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The need for rapid and accurate detection systems is expanding and the utilization of cross-reactive sensor
arrays to detect chemical warfare agents in conjunction with novel computational techniques may prove to
be a potential solution to this challenge. We have investigated the detection, prediction, and classification
of various organophosphate (OP) nerve agent simulants using sensor arrays with a novel learning scheme
known as support vector machines (SVMs). The OPs tested include parathion, malathion, dichlorvos,
trichlorfon, paraoxon, and diazinon. A new data reduction software program was written in MATLAB V.
6.1 to extract steady-state and kinetic data from the sensor arrays. The program also creates training sets by
mixing and randomly sorting any combination of data categories into both positive and negative cases. The
resulting signals were fed into SVM software for “pairwise” and “one” vs all classification. Experimental
results for this new paradigm show a significant increase in classification accuracy when compared to artificial
neural networks (ANNs). Three kernels, the S2000, the polynomial, and the Gaussian radial basis function
(RBF), were tested and compared to the ANN. The following measures of performance were considered in
the pairwise classification: receiver operating curve (ROC)Az indices, specificities, and positive predictive
values (PPVs). The ROCAz values, specifities, and PPVs increases ranged from 5% to 25%, 108% to
204%, and 13% to 54%, respectively, in all OP pairs studied when compared to the ANN baseline. Dichlorvos,
trichlorfon, and paraoxon were perfectly predicted. Positive prediction for malathion was 95%.

INTRODUCTION

The United States is coming under increasing threats of
chemical warfare agents (CWAs) of mass destruction by
international terrorist organizations and the new Department
of Homeland Security is seeking new frontiers of technolo-
gies to combat these threats. Consequently, there is a great
deal of interest in developing tools that can be used not only
to detect but also to effectively classify CWAs. At the
molecular level, all chemical warfare agents are strong
electrophiles, containing either central phosphorus (e.g.,
Soman, Sarin, and Tabun), sulfur, or nitrogen (VX or
mustards) atoms (Figure 1). The central atoms of the nerve
agents (i.e., Sarin and Soman) attach to the ends of
acetylcholinesterase enzyme and stay bound to it for many
hours. Organophosphates (OPs) are potential CWAs because
their action is very similar to nerve agents. OPs act by
inhibiting the acetylcholinesterase enzyme, which is essential
for functioning of the nervous system in humans. The
inhibition of acetylcholinesterase results in the accumulation
of acetylcholine that interferes with muscular responses that
may be fatal.1,2 Early detection of OPs may give an indication
of terrorist activity that may allow proper procedures to be
followed to mitigate dangers.

Gas, liquid, and thin-layer chromatography coupled with
different detectors are the most commonly used methods for
the detection of OPs.3-5 However, these techniques, which
are time-consuming and expensive and require highly trained
personnel, are available only in sophisticated laboratories and
are not amenable to on-line and rapid monitoring. Biological
methods such as immunoassays, biosensors, and inhibition
of cholinesterase activity for OP determination have also been
reported.6-8 Immunoassays require long analysis time and
extensive sample handling with multiple washing steps.
Monitoring chemical and biological warfare agents (CBAs),
residue in soil, water, food, and air is possible by screening
or through diagnostic techniques that can provide only a
qualitative “yes-or-no” answer, or semiquantitative/quantita-
tive techniques, which can detect and quantify residues in
the sub-threshold levels.9 It is possible for these methods to
generate false positives or false negatives if the sensitivities
are insufficient for the threshold levels. Applying any
detection principle to a potential agent depends on the
characteristics of the detection technique, the nature of the
analytes, and the goal of the analysis system. Detectors that
are designed for gas or vapor plumes may not readily be
applicable to the detection of low volatile liquid, semivolatile
compounds, bacteria, or viruses. Thus, the need for fast
responding and accurate CWA detection systems is expand-
ing and the utilization of cross-reactive sensor arrays to detect
volatile compounds in conjunction with pattern recognition
techniques to interpret arrays response patterns may prove
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to be a potential solution to this challenge.10

In recent years, a family of chemical sensors commonly
referred to as the electronic nose (EN) has been widely
investigated. A typical EN system consists of an array of
chemical sensing elements coupled to headspace sampling,
pattern recognition modules, and appropriate transducers.11-14

The system employs metal oxides, quartz crystal arrays,
surface acoustic wave devices, electrochemical cells, and
conducting polymers or a combination of these sensors to
mimic the human sense of smell. When used in an array,
the sensitivity of an individual sensor is of fundamental
importance. The sensor should exhibit high cross-reactivity
for the maximum number of components being determined.
This requirement is critical for better analytical performance.

Previous attempts to improve the sensitivity of EN systems
include the use of conventional pattern recognition tech-
niques,11,12,14 increasing the sensitivity of the sensing ele-
ments,12,14 increasing the amount of volatile compounds
reaching the sensor,15 generating diversity through combi-
natorial polymer synthesis,11,13,14improving sampling meth-
ods,16 and controlling the effluent flow rate and inadequate
temperature control of the effluent-transfer lines.17 For some
types of analytes, sensitivity in the sub-ppm range has been

recorded.12-14 However, the scattering of the data obtained
can be close to 50%, which dramatically reduces the
precision of the measurement.18 Holberg proposed two
methods for countering drift in an electronic sensor array.19

The first is a self-organizing classifier that stores the patterns
of different gas responses. The second is to design the sensor
as a dynamic system. Other limitations with these systems
are mainly linked to difficulty in calibration, poisoning of
the sensing elements, and changes in response time with
concentration. Overcoming these limitations requires a
greater understanding of the sensor-analyte interactions at
the molecular level. Novel intelligent algorithms are urgently
needed to process signal patterns in sensor arrays.

Pattern recognition (PR) techniques utilize modern math-
ematical methods based on multivariate statistics and nu-
merical analysis to elucidate the relationships of multidi-
mensional data sets. These techniques can improve analytical
measurements by enhancing the extraction of chemical
information from chemical data. They can also reduce the
effects of interference and improve selectivity of analytical
measurements. Fundamental requirements of PR as applied
to sensors include the following: (i) an analyte can be
represented as a set of sensor responses; (ii) relationships

Figure 1. Structures of the organophosphates investigated: (a) paraoxon, (b) parathion, (c) trichlorfon, (d) dichlorvos, (e) malathion, and
(f) diazinon.
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that can be extrapolated to untested analytes from similar
classes; and (iii) finding relationships between analytes and
their responses that can be tested and verified to a set of
tested benchmark analytes. An exhaustive review of com-
putational methods for the analysis of chemical sensor array
data from 1994 to 1999 was recently published.15 The
electronic nose information is traditionally obtained by
feature extraction using principle component analysis (PCA).
PCA, while useful, has several drawbacks because it (i)
realizes only input-output mappings and (ii) cannot usually
separate independent subsignals from their linear mixture.20

We hereby report the integration of a new strategy to
predict, and correctly classify, CWAs using sensor arrays
combined with linear support vector machines (SVMs).
SVMs are a new and radically different type of classifiers
or “learning machines” that use a hypothesis space of linear
functions in a high-dimensional feature/space. SVMs are
generally trained with learning algorithms originating from
optimization theory and that implement a learning bias
derived from statistical learning theory. The use of SVMs
for computational intelligence is a recent development, and
certainly unknown for analytical monitoring of CWAs.

Support Vector Machines.Several texts provide exten-
sive backgrounds to develop the mathematical foundation
of support vector machines.21-23 In the context of classifying
CWAs, specifically organophosphates, the objective of SVMs
is to construct an “optimal hyperplane” as the decision
surface such that the margin of separation between two
different chemical substances is maximized. SVMs are based
on the fundamental ideas of (i) structural/empirical risk
minimization (SRM/ERM), (ii) the Vapnik-Chervonenkis
(VC) dimension, (iii) the constrained optimization problem,
and (iv) the SVM decision rule.

The key concepts of SVMs will only be summarized here,
including linear support vector machines and the theoretical
concept of why SVMs will provide a global minimum,
whereas neural networks cannot. In the simplest form, the

support vector machine is a linear classifier. By a linear
model we mean a hyperplane that divides the descriptor space
into two parts. Consider a set of two different compounds
in a certain descriptor space (Figure 2a). With a separating
hyperplane, one compound set (circular points) lies, for
instance, in one-half of the descriptor space and the other
set (square points) in the other half. Pointsx on a hyperplane
satisfy the equation

for some weight vectorw ∈ Rn and biasb ∈ R.
Assume that the circular points lie in the positive half-

space and the square points in the negative half-space. It
follows that for the circular points

For a given hyperplane, the score of a compound is the signed
distance to the hyperplane, which is

and the distance is the absolute value of this quantity.
Therefore, the compounds on the plane have score zero, the
compounds in the negative space have a negative score, and
the rest have a positive score. In reality, many different
hyperplanes may separate the compound correctly (Figure
2b). Support vector machines choose a particular separating
hyperplane referred to as the “maximum margin hyperplane”
or the “optimal hyperplane” (Figure 2c). The margin of a
separating hyperplane is the minimum distance of any labeled
data point to the hyperplane. The larger the margin, the
clearer the separation between the two sets of compounds.
For this reason, the optimal hyperplane is regarded as a robust
classifier. Usually only a small set of vectors called support
vectors line up closest to the decision boundary; that is, the
value of their distance to the boundary equals the margin.

Figure 2. Support vector machines: (a) Hypothetical two-dimensional descriptor space for pairwise analytes/points. (b) Linear
separations: There are many hyperplanes that could separate the data. (c) Optimal separating hyperplane: The one that separates the data
with maximal margin.

w‚x + b ) 0

w‚x + b > 0

(w‚x + b)/(||w||2)
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Properly designed SVMs should have a good performance
on untested data because of their ability to generalize and
scale up to more complex problems. The fact that the margin
does not depend on input dimensionality means it is immune
to the curse of dimensionality. SVMs have been successfully
applied to a variety of classification problems including text
categorization,24 handwritten digit recognition,24-27 gene
expression analysis,28 and simple chemical and mixtures
recognition.28 In this paper, our aim is to investigate the use
of multiarray sensors coupled with support vector machines
for the detection of organophosphate nerve agent simulants.
This approach reduced the number of false negative errors
by 173%, while making no false positive errors when
compared to the OsmeTech baseline performance.29

EXPERIMENTAL SECTION

Materials. Malathion, parathion, paraoxon, trichlorfon,
diazinon, and dichlorvos were purchased from Accustandard
Inc., New Haven, CT, and used as supplied. A 2% aqueous
solution of 1-butanol solution was used as the wash solution
for the sensor arrays. Gas sensing measurements were
conducted using an AS32/8S Labstation and A32/50 series
from OsmeTech, CA (Serial Number 32-A11-00-72-058)
with accompanying software. The A32S instrument consists
of a sample conditioning station (A8S), a sample analyzer,
and an A32S computer software package. The analyzer is
made up of a detector having an array of 32 conducting
polymer sensors with changing electrical resistance when a
volatile chemical adheres to them. The change in the
electrical resistance of each sensor is monitored and recorded
to produce a characteristic pattern or fingerprint.

Procedure. Data Acquisition.100 microliters each of the
organophosphate (OP) pesticides (0.5 ppm in acetonitrile)
was introduced into the OsmeTech sample bags (with
dimension 7.0× 6.5 in.). The reference air was introduced
into the bags for 75 s and the bags were equilibrated at
ambient temperature for 30 min. Data were collected by
passing a sample of the analyte over the sensor array. The
changes in resistance versus time for each sensor channel
were recorded for all 32 sensors. Reference air was sampled
first to produce a baseline response for 15 s. An analyte was
then exposed to the conducting polymers sensor arrays for
60 s. Every 1/100th of a second changes in dc resistance of
the film is recorded for each sensor in the array. The intensity
was calculated as: (dc resistance after absorption- dc

resistance before absorption)/dc resistance before absorption.
Also recorded is the time since the start of the experiment,
the temperature of the humidity sensor, the in-line temper-
ature of the sample vapor, and the humidity of the sample
vapor. After the sample had been exposed to sensor arrays,
the sensors were washed with a 2% 1-butanol solution for
another 60 s. Finally, the samples were exposed to reference
air for 15 s to reproduce the baseline response. The sensor
arrays were then exposed to another analyte run and the
process is repeated. A total of 250 runs were recorded for
each of the six organophosphates. A typical run, showing
the data acquisition process for diazinon, is shown in Figure
3.

Preprocessing.Resistance values were digitized using an
analogue to digital converter and transferred to a PC for
analysis. The type of computer used was a Hewlett-Packard
HP Kayak PC Workstation x86 Family 6 Model 5 Stepping
1 with 64884 KB RAM. The raw data file sent to the PC
consists of an air baseline, a drift-corrected air baseline, and
a set of 35 digitized values for each hundredth of a second
that the experiment was running. The 35 values include a
separate reading for each of the 32 conducting polymer films
showing change in resistance from baseline, temperature,
humidity, and temperature of the humidity sensor. Prepro-
cessing of the raw time series data was performed before
sending values on to the neural network. In addition to
reducing the amount of information that the neural network
has to deal with, preprocessing compensates for sensor drift,
compresses the transient response of the sensor array, and
reduces sample-to-sample variations. However, the existing
data reduction program only allows one to gather data from
the equilibrium state. We believe that other additional
features, such as the rate of absorption, could provide
significant clues to distinguishing between sets of com-
pounds. Therefore, a new data reduction software program
was written in MATLAB V. 6.1 with the aim to extract
additional information, specifically the rate of absorption of
the compounds by the sensors.

The MATLAB V. 6.1 preprocessing program is capable
of (i) extracting raw and reduced data from the OsmeTech
format, (ii) extracting both steady-state and absorption data
from each sample using least-squares regression, (iii) remov-
ing outliers from the data set, (iv) normalizing the steady
state (A32S) for each sensor, (v) creating a single file
containing raw time series data created from averaging all

Figure 3. Typical showing of the raw data acquisition process for diazinon. (5 ppm in acetonitrile): reference air was first sampled to
produce a baseline response for 15 s: analyte and solvent vapors were then exposed to the 32 sensors for 60 s: the changes in base
resistance (dR/R) versus time were recorded for 32 sensor channels: the wash and reference followed for 60 and 15 s, respectively.
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raw time series data in the directory, (vi) assembling reduced
data in each subdirectory into one comprehensive data file
from which data can be extracted for experiments, and (vii)
creating training sets for the SVM experiments by the
following: (a) mixing any combination of categories into
both a positive and negative case, and randomly sort them,
creating an individual file for each reduced feature; (b)
normalizing any reduced feature file; (c) split normalizing
data into folds for use by the SVM. The data were then
processed by the SVM software for “pairwise” and “one
versus all” classification. Each SVM run took between 15
and 30 min. A schematic display of the data acquisition,
reduction, and processing is shown in Figure 4.

RESULTS AND DISCUSSION

K-fold cross-validation was used to evolve and evaluate
the SVMs. This is a statistical process whereby a data set of
limited size may be partitioned to simulate a larger data set.
This enables a more robust evaluation of the evolved neural
network’s generalization ability and expected performance.
Initial experiments were performed using a 5-fold cross-
validation process, where 200 samples were used in the
training set and 50 samples used in the validation set. The
procedure allowed the network to be trained on the most
possible data, while reducing the likelihood that the partition-
ing of the data had introduced a bias into the results (as could
happen if the “difficult” cases were all in the training set
and the validation set contained all “easy” cases). Several
performance measures were used to evaluate the conventional
artificial neural network (ANN) as well as new machine
learning techniques.

Standard three layer artificial neural networks, trained by
back-propagation, and using the sigmoid activation function,
are often criticized as “black boxes”, which are almost always
trained to a local minimum, with the resultant degradation
of performance. This fact may be theoretically demonstrated
by the following proof. Assume there existN observations
from an organophosphate data set. Each observation (or

training example) consists of a vectorxi containing the input
pattern and a corresponding known classificationyi. The
objective of the learning machine would be to formulate a
mappingxi f yi. Now consider a set of functionsf(x,R) with
adjustable parametersR that define a set of possible mappings
x f f(x,R). Here,x is given andR is chosen. In the case of
a traditional neural network of fixed architecture, theR values
would correspond to the weights and biases. The quantity
R(R), known as theexpected(or true) risk, associated with
learning machines is defined as

wherep(x,y) is an unknown probability density function from
which the examples were drawn. This risk function is the
expected (or true) value of the test (or validation) error for
a trained learning machine. It may be shown that the best
possible generalization ability of a learning machine is
achieved by minimizingR(R), the expected (or true) risk.
This generalization bound, for binary classification, holds
with the probability of at least 1- η (0 e η e 1) for all
approximating functions that minimize the expected (or true)
risk.

The first term on the right-hand side of the above
expression is known as the “empirical risk”. The empirical
risk Remp(R) is defined as

This function is a measure of the error rate for the training
set for a fixed, finite number of observations. This value is
fixed for a particular choice ofR and a given training set

Figure 4. Schematic of the data acquisition, reduction, and processing.

R(R) ) ∫(1/2)|y - f(x,R)| p(x,y) dx dy

R(R) e Remp(R) + x(h(log(2N
h ) + 1) - log(η4)

N
)

Remp(R) )
1

2N
∑
i)1

N

|yi - f(xi,R)|
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(xi,yi). The second term in the true risk expression is the
“Vapnik-Chervonenkis (VC) confidence interval.” This term
is a function of the number of training samplesN, the
probability valueη, and the VC dimensionh. The VC
dimension is themaximumnumber of training samples that
can be learned by a learning machine without error forall
possible labeling of the classification functionsf(x,R) and
is, therefore, a measure of the capacity of the learning
machine. In traditional neural-network implementations, the
confidence interval is fixed by choosing a network archi-
tecture apriori . The risk function is typically minimized by
minimizing the empirical risk through adjustment of weights
and biases, resulting in a local minimum. Consequently,
neural networks are trained based on the empirical risk
minimization (ERM) principle. In a SVM design and
implementation, not only is the empirical risk minimized but
also the VC confidence interval by using the principles of
structural risk minimization (SRM). Therefore, SVM imple-
mentations simultaneously minimize the empirical risk as
well as the risk associated with the VC confidence interval,
as defined in the true risk expression above. The true risk
expression above also shows that asN f ∞, the empirical
risk approaches the true risk because the VC confidence
interval risk approaches zero. The reader may recall that
obtaining larger and larger sets of valid training data would
sometimes produce (with a great deal of training experience)
a better performing neural network (NN), which resulted
from classical training methods. This restriction is not
incumbent on the SRM principle and is the fundamental
difference between training NNs and training SVMs.

Several SVM kernels are utilized in this analysis. These
are the

Although this optimization initially focused on the ROC
AZ area achieved under 5-fold cross-validation, the authors
were particularly interested in achieving and measuring the
best possible performance at higher sensitivity. The ROC
curve is a function of the false alarm rate (FAR)
1-specificity), plotted along the abscissa, vs the sensitivity,
which is plotted along the ordinate. The area under the curve
is called theAz index. The closer to unity, the better theAz

value. For example, anAz value of 0.5 represents chance

perfomance, 0.7 is okay, 0.8 is good, and 0.9 or greater is
excellent. A typical ROC curve realized during the investiga-
tion is shown in Figure 5. Measures of performance (MOP)
parameters associated with ROC curve analysis are as
follows:

(a) Sensitivity{TP/(TP+ FN)}, which is defined as the
likelihood that an event will be detected if that event is
present (where TP is a true positive and FN is a false negative
event). Sensitivities of 100%, 98%, and 95% represent false
negative errors of 0%, 2%, and 5%, respectively. The
objective is to have the system operate at 100% sensitivity.

(b) Specificity{TN/(TN + FP)}, which is the likelihood
that the absence of an event will be detected, given that the
event is absent (where TN is a true negative and FP is a
false positive event). In a like manner, specificities of 100%,
98%, and 95% represent false positive errors of 0%, 2%,
and 5%. The objective, then, is to design the learning system
so that we increase the specificity at 100% sensitivity
(making no false negative errors). By increasing the specific-
ity, we reduce the number of false positive errors.

Another point should be made here. For SV learning
machines trained to a global minimum, theAz index will
generally be in the region of 0.97-0.99, which is outstanding
performance. When these MOP’s are achieved with “small”
databases (<500 samples), little, if any, difference will be
observed in the specificities and PPVs for sensitivities of
95%, 98%, and 100%. This situation exists because of
computational “round off “error because of the small
differences in false positives and negatives at the threshold
settings corresponding to these specificities and sensitivities.

(c) Positive predictive value (PPV){TP/(TP+ FP)}, which
measures the likelihood that a signal of an event is associated
with that event, given that such a signal occurred.

In addition to theAz index, which is the area under the
ROC curve, this work measures the ability of the SVMs to
increase the specificity and PPV at the relevant higher
sensitivities. That is, at 100% sensitivity the SVM models
make no type II errors (positive cases identified as negatives).
Consequently, increasing the specificity percentage at a
relevant 100% sensitivity is a direct measure of decreasing
the type I errors (negative cases identified as positives), while
the system makes no type II errors. In a like manner,
increasing the specificity percentage at 98% sensitivity
(missing 2% of the type II errors) will then quantitatively
describe learning machine performance in decreasing the type
I errors. Similarly, increasing the PPV at the higher sensitivi-
ties provides a similar, but somewhat different, performance
measure. In the following sections we study the accuracy of
the SVM classifiers in identifying structurally similar orga-
nophosphate nerve agents such as paraoxon and parathion.

Figure 5. ROC (receiver operating curves) for parathion vs dichlorvos.

dot product kernel:K(xi,x) ) (xi‚x)

GRBF kernel:K(xbi,xb) ) e||xbi-xb||2/2σ2

polynomial kernel:K(xbi,xb) ) (xbi‚xb+1)d

S2000 kernel:||X - Y||2
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The performance of the three different kernels is evaluated
(i.e., the RBF (radial basis function) kernel, the S2000 kernel,
and the polynomial kernel).

Parathion and Dichlorvos.The performance of the ANN
was compared to SVMs with the S2000, Gaussian, and
polynomial kernels. Tables 1, 2, and 3 show the performance
of the S2000, RBF, and polynomial kernels, respectively, in
comparison with the ANN data obtained for parathion and
dichlovos pair. The tables show that there was a 23%
improvement in the ROCAz index by using S2000 (Table
1), 18% improvement using the RBF kernel (Table 2), and
22% improvement using the polynomial kernel (Table 3).
The ROC curves for the parathion vs dichlorvos pair resulting
from the three kernels is shown in Figure 5. Our results also
show that there was a significant improvement (173%) of
specifities at 100% and 98% sensitivities on using the S2000
kernel (Table 1). This means that the number of false
negative errors was reduced by 173%. Specificities at 100%
and 98% for the other kernels were also very impressive as
they registered an improvement of 108% and 143%, respec-
tively, when compared to the ANN baseline (Tables 2 and
3). PPV at 100% and 98% sensitivities recorded a 40%
improvement on using the S2000 (Table 1), 34% improve-
ment on using the RBF (Table 2), and 37% improvement
on using the polynomial kernel (Table 3). On the basis of
these three MOPs, we can conclude that the three kernels
studied are significantly better than the ANN software in
the AromaScan for the parathion and dichlovos base pair.
We can also conclude that, of the three kernels studies, the
S2000 exhibited the best performance.

Parathion vs Paraoxon. The comparison between the
parathion and paraoxon pair should be very interesting
because of their very close structural similarities. As previ-
ously stated, the only difference in the structures of the two
compounds is that the PdO bond in paraoxon is replaced
by a PdS bond in parathion. The performance of the

polynomial kernel was the best for this particular pair because
it exhibited the greatest improvement in all the three MOPs
parameters measured when compared to the baseline ANN
(Table 4). The ROCAz, specificities, and PPV for this kernel
improved by 24%, 166%, and 30%, respectively. The
corresponding values for S2000 and RBF kernels were 5%,
165%, and 29% and 16%, 133%, and 13%, respectively.
These are excellent results considering only one-atom
differences in these nerve agent simulants.

Trichlorfon vs Dichlorvos. The comparison between this
pair undoubtedly gave the best results. The ROCAz values
of 0.9982, 0.9988, and 0.9999 for the RBF, S2000, and
polynomial kernels represent improvements of between 24
and 25% over the ANN baseline (Table 5). The specificities
and PPVs also exhibited near perfect values with improve-
ments of 54% and between 203 and 204%, respectively, over
the ANN baseline. In summary, all three SVMs are es-
sentially perfect classifiers for this chemical pair.

Detection and Classification.We tested our new database
to positively identify unknown samples as one of “m”
chemicals in their database. This is a multiclass problem in
which the output domain is changed fromY ) {-1,1} to Y
) {1, 2, 3...m}. Although SVMs are mainly used for two-
class problems, they can be extended to handle multiclass
problems using a voting scheme to combine the outputs of
several binary SVMs trained on different pairs of chemicals.
The most successful voting scheme of those we have tried
yet was pairwise classification in which the outputs from
K(K - 1)/2 binary SVMs are used to fill a squareK × K
table. SVM (a, b) and SVM (b, a) have reflectional symmetry
in the zero plane, so each of theK(K - 1)/2 classifiers fill
two entries ([a,b], [b,a]) in the table. A binary classifier
decides whether a pointx belongs to classa or b. The
probability thatx belongs to classa, given thatx is in either
classa or b, can be written as

With Pab, we can calculate the estimatePaof the a posteriori
probability P(xEa|x) by using aK × K table of Pab (the
chemical voted for) andPba ) 1 - Pab (the chemical not
voted for) as

Table 1. Comparison of Measures of Performance of ANN and
S2000 Kernel for the Parathion vs Dichlorvos Pair

ANN S2000 % improvement

Az 0.8021 0.9853 23
specificity, 100% 0.3280. 0.8963 173
PPV, 100% 0.6460 0.9027 40
specificity, 98% 0.3280 0.8963 173
PPV, 98% 0.6460 0.9027 40

Table 2. Comparison of Measures of Performance of ANN and
RBF Kernel for the Parathion vs Dichlorvos Pair

ANN RBF % improvement

Az 0.8021 0.944 18
specificity, 100% 0.3280. 0.683 108
PPV, 100% 0.6460 0.868 34
specificity, 98% 0.3280 0.683 143
PPV, 98% 0.6460 0.868 37

Table 3. Comparison of Measures of Performance of ANN and the
Polynomial Kernel for the Parathion vs Dichlorvos Pair

ANN polynomial % improvement

Az 0.8021 0.9759 22
specificity, 100% 0.3280. 0.7977 143
PPV, 100% 0.6460 0.8834 37
specificity, 98% 0.3280 0.7977 143
PPV, 98% 0.6460 0.8834 37

Table 4. Comparison of Measures of Performance of the Three
Kernels for the Parathion vs Paraoxon Pair (% Improvements over
the ANN Are Shown in Brackets)

RBF S2000 polynomial

Az 0.9270 (16%) 0.840 (5%) 0.9910 (24%)
100% specificity 0.7633 (133%) 0.8701 (165%) 0.8739 (166%)
100% PPV 0.7304 (13%) 0.8359 (29%) 0.8366 (30%)
98% specificity 0.7633 (133%) 0.8701 (165) 0.8739 (166%)
98% PPV 0.7304 (13%) 0.8359 (29%) 0.8366 (30%)

Table 5. Comparison of Measures of Performance of the Three
Kernels for the Dichlorvos vs Trichlorfon Pair (% Improvements
over the ANN Are Shown in Brackets)

RBF S2000 polynomial

Az 0.9982 (24%) 0.9988 (25%) 0.9999 (25%)
100% specificity 0.9934 (203%) 0.9922 (203%) 0.9965 (204%)
100% PPV 0.9934 (54%) 0.9942 (54%) 0.9969 (54%)
98% specificity 0.9934 (203%) 0.9965 (204%) 0.9965 (204%)
98% PPV 0.9933 (54%) 0.9968 (54%) 0.9968 (54%)

Pab) P(xEa|x,xEa∪b)

Pi ) 2/K(K - 1)*∑ Pab (2)
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The SVM decision outputFab(x) is not a probability value,
so we have to

1. NormalizeFab(x) such that the output is(1.
2. Map the SVM output toPab ) Fab(x) + 0.5. In a

binary classifier, a vote of 100% certainty for a chemical is
either “-1” (100% a, 0% b) or “+1” (0% a, 100%b). A
vote of 0 would indicate absolutely no inclination toward
one chemical or the other (50%a, 50%b).

TheK × K table is thus filled with values ofPab, which
can in turn be input into a class decision function. The
classifying decision is made by adding the (K - 1) votes
for each chemical together (add up the rows) and choosing
the chemical with the highest vote. In this scheme the
strength of a classification for one chemical automatically
weakens the chances for the other chemical to win. If there
is no strong winner (no vote is higher than a given threshold),
it indicates that no chemical was favored by all SVMs trained
on it. Previously, we had created a pairwise classifier to
detect one of the four organophosphates: dichlovos, trichlo-
rfon, paraoxon, and malathion. Six binary support vector
machines were trained including the following: (1) dichlo-
rvos vs trichlorfon; (2) dichlorvos vs paraoxon; (3) dichlorvos
vs malathion; (4) trichlorfon vs paraoxon; (5) trichlorfon vs
malathion, and (6) paraoxon vs malathion. The training file
for each classifier contained the following features for each
sample:

(1) The steady-state feature of 32 sensors (Figure 3).
(2) The absorption rate feature of 32 polypropylene sensors

(Figure 3).
(3) Two temperature values (steady state and absorption

rate).
(4) Two humidity values (steady state and absorption rate).
(5) Two temperature and humidity sensor values (steady

state and absorption rate).
The results of this classifier were nearly perfect (Table 6)

Dichlovos, trichlorfon, and paraoxon were perfectly pre-
dicted. Only 1 run out of 20 runs for malathion was
misclassified and was classified as dichlorvos. These results
are very good when compared to the results realized by the
ANN (Table 7) only 1 sample out of 80 samples tried was
mispredicted. Clearly, the training data had sufficient infor-
mation to make good classification decisions. On the other
hand, the ANN had only one perfect prediction with
parathion. The other six organophosphates exhibited various
levels of mispredictions. For example, trichlorfon and

paraoxon were totally mispredicted. The prediction successes
of both malathion and dichlovos was 85% while that of
diazinon was 35%. Our future study will attempt to train
the SVM kernels using different concentrations of one
analyte so as to enable the quantification of concentrations.

CONCLUSION

We have integrated multiarray sensors with support vector
machines to predict and correctly classify organophosphate
agent simulants. We designed and evaluated a new SVM
protocol for more accurate classification software. Analytical
sensor signals generated were fed into the SVM software
and these were used to generate a database of over 500
proven analyte samples. The best performing SVM was
designated as having the most accurate specificity. The results
of this research have demonstrated that all the three kernels
studied showed significant improvements in all the MOPs
studied when compared to the ANN baseline for all the
organophosphate pairs investigated. Our results showed that
in all the three MOPs the three kernels recorded significant
improvements when compared with ANN. In all the pairs
investigated, the ROCAz values, specificities, and PPVs
increased by between 5% and 25%, 108% and 204%, and
13% and 54%, respectively, when compared to the ANN
baseline measures of performance. Despite having close
structural similarity, the MOP values for the parathion and
paraoxon pair showed significant improvement when com-
pared to the ANN baseline. Using the S2000 kernel,
dichlorvos, trichlorfon, and paraoxon were perfectly pre-
dicted. Only 1 run out of 20 runs for malathion was
mispredicted. Further experiments are going on to investigate
the possibility of training the SVM kernels for quantitation
of structurally similar analytes at different concentrations.
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