which is minimized over the convex constraint
set. Thus, β̂S is the unique minimizer on S. Since all other

β̂j:j /∈A must be zero, β̂ is unique on the whole space.

In practice, it might be difficult to guarantee the rank con-
dition in the above theorem. Note, however, that for a given
set A and associated matrix XA it is sufficient to check if
rank(XA) = s via SVD or QR-decomposition.

3. An Efficient Active-Set Algorithm

The characterization of optimal solutions presented above
is now used to build a highly efficient algorithm, which is a
straight-forward generalization of the subset algorithm for
the standard Lasso problem presented in (Osborne et al.,
2000). Similar ideas for the standard Lasso have also been
introduced in (Shevade & Keerthi, 2003). The algorithm
starts with only one active group. The selection of further
active groups (or their removal) is guided by observing La-
grangian violations. Testing for completeness of the active
set will then identify all groups that could have nonzero
coefficients in alternative solutions.

A: Initialize set A = {j0}, βj0 arbitrary with ‖βj0‖ = κ.
B: Optimize over the current active set A. Define set
A+ = {j ∈ A : ‖βj‖ > 0} (some βj could have van-
ished during optimization). Define λ = maxj∈A+ ‖hj‖.
Adjust the active set A = A+.
C: Lagrangian violation. ∀j +∈ A, check if ‖hj‖ ≤ λ.
If this is the case, we have found a global solution. Other-
wise, include the group with the largest violation to A and
go to B.
D: Completeness and uniqueness. ∀j +∈ A, check if
‖hj‖ = λ. If so, there might exist other solutions with
identical costs that include these groups in the active set.
Otherwise, the active set is complete in the sense that it con-
tains all relevant groups. If Xa has full rank s ≤ n, unique-

ness can be checked additionally via theorem 3. Note that
step D requires (almost) no additional computations, since
it is a by-product of step C.

The above algorithm is easily extended to practical op-
timization routines in which we stop the fitting process
at a predefined tolerance level: testing for “completeness
within a ε-range” (|‖hj‖ − λ| < ε in D with ε being the
maximum deviation of gradient norms from λ in the active
set) will then identify all potentially active groups in alter-
native solutions with costs close to the actual costs.

The minimization in step B can be performed efficiently
by the projected gradient method introduced in (Kim et al.,

2006), which is applicable for all continuous convex cost
functions. Finding the projection is typically the computa-
tional bottleneck in methods of this kind. For our special
case, however, the projection can be found very efficiently.
We refer the reader to (Kim et al., 2006) for details.
Iterate:
B1: Gradient. At time t− 1, set b = βt−1 − s∇βl(βt−1)
and A+ = A, where s is a step-size parameter.
B2: Projection. For all j ∈ A+ define Mj := ‖bj‖ +
(κ−

∑
j ‖bj‖)/|A+|. If Mj ≥ 0∀j ∈ A+, go to B3. Else

update the active set A+ = {j : Mj > 0} and repeat B2.
B3: New solution. For all j ∈ A+ set βt

j = bjMj/‖bj‖.

For all other j ∈ A, j /∈ A+ set βt
j = 0.

Note that during the whole algorithm, access to the full set
of variables is only necessary in steps C and D, which are
outside the core optimization routine. Thus, in large-scale
applications where not all groups can be hold in the main
memory, we still have a rather efficient method, even if we
have to access external storage in steps C/D.

Computing the Solution Path. Contrary to the standard
Lasso, the Group-Lasso does not exhibit a piecewise linear
solution path. Algorithms like LARS (Efron et al., 2004)
are therefore not applicable. Despite this problem, we can
still approximate the solution path on a grid of constraint
values with almost no additional costs: starting with a very
small κ(0) (which will result in a small active set), we it-
eratively relax the constraint, resulting in a series of in-
creasing values κ(i). Note that at the i-th step, the previ-
ous solution β(κ(i−1)) is a feasible initial estimate since
κ(i) > κ(i−1). Typically only few further iterations are
needed to find β(κ(i)). Completeness/uniqueness can be
tested efficiently at every step i. In practical applications
we observed that the stepwise approximation of the solu-
tion path up to some final κ(f) is usually faster than di-
rectly computing the solution for κ(f), probably because
the stepwise procedure allows the use of larger stepsizes.

4. Applications

As a first application example we use synthetic data
generated by a script that has been used in the con-
text of the NIPS’03 feature selection workshop (follow
the link “dataset description” on the workshop webpage
www.clopinet.com/isabelle/Projects/NIPS2003/#challenge). We
reproduced the XOR example explained in the above cited
document: there are two classes, each of which is com-
posed of two Gaussian clusters. Two “useful” features are
drawn from N(0, 1) for each cluster. Some covariance is
added by multiplying by a random matrix. The clusters are
placed in an XOR configuration and 3200 “useless” fea-
tures are added, drawn from N(0, 1). All the features are
shifted and rescaled randomly. Random noise is then added
according to N(0, 0.1). Finally, 1% of the labels are ran-
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domly flipped. We construct a training set of size 2000 and
a test set of size 6000.
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Best model with prediction error 1.6%

One "useful" group

Other "useless" groups

Figure 1. Solution path for the XOR problem with 3200 noise di-

mensions. The norm of the one “useful” group grows steeply

when the constraint is relaxed. What appears as a horizontal

“thickening” line is an overlay of 275 “useless” groups.

Without feature selection, prediction becomes very diffi-
cult: a SVM with RBF kernel achieves 42% test error (on
the subset of the two “useful” features the error decreases
to 1.5% ). Moreover, simple feature selection methods like
correlation-based scoring fail badly on these data.

We expand the dataset in a polynomial basis of degree 2,
i.e. each pair of features (a, b) is mapped to a 5-dimensional
vector (a, b, a ·b, a2, b2). Given the 3202 features (2 + 3200
“useless”), this expansion yields ≈ 5 · 106 groups of size
5, each of which contains 5 quadratic interactions. We are,
thus, working in a ≈ 2.5 ·107-dimensional space. Since the
expanded feature set cannot be hold in the main memory,
we only store the original dataset and recompute the ex-
pansions on demand. Despite this computational overhead,
our active set algorithm allows us to optimize the Group-
Lasso functional very efficiently, see also Figure 2. Since
we are dealing with a classification problem, we choose the
logistic model from the GLM family. Figure 1 shows the
solution path for the logistic Group-Lasso when relaxing κ
in 20 steps. Note that in the first iterations the algorithm
was able to determine the one “useful” group of variables.
The norm of the corresponding weight vector increases al-
most linearly until κ ≈ 4.5, where the minimum error rate
of 1.6% on the test set is obtained.

Testing both the completeness and the uniqueness of the
active set gives a positive result, which guarantees that at
this constraint value there are no alternative solutions. Fur-
ther increasing κ leads to the selection of additional groups
with spurious weights. The model obtained for κ = 10
uses 275 groups which include “useless” features and have
norms < 0.2. Solutions for κ > 5 appear to be lacking
completeness: our test identified a steeply increasing num-
ber of other groups that may also become active. Given
that the “useless” variables are randomly drawn from a nor-

mal distribution, the observed lack of completeness might
be caused by the limited numerical precision in the opti-
mization routine: for models with κ < 7 we could indeed
show by increasing the numerical precision that the solu-
tions are complete, however at the price of drastically in-
creasing computational costs. For larger models, however,
we were not able to find complete solutions within any rea-
sonable time limits. This result nicely shows that lacking
completeness of Group-Lasso solutions is indeed a relevant
issue in real-world applications which are necessarily com-
puted with limited numerical precision. Besides the theo-
retical properties of our completeness test, this test might
thus be also a valuable practical tool to detect possible am-
biguities that are caused by numerical problems.

To compare the efficiency of our active set algorithm with
related approaches, we measured the time needed to com-
pute ten steps of the solution path (κ = 1, 2, . . . , 10) for
different numbers of “useless” groups. Figure 2 shows
the observed computation times of three different meth-
ods: (1): the blockwise sparse method (Kim et al., 2006),
(2): the block coordinate method by (Meier et al., 2008),
(3): our algorithm. The comparison with method 1 was
straight forward, since the same implementation was used
(note that by dropping the active set selection mechanism,
our method simply reduces to method (1)). In order to guar-
antee a fair comparison with method (2) for which we used
the R-package grplasso, a few modifications were nec-
essary: we first trained our method on the data and recorded
the sequence of Lagrange parameters λ1, . . . ,λ10 corre-
sponding to the sequence of constraints κ = 1, 2, . . . , 10,
since the grplasso package needs the Lagrange parame-
ters on input. We also recorded the achieved log-likelihood
at each step. We then trained method (2) on the dataset and
adjusted its tolerance parameters as to (roughly) reproduce
the recorded sequence of log-likelihoods. The double loga-
rithmic scale in Figure 2 should make the interpretation of
the plot rather insensitive against performance differences
caused by using different implementations, since such dif-
ferences are expected to produce additive shifts without
changing the slopes.

For input instances that could be hold in the main mem-
ory, the log-log plot shows a relatively steep increase for
the models (1) and (2), whereas method (3) increases lin-
early with a moderate slope. For the “out-of-core” models,
we recomputed the groups whenever necessary (step C/D
in our algorithm). We again see an almost linear increase
of costs up to models including ≈ 106 groups. Three ob-
servations seem to be important: (i) the slope of the curve
for method (3) in the “out-of-core” regime does not even
exceed the slope of the corresponding curve for method (2)
at the end of the “cached” region; (ii) when fixing the costs
at the level of method (2) at the end of the “cached” region,
method (3) was able to solve instances which are larger by
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at least 1 − 1.5 orders of magnitude; (iii) comparison with
method (1) shows that the active set formalism leads to a
speed-up of several orders of magnitudes.

lo
g
  
 (

s)
1

0

(1)

(3)

10log   (g)

(2)

out−of−corecached

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 2.5  3  3.5  4  4.5  5  5.5  6  6.5

Figure 2. Log-log plot of computation time (y-axis, in seconds)

for the XOR problem with logistic loss as a function of the num-

ber g of groups (x-axis). The three different methods are: 1:(Kim

et al., 2006), 2:(Meier et al., 2008), 3: our algorithm.

Splice Site Detection. The prediction of splice sites has
an important role in gene finding algorithms. Splice
sites are the regions between coding (exons) and non-
coding (introns) DNA segments. The 5′ end of an
intron is called a donor splice site and the 3′ end
an acceptor splice site. The MEMset Donor dataset
(http://genes.mit.edu/burgelab/maxent/ssdata/) consists of a
training set of 8415 true and 179438 false human donor
sites. An additional test set contains 4208 true and 89717
“false” (or decoy) donor sites. A sequence of a real splice
site is modeled within a window that consists of the last 3
bases of the exon and the first 6 bases of the intron. Decoy
splice sites also match the consensus sequence at position
zero and one. Removing this consensus “GT” results in
sequences of length 7, i.e. sequences of 7 factors with 4
levels {A,C, G, T}, see (Yeo & Burge, 2004) for details.
The goal of this experiment is to overcome the restriction
to marginal probabilities (main effects) in the widely used
Sequence-Logo approach (see Figure 4) by exploring all
possible interactions up to order 4.

Following (Meier et al., 2008), the original training dataset
is used to build a balanced training dataset and an unbal-
anced validation set which exhibits the same true/false ratio
as the test set. The data are represented as a collection all
factor interactions up to degree 4. Every interaction is en-
coded using dummy variables and treated as a group, lead-
ing to 120 groups of sizes varying between 4 (main effects)
and 45 (4th order interactions). In total, we are working in
a 33068-dimensional feature space. This dataset has also
been analyzed in (Meier et al., 2008) with the Group-Lasso,
but only up to 2nd order interactions.

To correct for the unbalancedness of the classes, the val-

Figure 3. Sequence Logo representation of the human 5′ splice

site. The consensus “GT” appears at positions 0, 1. The overall

height of the stack of symbols at a certain position indicates the

sequence conservation at that position, while the height of sym-

bols within the stack indicates the relative frequency of each nu-

cleic acid, see (Crooks et al., 2004). We model the splice sites in

a window over positions [−3, 5].

idation set is used to choose the best threshold τ on the
classifier output. It is further used to select κ. The perfor-
mance is measured in terms of the maximum correlation
coefficient ρmax between predicted and true labels.
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Figure 4. Left: solution path for donor splice site prediction.

Color and thickness of curves indicate different orders of inter-

actions. Right: Correlation coefficient as a function of κ. Bold

curve: correlation on the validation set that is used for model se-

lection (the thin vertical line indicates the chosen model). Thin

curve: correlation on the separate test set.

From the correlation curve in Figure 4 we conclude that
the inclusion of interactions of order three and greater does
not improve the predictive performance and produces some
pronounced overfitting effects. The model with the highest
correlation coefficient (κ = 20) contains 36 groups: all
7 main effects, 21 1st-order interactions and 8 2nd-order
interactions. Among the top-scoring groups we find the
main effects at positions −1, 2 and 4, the interactions at
positions (4 : 5), (−2 : −1) and (2 : 3) and the triplet
(−3 : −2 : −1), which all share the property that they
exclusively contain exon positions (or intron positions, re-
spectively). One might conclude that long-range interac-
tions between the preceding exon and the starting intron
are of minor importance for splice site recognition. The
completeness test reveals, however, that the solution with
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36 groups is not complete, and that a complete model for
κ = 20 additionally contains the four interactions (−1 :4),
(−2 : 5), (−1 : 3 : 4) and (−3 : −1 : 2 : 5), all of which
combine exon and intron positions. This is a nice exam-
ple where the completeness test gives rise to query an ini-
tial hypothesis (about the weak exon-intron dependencies)
which seems to be plausible from observing the Group-
Lasso solution. It should be noticed that the obtained cor-
relation coefficient of ρmax = 0.663 compares favorably
with the result in the original paper (Yeo & Burge, 2004)
(ρmax = 0.659), which has been viewed as among the best
methods for short motive modeling.

The next experiment shows a situation where the complete-
ness test indicates that the interpretability of the Group-
Lasso might be generally complicated if relatively com-
plex models are required. The problem is again the dis-
crimination between true and “false” splice sites, this time,
however, at the 3′ end. Compared to the 5′ situation, 3′

(acceptor) splice site motives are less concentrated around
the consensus nucleotide pair (“AG” at positions -2,-1 in
Figure 5), which requires the use of larger windows. We
trained the logistic Group-Lasso model on all interactions
up to order 4 using windows of length 21. In total, we
have 27896 groups which span a 22, 458, 100-dimensional
feature space. Despite this huge dimensionality, our ac-
tive set algorithm was able to compute the solution path
up to κ = 150 within roughly 20 hours. From the corre-
lation curve in Figure 6 we conclude that in this example,
the inclusion of 3rd- and 4th-order interactions does indeed
increase the predictive performance. The optimal model
at κ = 66 contains 386 groups. Among the 10 highest-
scoring groups are the main effects at positions −3, −5
and 0, the 1st-order interactions (−9 : −8), (−11 : −10),
(−11 : −9) and (−12 : −11), the triplet (−6 : −5 : −3),
the 3rd-order interaction (−14 : −9 : 0 : 1) and the 4th-
order interaction (−10 : −8 : −6 : −3 : 2). The latter
might be of particular interest, since it couples the position
2 which appears to be non-informative in the Sequence-
Logo representation (Fig. 5) with positions at the end of
the intron. This observation nicely emphasizes the strength
of a model that is capable of exploring high-order depen-
dencies among the positions.

A closer look at the results of the completeness tests in
Figure 7 shows, however, that probably all solutions with
κ > 40 are rather difficult to interpret, since a steeply in-
creasing number of groups must be added to obtain com-
plete models. This means that care should be taken when
it comes to interpreting specific groups occurring in par-
ticular solutions (as we have done above). Since most of
the models are not complete, it might well be that other
groups not contained in a particular solution might be of
high importance or even “substitute” identified groups. For
the 4th-order interaction (−10 : −8 : −6 : −3 : 2) in the

optimal solution with κ = 66 it might well be that there
exist other groups that can take over the role of this inter-
action. Even though the high score of this group might
indicate that a complete substitution is not very likely, the
“discovery” of the coupling between position 2 and intron
positions should not be accepted unquestioningly.

Figure 5. Sequence Logo representation of the human 3′ splice

site. The consensus “AG” appears at positions −2,−1. We use a

window over positions [−20, 2].
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Figure 6. Left: solution path for 3′ splice site prediction. The up-

per most curve represents the most important position -3 (last po-

sition of the intron). Right: Correlation coefficient as a function

of κ. Bold curve: correlation on the validation set that is used for

model selection. Thin curve: correlation on the separate test set.

5. Conclusion

The completeness- and uniqueness test presented here
overcomes a severe problem of the Group-Lasso estima-
tor for generalized linear models (GLM). Since in many
practical applications the dimensionality exceeds the sam-
ple size, we cannot a priori assume that the active set of
groups is unique, which somehow contradicts our goal of
identifying important factors. Our testing procedure has the
advantage that it identifies all groups that are potential can-
didates for the active set. Even if a solution is not complete,
this latter property still allows us to explicitly list (and po-
tentially investigate) the set of all candidate groups.

We have presented a highly efficient active-set algorithm
that can handle extremely high-dimensional input spaces
which typically arise when investigating high-order fac-
tor interactions or when using polynomial basis expan-
sions. Our theoretical characterization of solutions is used
to check both optimality and completeness/uniqueness.
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Figure 7. Acceptor splice site prediction: groups that must be in-

cluded in the logistic Group-Lasso estimates to obtain complete

models (gray values represent different orders of interactions).

The experiment on synthetic data in XOR configuration
with additional noise features showed that the methods
and concepts presented here can be successfully applied to
problems with millions of groups. We demonstrated that
non-completeness of solutions is indeed an important issue
in real-world applications where round-off errors are un-
avoidable. Without any additional computational costs, the
proposed completeness/uniqueness test easily detects such
situations and additionally identifies all groups that must be
included to achieve a complete model.

The splice-site prediction example confirmed these obser-
vations in a real-world context, where the inclusion of high-
order factor interactions helps to increases the predictive
performance but also leads to incomplete and, thus, po-
tentially ambiguous solutions. The active set algorithm
was able to approximate the solution path of the logistic
Group-Lasso for feature-space dimensions up to ≈ 2 · 107

within a reasonable time, and the completeness test helped
to avoid mis- or over-interpretations of identified interac-
tions between the nucleotide positions. In particular for
the 5′ (donor-) splicing sites, we could show that the com-
pleteness test avoids a potentially severe misinterpretation
regarding the independence of exon and intron positions.

While in the application examples we have focused on lo-
gistic classification problems, both the characterization of
solutions and the algorithms proposed are valid for the
much richer class of GLMs. Notable extensions include
models for counting processes (e.g. Poisson or log-linear
models). Details of such models for the analysis of sparse
contingency tables in the spirit of the work in (Dahinden
et al., 2007) will appear elsewhere. A C++ implementation
of the active set algorithm with completeness test is avail-
able from the authors on request.

In the broad perspective – and in the light of recent theoret-
ical results on the algorithmic complexity of feature selec-
tion (Nilsson et al., 2007) – one might conclude that feature
selection can be simpler than previously thought.
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