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Abstract

Male Wistar rats were treated with various model compounds or the appropriate vehicle controls in order to create a reference database for

toxicogenomics assessment of novel compounds. Hepatotoxic compounds in the database were either known hepatotoxicants or showed

hepatotoxicity during preclinical testing. Histopathology and clinical chemistry data were used to anchor the transcript profiles to an

established endpoint (steatosis, cholestasis, direct acting, peroxisomal proliferation or nontoxic/control). These reference data were analyzed

using a supervised learning method (support vector machines, SVM) to generate classification rules. This predictive model was subsequently

used to assess compounds with regard to a potential hepatotoxic liability. A steatotic and a non-hepatotoxic 5HT6 receptor antagonist

compound from the same series were successfully discriminated by this toxicogenomics model. Additionally, an example is shown where a

hepatotoxic liability was correctly recognized in the absence of pathological findings. In vitro experiments and a dog study confirmed the

correctness of the toxicogenomics alert. Another interesting observation was that transcript profiles indicate toxicologically relevant changes

at an earlier timepoint than routinely used methods. Together, these results support the useful application of toxicogenomics in raising alerts

for adverse effects and generating mechanistic hypotheses that can be followed up by confirmatory experiments.
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Introduction technology. The application of gene expression analysis in
Drug-induced liver toxicity is a common cause of liver

injury resulting in drug withdrawal from the market or

severely restricted use. This encourages improvements in

current pre-clinical and clinical testing. Traditionally, pre-

clinical testing involves descriptive histopathological exami-

nation and measurement of serum enzyme levels to

investigate the hepatic liability of a development compound.

New approaches that improve upon conventional processes

of risk assessment and safety evaluation are currently

sought. High-density microarrays that allow simultaneous

monitoring of transcriptional changes of thousands of genes

in response to various stimuli are a promising new
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toxicology has led to the emergence of the discipline of

toxicogenomics. Great hopes on the application of transcript

profiling in toxicology justified significant investment in

toxicogenomics efforts in most pharmaceutical companies as

well as academic and governmental institutions. Toxicoge-

nomics is anticipated to improve not only sensitivity and

accuracy, but also speed of toxicological investigations. In

addition, determination of potential liabilities of compounds

early in the drug development process can save development

time and money by focusing resources on compounds that

are more likely to succeed (Waring and Ulrich, 2000).

Some of the earliest success stories of microarray based

classification described the transcriptional differences in

acute myeloid leukemia (AML) and acute lymphoblastic

leukemia (McClelland et al., 2001). This discrimination is

critical for successful treatment (Golub et al., 1999). Another

work described the molecular characterization of 60 cell
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lines from diverse tumor tissues indicating improved

sensitivity of the microarray approach compared to tradi-

tional histopathology (Ross et al., 2000). A further study

investigated transcriptional effects of 118 cancer drugs with

known mechanisms of action in these 60 tumor cell lines.

Transcript profiles associated with specific drug treatments

showed a good correlation with the mechanism of action

(Scherf et al., 2000) and represent remarkable reproducible

features that allow the recognition of distinct groups. The

same tumor subtype defined in one breast tumor data set

could also be recognized in 2 independent breast tumor data

sets. The transcriptional alterations were considered to be

major determinants for disease outcome (Sorlie et al., 2003).

The underlying assumption of toxicogenomics is that

toxicity is accompanied by transcriptional changes which

are either causally linked to the mechanism of toxicity or

represent a response to a toxic insult. Several publications

linked toxicity to expression changes of individual genes or

groups of genes (Hamadeh et al., 2002b; Ruepp et al., 2002;

Suter et al., 2003). The predictive toxicogenomics approach

assumes that similar treatments leading to the same toxic

end-point will share comparable changes in gene expres-

sion. The potential of predictive toxicogenomics was

highlighted by the identification of blinded samples using

gene expression profiles from hepatotoxicants (Hamadeh

et al., 2002a). Successful discrimination of gene expres-

sion fingerprints was also reported in several other studies

(Bartosiewicz et al., 2001; Bulera et al., 2001; Thomas et

al., 2001; Waring et al., 2001).

The liver is a primary site for drug metabolism and is

frequently involved in adverse drug reactions. Therefore, we

chose the liver as a target organ for the described

toxicogenomics studies. A multitude of hepatotoxic as well

as some non-hepatotoxic compounds and matched vehicle

controls were administered to male Wistar rats. Liver gene

expression profiles were subsequently used to create a

reference database.

For all studied compounds, hepatotoxic mechanisms are

well known and fall in one of the following categories. The

microvesicular form of hepatic steatosis (fatty liver) is

especially clinically relevant. Fatty liver is thought to occur

due to mitochondrial damage causing impairment of h-
oxidation and accumulation of small lipid vesicles within

hepatocytes. A severe decrease in energy production may

cause hepatic failure, coma and death (Pessayre et al., 1999).

Failure of bile excretion is a pathophysiologic process

termed cholestasis. Intra-hepatic cholestasis is often caused

by inhibition of bile acid transporters that leads to

accumulation of hepatocellular bile acids, resulting in liver

injury, inflammation and elevated levels of circulating

alkaline phosphatase (Jaeschke et al., 2002; Velayudham

and Farrell, 2003). Damage to macromolecules such as

proteins and lipids can be caused by direct interaction

through a toxic compound itself or, more commonly, through

a highly reactive metabolite (Lee et al., 1992). Pathophysio-

logical manifestations of such direct acting compounds are
hepatocellular necrosis, lipid peroxidation and elevated

levels of circulating alanine-aminotransferase (ALT). Addi-

tionally, we investigated a series of peroxisome proliferator-

activated receptor (PPAR) agonists which cause peroxisome

proliferation. Peroxisome proliferators (PPs) are non-geno-

toxic rodent hepatocarcinogens that cause liver enlargement

and hepatocarcinogenesis associated with peroxisome pro-

liferation, induction of hepatocyte DNA synthesis and

suppression of apoptosis (Roberts et al., 2000).

For predictive tasks, supervised methods have been

described as promising tools (Baumgartner et al., 2004;

Bullinger et al., 2004; Scholkopf and Smola, 2002). We

used Support Vector Machines (SVMs), which belong to the

class of supervised learning algorithms (Boser et al., 1992;

Vapnik, 1998) and were reported to perform well in different

areas of biological analysis (Scholkopf and Smola, 2002).

Given a set of training examples, SVMs are able to

recognize informative patterns in input data and make

generalizations on previously unseen samples. Like other

supervised methods, SVMs require prior knowledge of the

classification problem, which has to be provided in the form

of labeled training data. We used histopathological assess-

ment and clinical chemistry data to allocate profiles to a

specific training class. We combined the creation of a model

with recursive feature elimination (RFE; (Guyon et al.,

2002)), to identify the most discriminative gene changes. A

model discriminating controls and non-hepatotoxic expres-

sion profiles from the four categories described above was

created and used to assess novel gene expression profiles.

Classification of RNA expression-patterns successfully

discriminated between a hepatotoxic and a non-hepatotoxic

serotonin receptor (5-HT) antagonist from the same

chemical series. This predictive toxicogenomics approach

also flagged a further development compound as potentially

hepatotoxic, despite absence of histopathology in the rat.

This alert was confirmed in in vitro experiments and in a

dog study. Finally, some examples are provided indicating

an earlier detection of toxicity, preceding pathology, using

this toxicogenomic approach.
Materials and methods

Animal treatment. Permission for animal studies was

obtained from the local regulatory agencies, and all study

protocols were in compliance with animal welfare guide-

lines. Male HanBrl: Wistar rats approximately 12 weeks of

age (300 g T 20%) were obtained from BRL, Füllinsdorf,

Switzerland. All rats were sacrificed by carbon dioxide

(CO2) asphyxiation, exsanguinated and necropsied after oral

(gavage) treatment with the test compound. In all studies, a

time-matched vehicle control group was included.

Rx65 and Rx66. Rats received a single dose p.o. (gavage)

of Rx65 or Rx66 (400 mg/kg, vehicle distilled water) and

were sacrificed 6 or 24 h after dosing. With Rx65 rats were
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also dosed sub-acute for 7 days at 30, 100 or 400 mg/kg/day

and sacrificed 24 h after the last administration. All

treatment groups consisted of 5 animals.

Rx8, Rx9 and Rx10. Rats were dosed with a single or

repeated dose for 5 days p.o. (gavage) with Rx08, Rx09 or Rx

10 dissolved in klucel and sacrificed after 24 h. Dose amounts

were 250 mg/kg/day for Rx08, 100 mg/kg/day for Rx09 and

125 and 500 mg/kg/day for Rx10. Within a treatment group

all six animals were dosed equally, but 3 rats were used for

histopathological assessment of the livers while livers from

the remaining 3 animals were used for additional measure-

ments including gene expression profiling.

Coumarin, 6-methylcoumarin and tacrine. Rats were

dosed p.o. (gavage) with 200 mg/kg coumarin or 6-

methylcoumarin dissolved in corn oil and assessed after 6

or 24 h. Rats were dosed i.p. with 35 mg/kg tacrine,

dissolved in 7.5% gelatine and assessed after 6 or 24 h.

Rx10, Beagle dogs. Beagle dogs aged 16 months (Mar-

shall Farms, USA) were housed according to the National

Institutes of Health Guide for the Care and Use of

Laboratory Animals and sacrificed with an overdose of

sodium pentobarbital after treatment with the test com-

pound. Two male and 2 female dogs were treated for 14

days with an escalating dose of Rx10 (15, 30, 60, 120 mg/

kg/day) p.o. (gavage).

Hepatocyte preparation, culture and treatment. Hepato-

cytes were isolated from 10- to 14-week-old naive male

HanBrl:WIST rats by a two-step collagenase liver perfusion

method (Berry and Friend, 1969) as previously described

(Goldlin and Boelsterli, 1991). Briefly, the rats were

anaesthetized with sodium pentobarbital (120 mg/kg, i.p.).

The liver was first perfused for 5 min with a pre-perfusing

solution consisting of calcium-free, EGTA (0.5 mM)-

supplemented, HEPES (20 mM)-buffered Hank’s balanced

salt solution (5.36 mM KCl, 0.44 mM KH2PO4, 137 mM

NaCl, 4.2 mM NaHCO3, 0.34 mM Na2HPO4, 5.55 mM d-

glucose). This was followed by a 12-min perfusion with

NaHCO3 (25 mM)-supplemented Hank’s solution contain-

ing CaCl2 (5 mM) and collagenase (0.2 U/ml). Flow rate

was maintained at 28 ml/min and all solutions were kept at

37-C. After in situ perfusion the liver was excised and the

liver capsule was mechanically disrupted. The cells were

suspended in William’s Medium E without phenol red

(WME) and filtered through a set of tissue sieves (30-, 50-

and 80-mesh). Dead cells were removed by a sedimentation

step (1 � g, for 15 min at 4-C) followed by a Percoll-

centrifugation step (Percoll density: 1.06 g/ml, 50g, 10 min)

and an additional centrifugation in WME (50 � g, 3 min).

Typically, 100–300 � 106 cells were obtained from one rat

liver. Hepatocyte viability was assessed by trypan blue

exclusion and typically ranged between 85% and 95%. Cells

were seeded into collagen-coated 6-well Falcon Primaria
plates (Fisher Scientific AG, Wohlen, Switzerland), at a

density of 9 � 105 cells/well in 2 ml WME supplemented

with 10% fetal calf serum, penicillin (100 U/ml), strepto-

mycin (0.1 mg/ml), insulin (100 nM) and dexamethasone

(100 nM). After an attachment period of 3 h, the medium

was replaced by 1.5 ml/well serum-free WME, supple-

mented with antibiotics and hormones, and further kept at

37-C in an atmosphere of 5% CO2/95% air. After a further

overnight pre-culture period, the cells were exposed to the

test compound dissolved in WME (final concentration of

DMSO vehicle 0.2%) or to the corresponding vehicle

(WME containing 0.2% DMSO).

Cytotoxicity assessment—LDH-release. Acute cytotoxic-

ity was determined as lactate dehydrogenase (LDH) release

into the cell culture medium. LDH activity was determined

spectrophotometrically using commercially available test

kits (Roche Diagnostics, Mannheim, Germany) on a Cobas

Fara autoanalyzer (Roche, Rotkreuz, Switzerland). Enzyme

activity in the medium was expressed as percentage of total

LDH activity present in the cells at the beginning of the

incubation.

Fatty acid b-oxidation. The formation of acid-soluble

products from [U-14C]-palmitic acid was determined as a

measure for h-oxidation. The cells were incubated with

1 mM palmitic acid containing tracer amounts of [14C]-

palmitic acid in the presence or absence of test compound

(medium was Williams medium E supplemented with

insulin and 2% BSA) and in the presence or absence of

exogenously added carnitine (500 AM). Medium samples

(250 Al) were collected after 2 h and acidified by adding

perchloric acid. Subsequently, KOH was added and proteins

were precipitated by centrifugation. The radioactivity from

short-chain h-oxidation products was then measured in the

supernatant in a Beckman LS 6000LL liquid scintillation

analyzer and expressed as nmol palmitic acid equivalents.

The carnitine-sensitive palmitic acid h-oxidation, indicative
of the mitochondrial contribution to h-oxidation, was then

calculated as difference of short-chain h-oxidation products

formation in the presence and absence of exogenously

added carnitine. The results were expressed as percentage of

carnitine sensitive palmitic acid h-oxidation in vehicle

treated control cells.

Measurement of cellular lipid accumulation. Accumula-

tion of lipophilic inclusions was assessed using nile red

staining (Fowler et al., 1987; Greenspan et al., 1985). Nile

red is a fluorescent dye which accumulates and fluoresces in

lipophilic environment, while fluorescence is quenched in

water. The cells were incubated for 10 min at 37-C, with the

staining solution (10 Ag/ml nile red in PBS). After removing

the staining solution, the fluorescence from the cell layer

was then determined in a Victor2 multilabel counter (EG and

G Wallac, Regensdorf, Switzerland). The results were

expressed as percentage of the control.
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Measurement of triglycerides. After treatment of cells for

the desired time period, the medium was aspirated and the

cells were washed with ice-cold saline, harvested in a total

volume of 0.5 ml saline and homogenized by ultrasonica-

tion. Aliquots were taken from the homogenate to determine

total triglycerides concentration. Triglyceride concentration

was determined with a test kit and by means of a Cobas/Fara

autoanalyzer (Roche Diagnostics AG, Basel, Switzerland).

Histopathology. Representative liver samples were fixed

in 10% neutral buffered formalin. One additional liver

sample from the cranial half of the left lateral lobe was

placed in Carnoy fixative for glycogen staining. All samples

were processed using routine procedures and embedded in

Paraplast. Tissue sections approximately 2–3 Am were cut

and stained with hematoxylin–eosin (HE) or periodic acid-

Schiff (PAS) for glycogen. Fat Red 7B stain was performed

on frozen formalin-fixed sections in order to visualize lipid

deposits. Microscopic findings were evaluated for severity

using a five-point grading scale: 1 (minimal), 2 (slight), 3

(moderate), 4 (marked), 5 (severe).

Sample preparation and hybridization. RNA isolation,

processing and hybridization were essentially carried out as

recommended by Affymetrix (www.affymetrix.com, Affy-

metrix, Santa Clara, CA) with minor modifications (Steiner

et al., 2004).

Data acquisition and preprocessing. Primary data were

obtained by laser scanning (Hewlett Packard, Palo Alto,

CA, USA) and collated using the Affymetrix Microarray

Suite Version 5.0 software (Affymetrix, Santa Clara, CA).

Before doing any downstream analysis, data were prepro-

cessed in a standardized way (details in (Steiner et al.,

2004)).

Support vector machines. Details concerning theory and

application of support vector machines are described in the

literature (Cristianini and Shawe-Taylor, 2000; Scholkopf

and Smola, 2002). All SVM classifications were based on

the freely available software package libsvm 2.36 (Chang

and Lin, 2001). The source code was extended to meet our

needs and compiled to run on SGI IRIX 6.5. Extensions

such as parameter optimization, recursive feature selection,

enhanced cross validation (CV) options, one-versus-all

training scheme and report generation were implemented

in a C library on top of libsvm. The SVM was calculated as

described (Steiner et al., 2004) with the minor modification

that aflatoxin and phalloidin were removed from the

cholestatic training classes and lithocholic acid was added

to this class. The reason for this a certain overlap of

cholestatic and ‘‘direct acting’’ properties of the former 2

compounds.

A linear kernel k(xi,xj) = bxi,xj� was chosen for the SVM.

In order to handle the multiple class situation, we applied

the one-versus-one (OVO) training paradigm. Following
this approach, a set of binary SVMs is created each of which

separates the samples of one class (positive examples) from

another training class (negative examples). A voting scheme

of the individual SVMs is subsequently applied to determine

the classification of a given sample.
Results

Generation of a predictive model using a reference database

We created a reference database with liver gene

expression profiles from vehicle and compound treated rats.

Subsequently, SVMs were used as a supervised learning

method to generate classification rules. Histopathology and

clinical chemistry results in conjunction with published data

provided a rational basis for allocating individual gene

expression profiles of rat livers treated with a variety of

compounds to the 5 training classes: controls, direct acting,

cholestasis, steatosis and peroxisomal proliferators. (Direct

acting: bromobenzene, CCl4, hydrazine, thioacetamide, 1,2-

dichlorobenzene, coumarin, acetaminophen; Steatosis: ami-

neptine, amiodarone, 4 proprietary compounds; Cholestasis:

chlorpromazine, cyclosporin A, glibenclamide, lithocholic

acid, methylene dianiline; Peroxisomal Proliferation: WY-

14V643, 5 proprietary compounds; Controls: 163 time-

matched vehicle control rats. Each treatment group usually

consisted of 5 animals.). A detailed description of the

compounds including histopathology and clinical chemistry

is described in Steiner et al. (2004). The model described

therein was slightly modified for the current study.

Aflatoxin and Phalloidin were omitted from the training

class since both compounds had overlapping ‘‘direct acting’’

and cholestatic effects and lithocholic acid was additionally

included in the cholestatic model. The classification

approach was one-versus-one (e.g., cholestasis vs. control,

cholestasis vs. steatosis etc.). The SVM used a linear kernel

and validation was performed in a compound-based external

cross-validation (CV) procedure. This means that all profiles

from a given compound were omitted from SVM model

building including feature (‘‘gene’’) selection. Compound

induced expression profiles were classified by an SVM

where these specific compound profiles were omitted from

training.

Gene expression based discrimination of the hepatotoxic

liability of two 5HT6 compounds

Two 5-HT6 receptor antagonists were investigated in

male rats. Both compounds share the same pharmacological

target, but have remarkably different toxicity profiles. Rats

were dosed with a single dose (400 mg/kg) Rx65 or Rx66

and gene expression changes were assessed after 6 or 24 h.

In a repeated dose study (7 days) Rx65 was administered at

30, 100 or 400 mg/kg/day. Gene expression profiles were

assessed in a blinded manner by the previously described

http://www.affymetrix.com
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SVM. Already after 24 h, a clear discrimination of both

compounds was possible by this computational approach.

Whereas Rx66 expression profiles were not different from

control gene expression profiles, Rx65 profiles were

identified as steatotic. In the subchronic dosing scheme

(1 week, daily administration), the steatosis produced by

400 mg/kg Rx65 was corroborated with the SVM. With the

mid-dose (100 mg/kg) 3 out of 4 animals were classified as

steatotic, whereas the lowest dose was predominantly

classified as controls (Table 1).

Histopathology confirmed a dose-related increase in fatty

change in the liver observed after repeated dosing with Rx65.

Hepatocellular vacuolation, characterized by multiple small

discrete periacinar vacuoles that sometimes coalesced to form

larger ones (microsteatosis), was seen on HE-stained

sections. These vacuoles stained positive for lipid. After 1

week of administration of Rx65, the mean severity of fatty

change as assessed from Sudan-stained frozen sections

increased from 1.0 in the low-dose group to 1.8 in the mid-

dose group to 2.8 in the high-dose group. Only 1 out of 4

animals in the time-matched control group showed fatty

change, while all rats treated with Rx65 for 7 days were

affected. A single administration of Rx65 at 400 mg/kg

resulted in an increase in the severity of fatty change (mean

grade 2.2) at 24 h with respect to the controls (mean grade

1.2) and with Rx66 at 400 mg/kg (mean grade 1.4). The livers

of rats 6h after treatment with Rx65 or Rx66were comparable

with their respective controls. The bioinformatics prediction

based on liver transcript profiling confirmed the steatotic

liability of Rx65 and absence thereof for Rx66.

Gene expression analysis based identification of a potential

hepatotoxic liability of several development compounds

Male Wistar rats were treated with 3 different compounds

of the same chemical class of antidiabetic compounds

(Rx08, Rx09, Rx10). Rats were treated once or during 5

days with Rx08 (250 mg/kg/day), Rx09 (100 mg/kg/day) or

Rx10 (125 or 500 mg/kg/day). The doses for Rx09 and the

low dose of Rx10 were selected to result in similar efficacy,
Table 1

SVM predictions for all groups that were treated with the 5-HT6 receptor

antagonists Rx65 and Rx66

Compound Dose Treatment Time SVM

prediction

Rx65 400 mg/kg/day Repeated dose 168 h Steatotic

Rx65 100 mg/kg/day Repeated dose 168 h Steatotic (75%)

Control (25%)

Rx65 30 mg/kg/day Repeated dose 168 h Control (80%)

Steatotic (20%)

Rx65 400 mg/kg/day Single dose 24 h Steatotic

Rx66 400 mg/kg/day Single dose 24 h Controls

Rx65 400 mg/kg/day Single dose 6 h Controls

Rx66 400 mg/kg/day Single dose 6 h Controls

If classification results are not fully concordant within one group,

percentage numbers are indicated.
whereas Rx08 was a pharmacologically inactive stereo-

isomer of Rx09, which was therefore applied at a dose level

resulting in a similar plasma exposure as Rx09. Liver gene

expression in individual animals was measured and sub-

sequently assessed by the previously described SVM-based

predictive toxicogenomics model (Table 2). The results

suggest that all 3 compounds have similar transcriptional

effects and have a steatotic liability in the rat liver. Repeated

dosing with Rx08, Rx09 or Rx10 (500 or 125 mg) led to a

unanimous classification as steatotic. After a single dose, the

2 former compounds could not be discriminated from

controls by the present model although there were some

transcriptional changes relative to the time-matched con-

trols. However, the third substance was already flagged as

steatotic at the high dose after single application. Hence, all

substances are expected to have a significant steatotic

potential in the rat liver.

While transcript profiles were determined in livers from 3

animals histopathology was performed on the remaining

animals within each treatment group. Therefore, gene

expression and pathology cannot be compared on an

individual basis, but only on a group basis. In this combined

study there was also some microvacuolation noted in control

animals which complicates the task of identifying treatment-

related changes. After treatment for 1 day only Rx10 did not

produce microvacuolation, but Rx08, Rx09 and vehicle

control did. Repeated dosing produced a similar picture:

Oil-Red O-positive microvacuolation was noted in one

animal treated with Rx10, in 2 animals treated with vehicle

or Rx08 and in all 3 animals treated with Rx09. However,

several additional rat studies produced a clear result and

established that Rx08 and Rx09, but not Rx10 were steatotic.

These discordant results with the 2 approaches led to

subsequent in vitro analysis of all 3 compounds. Primary

rat hepatocytes were treated in vitro with equimolar

concentrations of the 3 compounds. Rx08 and Rx09

showed signs of cytotoxicity as measured by LDH release

already with 150 AM, whereas Rx10 did not show

cytotoxicity up to 300 AM. Intracellular lipid content of

primary rat hepatocytes was measured using nile red (9-

diethylamino-5H-benzo[alpha]phenoxazine-5-one). The

non-cytotoxic concentrations 37.5 and 75 AM produced a

dose-dependent increase in intracellular lipid content with

all 3 compounds after 24 h incubation time (Fig. 1). The

increase in intracellular lipid content was similar with all 3

compounds.

Following a 24-h treatment period with Rx08, Rx09 or

Rx10 hepatocellular triglyceride content was significantly

increased (Fig. 2). At 37.5 and 75 AM, all 3 compounds led

to a comparable and significant increase in triglycerides. At

the highest dose (150 AM), Rx08 and Rx09 were already

cytotoxic, therefore, the relative decrease in triglyceride

content was likely to be caused by a reduced cell number

per well. With Rx10 at this concentration, triglyceride

content was more than 2.5-fold elevated in the absence of

cytotoxicity. Thus, the observed increase in lipid content
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Table 2

SVM predictions for the treatment with antidiabetic compounds Rx08,

Rx09 and Rx10

Compound Dose Single

dose

time

SVM

prediction

Rep.

dose

time

SVM

prediction

Rx08 250 mg/kg/day 24 h Control 120 h Steatotic

Rx09 100 mg/kg/day 24 h Control 120 h Steatotic

Rx10 500 mg/kg/day 24 h Steatotic

(67%)

Cholestatic

(33%)

120 h Steatotic

Rx10 125 mg/kg/day 24 h Control

(67%)

Cholestatic

(33%)

120 h Steatotic

Classification results are reported separately for the single dose (4th

column) and repeated dose (6th column).

Fig. 2. Following a 24-h treatment period with Rx08, Rx09 or Rx10

hepatocellular triglyceride content was significantly increased with all 3

compounds. This increase was comparable at 37.5 and 75 AM. The 150-AM
concentration of Rx08 and Rx09 was cytotoxic as determined by LDH

release therefore the relative decrease in triglyceride content was probably

caused by a reduced cell number. At this dose Rx10 caused a 2.5-fold

elevation in triglyceride content in the absence of cytotoxicity.
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was primarily due to an accumulation of triglycerides in

hepatocytes.

In order to test if this increase in triglyceride content was

linked to impaired fatty acid catabolism, carnitine-sensitive

h-oxidation was measured. Inhibition of h-oxidation could

be confirmed with Rx09 and Rx10, but not with Rx08 at 75

and 150 AM (Fig. 3). However, at 300 AM, all 3 compounds

showed a significant reduction in h-oxidation. The inhib-

ition of h-oxidation was not caused by cytotoxicity as under

the conditions for the h-oxidation assay, e.g., the presence

of 2% albumin in the medium in order to dissolve palmitic

acid, Rx09 and Rx10 were no longer cytotoxic at concen-

trations up to 300 AM.

In summary, this set of in vitro experiments confirmed

the SVM based prediction on toxicogenomic data in terms

of a steatotic liability for all 3 investigated compounds.

Since compound Rx10 was not hepatotoxic in rats

according to conventional measures, the hepatotoxic poten-

tial was tested in a second species, namely the dog. Two
Fig. 1. Intracellular lipid content of primary rat hepatocytes treated for 24 h

with non-cytotoxic concentrations (37.5 and 75 AM) of Rx08, Rx09 and

Rx10 was measured using nile red (9-diethylamino-5H-benzo[alpha]phe-

noxazine-5-one). A similar dose-dependent increase in intracellular lipid

content was observed with all 3 compounds. Error bars indicate the

standard deviation derived from 3 independent experiments. (For inter-

pretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
male and 2 female beagle dogs were treated during 14 days

with an escalating dose of Rx10 (p.o. (gavage) 15, 30, 60,

120 mg/kg/day). Histopathological assessment revealed

increased incidence and severity of hepatotoxicity. Liver

necrosis was observed in some animals at all doses, with

severity increasing with dose. Interestingly, frozen liver

sections stained for fat with Oil red-O confirmed also a

steatotic liability. No vacuolation was observed with 15 mg,

but the remaining doses exhibited a dose-dependent increase

in incidence and severity of fatty liver. At 120 mg/kg/day,

all dogs had microsteatosis grade 4 or grade 5.

Gene expression changes indicate toxicity already at early

timepoints

There are several examples indicating an earlier detection

of toxicological events by transcript profiling which precede

pathology. In a comparative study, the hepatotoxic sub-

stance coumarin and the putatively non-hepatotoxic 6-
Fig. 3. Carnitine sensitive h-oxidation was measured to assess the effect on

fatty acid catabolism. At 75 and 150 AM concentrations, h-oxidation was

impaired following treatment with Rx09 and Rx10. At 300 AM, also Rx08

caused a significant reduction in h-oxidation. This inhibition of h-oxidation
was not caused by cytotoxicity. The required presence of 2% albumin in the

medium to dissolve palmitic acid abolished the cytotoxicity of Rx08 and

Rx09 at this concentration.
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methylcoumarin were dosed at 200 mg/kg and mRNA

levels assessed after 6, respectively 24 h. After 6 h of

treatment, hepatocellular hypertrophy was observed in rats

treated with coumarin, but no test item related histopatho-

logical changes were noted with 6-methylcoumarin. The

toxicogenomic approach, however identified already 4 out

of 5 animals treated with 6-methylcoumarin as abnormal (2

cholestatic, 2 direct acting, 1 control). After 24 h, 4 out of 5

6-methylcoumarin-treated animals were categorized as

showing a direct reaction, while 1 was identified as control.

All liver profiles from rats treated with coumarin were

correctly identified as toxic (Cholestatic after 6 h, Direct

acting after 24 h). At the 24-h time point, lymphocytic

infiltration and single cell necrosis of hepatocytes were seen

with both compounds, but with a clearly reduced incidence

after treatment with 6-methylcoumarin. With coumarin, all 5

animals had lymphocytic infiltration (mean grade 3) and 4

animals had single cell necrosis (mean grade 1.6). With

methylcoumarin 4 rats showed lymphocytic infiltration

(mean grade 1) and only 1 animal had single cell necrosis

(grade 1).

Tacrine hepatotoxicity was investigated at the transcrip-

tional level and compared with serum chemistry and

histopathology changes. The acute dose effects were studied

after 6 and 24 h. Bioinformatic assessment of the 6-h

transcript profiles flagged 4 out of 5 animals as potentially

hepatotoxic (cholestasis). After 24 h, the transcriptional

effect was smaller and therefore the profiles could not be

distinguished from controls. After 6 h, no pathological

changes were observed. After 24 h, there was a minimal

reduction in glycogen deposition noted (mean grade of

glycogen deposition in controls was 3; mean grade in treated

animals was 2.2). Previously reported fatty change was not

observed in this study. Serum changes after 6 h included

increases in glucose, 5-nucleotidase (5V-NT), total protein,
albumin, a1-globulin, h-gobulin. Serum changes after 24 h

were increases in bile acids, g-glutamyltransferase (GGT),

alanine aminotransferase (AST), and aspartate aminotrans-

ferase (ALT).
Discussion

Rats were treated with a variety of vehicles, hepatotoxic

or non-hepatotoxic compounds in order to create a reference

database. We focused on hepatotoxicity since the liver is a

main target for toxic reactions. Transcript profiles from

individual rats were allocated to specific categories using

histopathology and clinical chemistry as well as published

data in order to provide sound labels (e.g., cholestatic)

required for the subsequent ‘‘supervised’’ analysis. The SVM

analysis produced gene-based binary classifiers for those

predefined categories (steatosis, cholestasis, direct acting,

peroxisomal proliferation or nontoxic/control). In the applied

one-versus-one (OVO) training scheme, a compound-based

external CV was combined with RFE in order to create a
model from which we can expect a good generalization

power. We published previously a one-versus-all (OVA)

model on virtually the same dataset indicating that the model

has indeed a good generalization power as assessed by

testing transcript profiles from independent experiments

(Steiner et al., 2004). With the OVO approach, more SVMs

have to be trained since all pairwise comparisons between

classes must be accounted for. However, the number of

transcript profiles on which the models are based is smaller

compared to the OVA method where one has always to use

all samples that are available for training. This leads to

performance gains in the model building phase. Also, we

observe that a smaller number of genes is required for each

binary classification, since separating two distinct classes is

usually a simpler task compared to discriminating between

one class and all other categories. Another advantage of the

OVO approach is that in a pair wise comparison of single

categories (e.g., cholestasis and steatosis), both categories

consist of roughly the same number of expression profiles.

This is expected to contribute to a higher sensitivity with

respect to predicting the smaller groups (individual toxicity

categories were considerably smaller than the vehicle control

category). In total, less genes were used for classification

with the OVO approach, an advantage that could be useful

when developing a smaller higher-throughput assay.

Transcript profiling in combination with SVM analysis

was successful in discriminating two 5-HT6 receptor antag-

onists. Although they share the same pharmacological target

and have therefore overlapping gene expression changes

related to pharmacology, the toxicity-related genes allowed a

successful ‘‘blinded’’ prediction which gene expression

profiles belonged to controls or to the non-hepatotoxic

compound Rx66 and which profiles indicated treatment with

the steatotic compound Rx65. Interpretation of individual

gene changes would be beyond the focus of this publication,

but a gene-based mechanistic, rather than predictive, inter-

pretation of transcriptional differences between these two

compounds is published (Suter et al., 2003).

Identification and prediction of hepatotoxic liabilities

delivered also very interesting results in a comparative

analysis of 3 antidiabetic compounds. Transcriptional

effects of these 3 compounds were studied after treatment

for 1 or 5 days. Histopathological assessment of rat livers in

several studies revealed microvesicular steatosis in rat livers

treated with Rx08 and Rx09, but not with Rx10. Liver gene

expression analysis was performed in a blinded manner by

the previously described SVM. Whereas Rx08 and Rx09

were successfully identified as steatotic, the prediction of a

steatotic liability of Rx10 was in evident contrast to

pathology. Toxicogenomics was in this case used as a

hypothesis generation tool for further investigations of this

compound. A first measure was nile red accumulation in

primary rat hepatocytes to determine the intracellular lipid

content. Interestingly, all 3 compounds caused a dose-

dependent increase in lipid content. This rather general

finding was specified and confirmed by measurements of
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triglyceride accumulation in hepatocytes. Steatosis can be

caused by several events like decreased production of

apolipoprotein, oversupply of free fatty acids or decreased

fatty acid oxidation (Treinen–Moslen, 2001). In this

context, the following gene changes observed with Rx08,

Rx09 and Rx10 support the prediction of a steatotic

liability: apolipoprotein A1, apolipoprotein B editing

complex 1, acetyl-coenzyme a acyltransferase 1, mitochon-

drial acyl-coa thioesterase 1, acyl-coenzyme a dehy-

drogenase, fatty acid binding protein 7, carnitine o-

octanoyltransferase, fatty acid translocase, phospholipase

A2. Other gene expression changes linked to energy

metabolism included: phosphoglycerate mutase 2, malate

dehydrogenase 1, glyceraldehyde-3-phosphate dehydrogen-

ase, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3

and glucose-6-phosphatase, transport protein 1.

Carnitine-sensitive h-oxidation was measured in hepato-

cytes and indicated a decreased rate of h-oxidation upon

treatment with the 3 compounds Rx08, Rx09 and Rx10. The

effect with Rx09 and Rx10 was more pronounced than the

reduction in h-oxidation induced by Rx08, which was

restricted to a relatively high concentration (300 AM).

During the short duration of the incubation period (2 h)

and in the presence of 2% albumin in these experiments no

increased LDH release was observed, not even at this high

concentration. Together, these in vitro experiments support

the flag for steatosis raised by toxicogenomics for the

putatively not hepatotoxic compound Rx10. Interestingly, a

14-day dog study provided clear evidence for the predicted

hepatotoxicity of Rx10 as both necrosis and steatosis were

observed in the dog liver. Although this is an impressive

example for cross-species extrapolation based on transcript

profiling, it remains to be seen how often a potentially

slightly sub-toxic dose in one species can already be

indicative for toxicity. Since different species have different

ADME properties (Yamaguchi et al., 2001), this approach is

not expected to always succeed, but in some cases, indicative

information can be found. This is most likely the case if

toxicity is just slightly below detection limits of routine

methods. Therefore, we investigated cases where the

toxicogenomic approach could provide a gain in sensitivity.

The comparative study with coumarin and the supposedly

non-hepatotoxic 6-methylcoumarin (Lake, 1999) high-

lighted a temporal gain in detecting toxicity using toxicoge-

nomics. Coumarin was predicted to be hepatotoxic after 6

and 24 h by the SVM, which was in line with the

histopathological assessment. Although the identification

as toxic was correct, the predicted mechanism cholestasis is

questionable since serum changes did not support this

assumption. After 24 h, necrosis and lymphocyte infiltration

were observed, which are typical findings for direct acting

compounds. With 6-methylcoumarin, no treatment-related

changes were noted after 6 h, but 4 out of 5 animals were

considered as different from controls by the SVM. The

suspected hepatotoxicity could be confirmed by histopathol-

ogy after a 24-h period, therefore supporting the hypothesis
that transcriptional changes can be used to detect undesired

effects at an earlier time.

The dose limiting factor for tacrine is liver enzyme

elevation observed in Alzheimer’s patients (Hammel et al.,

1990). No changes were observed in rats 6 h after dosing with

tacrine. After 24 h, there was a slight reduction in liver

glycogen content and transaminase levels were elevated as

previously reported. The toxicogenomic assessment of a

potential cholestatic liability of tacrine was supported by

increased serum levels of bile acids and GGT. However, since

both AST and ALT were increased, this indicates mixed

hepatotoxicity and not pure cholestasis. The toxicogenomic

classification detected the liver toxicity after 6 h, but failed to

do so after 24 h. This indicates that gene expression changes

can precede clinical chemistry changes and implies the need

for time-course studies for a thorough toxicogenomic assess-

ment. Temporal differences in toxicant induced gene expres-

sion changes have been reported before (Heijne et al., 2004;

Ruepp et al., 2002). Drugs have pharmacological as well as

toxicological effects which might affect gene expression.

These two effects can, but need not be related.

The promising use of a database of liver transcript

profiles to identify potential safety issues has been described

by several research groups. An early example described how

a 15-hepatotoxin gene expression database was successfully

used to identify the mechanism of toxicity associated with a

development compound (Waring et al., 2002). However, a

limiting factor in the ability to classify novel compounds to

toxic mechanisms is clearly the relatively small number of

investigated compounds. Only recently, larger databases and

their use in compound classification have been described

(Kier et al., 2004; McMillian et al., 2004; Steiner et al.,

2004). These studies varied in design, number of com-

pounds investigated, and bioinformatics processing of the

data, but all indicated the potential of toxicogenomics in

predictive risk assessment.

Our results indicate that characteristic gene expression

changes are associated with distinct classes of toxicants. In

general, we observed good concordance of gene expression

changes with histopathological findings assessed by light

microscopy. However, results with 6-methylcoumarin and

tacrine suggest that gene expression changes are already

indicative of toxic liabilities when standard parameters do not

yet detect toxicity. A similar finding was reported in a study

where a good concordance of gene expression changes with

histopathological grade was observed, but indicative gene

changes were already noted at low doses in the absence of

obvious microscopic alterations (Hamadeh et al., 2002b).

The current model assigns all transcript profiles to a

specific category, implying that they fit exactly into one

class. However, in reality substances will often cause mixed

toxicities. We aimed to allocate substances to the best fitting

class, knowing the limitations due to the potential overlap of

effects. It has to be kept in mind that the compound database

is still limited in size and we do not have the data for further

endpoints (e.g., fibrosis). It is also unknown to which extent
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the present compound selection is relevant for the complete

compendium of hepatotoxic substances.

In summary, we demonstrated how toxicogenomics can

be applied to discriminate compounds of the same

pharmacological class and flag substances for potential

hepatotoxicity. A promise of this approach lies in better

prioritization of compounds in development and earlier

identification of potential ‘‘show-stopping’’ toxicities.
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