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The combination of 3D pharmacophore fingerprints and the support vector machine classification algorithm
has been used to generate robust models that are able to classify compounds as active or inactive in a
number of G-protein-coupled receptor assays. The models have been tested against progressively more
challenging validation sets where steps are taken to ensure that compounds in the validation set are chemically
and structurally distinct from the training set. In the most challenging example, we simulate a lead-hopping
experiment by excluding an entire class of compounds (defined by a core substructure) from the training
set. The left-out active compounds comprised approximately 40% of the actives. The model trained on the
remaining compounds is able to recall 75% of the actives from the “new” lead series while correctly classifying
>99% of the 5000 inactives included in the validation set.

1. INTRODUCTION

Drug discovery in the pharmaceutical and biotechnology
industries is seeing increased integration of computational
chemistry and cheminformatic approaches. The integration
of these methods has resulted in an increase in the number
of reports of successful applications of these approaches to
drug discovery and suggests that early stage drug discovery
is benefiting greatly from the integration of experimental and
in silico approaches.1,2

One particular aspect of drug discovery that can benefit
from the application of computational approaches is lead
hopping.3-5 Often in a drug discovery program, the project
is faced with many challenges relating to the biological
activity, selectivity, intellectual property, pharmacokinetic
profile, and toxicity of a specific lead series.6,7 Overcoming
these issues is often only achieved by identifying a new
chemical series that retains the desirable properties of the
original series but lacks the liabilities associated with that
series.

There are a number of computational approaches that have
been applied successfully in the past to lead hopping. These
include structure-based virtual screening,8 similarity search-
ing,9-11 pharmacophore screening,12,13 and the shape-based
screening of chemical databases.14-16

There have been several recent reports of successful
structure-based virtual screens for generating novel hits for
specific biological targets;6,7 however, this approach suffers
from the limitation of requiring a high-resolution three-
dimensional structure of the target. As a consequence, this
approach may only be applied to a subset of the pharmaco-
logically relevant targets.

A more common approach to lead hopping involves the
similarity searching (2D or 3D) of compound databases,
relying on the premise that molecules that are chemically
similar will exhibit similar biological profiles. The usefulness
of 2D approaches for lead hopping are often limited by the
typical reliance of the algorithms on chemical connectivity
to define the similarity metrics employed,17 whereas recent
studies have not found 3D methods to offer an advantage
over 2D methods for identifying active compounds.18,19

Methods that focus on the shapes of molecules have
received attention recently for the potential application to
lead hopping. These approaches are based, usually, on the
shapes of molecules with known biological activities, or
fragments of these molecules, but they may also be used in
combination with pharmacophore descriptions (such as the
“shrink-wrap” approach).20

In this paper, a rapid and powerful method for lead
hopping that utilizes support vector machines (SVMs)21-23

to develop a biological activity model for a specific target
or class of targets is presented. The information used by the
SVMs includes the three-point pharmacophore fingerprints
of compounds with known activities and inactivities against
the target or target-class of interest. The pharmacophores are
generated from conformationally enumerated (to account for
ligand flexibility) 3D structures of the compounds.

A number of applications of SVM to computational
chemistry have been published.24,25,45 The purpose of the
present study is to investigate the use of SVMs to produce
general models that will enable “lead hopping”, that is,
moving from one chemical series to another while retaining
activity in the assay of interest. The ability of the model to
lead hop is determined primarily by the choice of descriptors
that represent the compounds. Daylight fingerprints, for
instance, have been shown over the years to be excellent at
quantifying chemical similarity but are not suitable, in this
case, where one is hoping to find chemically different
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molecules within the same activity class. Fingerprints based
on 3D pharmacophores were chosen as they describe the
geometrical relationship between the pharmacophore points
in a molecule without directly referring to the underlying
chemical structure. This paper focuses on the application of
these methods to various G-protein-coupled receptor (GPCR)
targets with a particular emphasis on lead hopping. The
models have been tested against progressively more chal-
lenging validation sets where steps are taken to ensure that
compounds in the validation set are chemically and structur-
ally distinct from those of the training set. In the most
challenging example, an entire class of compounds (defined
by a core substructure) is held out of the training set. The
model trained on the remaining compounds is able to recall
75% of the actives from the “new” lead series while correctly
classifying >99% of the 5000 inactives included in the
validation set.

The method described here has utility both in early and
late stages of drug discovery projects. In the early phases,
the models could be used as in silico screens for hit
identification or adapted to the analysis of high-throughput
screening data. In the latter stages of drug discovery, the
models could be used to drive lead hopping.

2. METHODS

2.1. Computational Methods. 2.1.1. Data Set.Data in
this study were taken from two sources, namely, the MDL
Drug Data Report (MDDR) database and in-house screening
data. Compounds were extracted from the MDDR database
using the DDR activity index corresponding to GPCRs of
interest. There are over 130 000 unique compounds in the
MDDR, of which 1500 are listed as having some form of
activity against 5HT1A, making it the largest single receptor
set represented in the database.

For binary classification purposes, it is also necessary to
include information about the inactive compounds. For the
in-house screens, this was directly available, but for the
MDDR data, it is somewhat more problematic. The assump-
tion was made that if a particular DDR activity index was
not quoted for a compound, the compound was not active
for that activity type. This is not necessarily correct, however,
because in fact the only indication in the database is that
activity was not tested for that compound in that screen. It
may well be the case that, were the compound to be tested,
it might be active. This assumption could introduce some
false negatives into the data at the model-building phase.

2.1.2. Data Preparation.The original source of all the
compounds considered was in SMILES format.26 These
compounds were initially profiled using Leatherface (an
internal application) to assign appropriate protonation states
to the molecules and to generate common tautomers where
necessary. Leatherface is a molecular editor that employs
the Daylight programming toolkits. Leatherface uses a set
of rules specified as SMARTS,27 derived from in-house
medicinal and physical chemistry knowledge, to modify
molecular connection tables. Leatherface is also capable of
enumerating forms that are appropriate for representing
relatively unbiased equilibria. A 3D version of the database
was generated using Corina,28,29 with explicit enumeration
of stereocenters (generating a maximum of eight stereoiso-

mers per molecule). A conformational version of the database
was then generated using the program Omega.30 A maximum
of 1000 conformers (GP_NUM_OUTPUT_CONFS) were
generated for each molecule in the database, with a root-
mean-square cutoff of 0.6 Å (GP_RMS_CUTOFF) to define
geometrically distinct conformers and an energy threshold
of 5.0 kcal/mol (GP_ENERGY_WINDOW), above which
conformers were discarded.31 Three-point pharmacophores
were assigned to each molecule using Loob, an in-house
program that calculates three- and four-point pharmacophore
fingerprints. The pharmacophore points are defined using
combinations of SMARTS definitions specified at runtime,
allowing great flexibility in the types of points represented
in the fingerprints. Six chemical features and six binned
distances were used to define the triplets. The features were
hydrogen-bond donor or acceptor, positive or negative
charge, rings, and hydrophobic regions. The distances used
in all the examples in this work were at fixed bins 0-4.5,
4.5-7, 7-10, 10-14, 14-19, and 19-24 Å. The structures
are read from a conformationally expanded database, such
that each molecule is treated as an ensemble of rigid
conformations. The pharmacophore triplets and quadruplets
are uniquely encoded using the algorithm of Abrahamian et
al.32 It must be emphasized that all the models in this work
were built using only triplets. The fingerprint length for the
three-point pharmacophore was 10 152 bits.

2.2. Support Vector Machines.The SVM is a binary
classification technique developed by Vapnik and his group
at AT&T Bell Laboratories.33-35 SVM has become very
popularbecause of its excellent generalization capacity. It is
based on structural risk minimization and aims to balance
the tradeoff between bias and variance. SVM is different
than empirical risk minimization algorithms, such as neural
nets. Whereas neural nets seek to minimize the errors over
the entire training set, SVM attempts to place a boundary
using support vertors (example in the training) and ignores
those examples in the training that are outside the boundary.
These are often a small fraction of the training data and, as
such, allow a SVM model to be less prone to over training
while maintaining an excellent degree of generalizability.
However, like neural nets, SVM is a “black-box” approach,
and compared to other approaches (hierarchal clustering and
other QSAR approaches), it is more difficult to interpret the
resulting models.

The generalization of a model can be thought of as the
measure of a learner, in this case, a computer algorithm, to
abstract an object to its proper class. Whereas chairs may
be made of wood, a good learner can recognize a chair even
if it was made of metal, while refraining from calling a tree
a chair just because it contains wood. A learner that is unable
to generalize will require that each chair be included in its
training set before it can correctly identify any chair as a
chair. The success of the algorithm to learn and generalize
is a function of the inherent robustness of the algorithm and
the descriptors used to abstract the object. In this application,
the descriptors that we have decided to use are three-point
pharmacophore fingerprints that abstract a molecule in terms
of the functional features it contains and their orientation in
three-dimensional space.

For SVM, the input requirements are a set of descriptors,
represented as a vector. Feature selection using term weight-
ing of the descriptors was initially considered. We also
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considered feature frequency to be included in the vectors.
In the end, a simple binary representation of the three-point
pharmacophores present in the compound was used. It was
not clear that term weighting or reducing the size of the
descriptors yielded better classifiers. In contrast, classifiers
whose input vectors are normalized to length 1 are signifi-
cantly better. In the learning phase, each compound is
assigned to a class, namely, active or inactive. For clas-
sification purposes, active compounds are assigned a+1
value, whereas inactive compounds are assigned-1. The
SVM calculates a hyperplane that defines a surface with
active examples on one side and inactive examples on the
other. In some cases, the training examples cannot be
separated linearly, and nonlinear transformations, via kernel
functions, may be employed to render the examples linearly
separable.

There are numerous hyperplanes that may separate the data
in this manner. The SVM uses a dual optimization algorithm
that simultaneously minimizes the training error, the correct
classification of the actives and inactives, while maximizing
the margin, the separation between the two classes and the
hyperplane. The placement of the hyperplane defines the zero
threshold. It is assumed that a hyperplane with a larger
margin gives a more general classification than one with a
smaller margin. However, it should be noted that the general
nature of the model depends not only on the performance of
the classification algorithm but also on the diversity and
relevance of the descriptors chosen to represent the problem.

Once the hyperplane and support vectors have been
developed, the SVM may be used in classification mode.
The set of test vectors is input, and the SVM assigns a
positive or negative value to each one, depending on which
side of the hyperplane it falls on and how far it is from the
hyperplane. By varying the absolute position of the threshold,
the size of the list of predicted actives may be varied. Sorting
the classified list by descending SVM output essentially
prioritizes the list in decreasing confidence of classification.

In the library design problem addressed in this study, the
descriptors are some representation of molecular properties
and could be binned physical properties, molecular finger-
prints such as those produced by the Daylight fingerprint
toolkit36 or Tripos’ Unity software,37 MDL MACCS keys,38

or, as in our case, a normalized representation of a molecule’s
3D pharmacophore fingerprints. The model classifies the
molecule represented by the descriptor vector as active or
inactive in a particular biological assay.

2.3. Model Generation. The models were built using
SVMlight 39,40 and a variety of Perl and C-shell scripts that
automate the process of model generation, testing, and
validation.

Model generation involved three steps. First, the active
compounds were randomly split into training, testing, and
validation sets in the ratio 80:15:5. The number of inactives
included in each set was determined by the number of actives
available (see Figure 1). Because of the overabundance of
inactives compared to the actives, an unequal ratio of actives
to inactives was used. For the testing and training sets,
enough inactives were included in each set to give an active/
inactive ratio of 1:10, whereas the ratio was increased to
1:300 for the validation set. The rationale behind the 1:10
ratio for the training and test sets was based on the
assumption that inactive compounds carry important 3D

pharmacophoric information about the ligand-receptor
interaction. A 1:1 ratio of actives to inactives essentially
throws away experimentally measured activity. The more
information the algorithm is given about what promotes
inactivity, the better the model is at identifying the inactives
and the greater the enrichment. This is, of course, provided
that the SVM is capable of offsetting this bias in building
the model. In SVMlight, this bias is controlled by the cost
factor.

The optimization procedure in SVMlight is driven by a
variety of parameters adjustable by the user. The parameter
space of SVM was explored by changing the kernels23

between linear, polynomial, and radial basis functions (RBF).
In the polynomial case, the order (-d option in SVMlight) was
adjusted between second and fourth order, and in the case
of RBF, a variety of kernel widths (γ) were used,γ ∈{0.01,
0.03, 0.1, 0.3, 1.0, 2.0}. In text classification, Joachims
observed that better classification was achieved with smaller
values ofγ.40 It was not clear what value ofγ to pick in a
chemical application. In a few instances, using the default
value (γ ) 1), none of the active compounds were recalled.
All the RBF models built for 5HT2c failed when tested
against an external validation set obtained from the MDDR.
These models had previously shown promise against the left-
out test and validation sets. The same problem with the other
kernels used was not encountered, namely, the linear and
polynomial kernels.

The parameterC adjusts the level of training errors
tolerated. Whereas some guidelines have been suggested in
Joachims’ work on text mining,40 there is no guidance as to
what is an appropriate value for classification for a chemical
application. SVMlight computes a default value according to
C ) n/[∑i)1

n (xbixbi)],39 wheren is the number of compounds
in the dataset andxbi is the vector of theith compound. In
this work, models are generated using the default value of
C as well as other values, which were chosen by trial and
error. TheC values were default, 0.1, 0.5, 0.75, 1, 2, 3, 5, 7,
9, 10, 20, 40, 50, and 100.

Because of the unequal distribution of actives and inactives
in the training set, the cost factor (-j option in SVMlight) was
adjusted to penalize the misclassification of actives 10 times
more than the inactives.

For each combination of parameters (options -c, -j, -t, and
-gamma), 10 models were generated for 10 random splittings
of the data. The performance of a set of parameters was

Figure 1. Splitting of the data into training, testing, and validation
sets by taking random subsets of the original data. The number of
inactives in the original data is usually 3-4 orders of magnitude
greater than the number of actives. All of the actives are split
between the three sets. Once the number of actives in each set is
determined, the appropriate number of inactives is added to each
set to give the active/inactive ratios shown.
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characterized by the model average performance in the 10
random splittings of the data. After each trial, the training
and testing actives and inactives are joined and then randomly
split into new training and test sets. In contrast, the same
validation actives were used in each of the 10 cross validation
sets. Because, typically, there is a large number of inactive
compounds not used in the training or testing, we randomly
select a new set of inactive compounds for each validation
while maintaining the 1:300 split between the actives and
inactives. Therefore, the validation sets, in maintaining the
same list of actives across all 10 validation sets, provide us
with a good measure of the capacity of the models to recall
the same actives and the overall ability of the models to
generalize to a large number of unknown inactives.

2.4. Automatic Model Selection.It is an understatement
to say that models can be easily generated to fit training data.
In fact, hundreds of models are generated for each receptor.
It is much more difficult to decide on a criterion that
measures the goodness of fit. The output from the SVM
training data is a measure of the model in terms of units of
margin, but this is merely an indication of how well the
hyperplane classifies the training data. Table 1 shows some
of the ways in which the performance of the model against
a test set might be measured. True positives (i.e., active
compounds correctly predicted as active by the model) are
denoted by TP, false positives by FP, and analogously, TN
and FN are used for true negatives and false negatives,
respectively. For some applications, the best model is the
one that optimizes the number of true positives; in others, it
optimizes the number of true negatives. Frequently, the
different measures are in disagreement. For instance, the
sensitivity, which measures the fraction of actives correctly
predicted as such, and the specificity, which is the fraction
of inactives correctly predicted, may be at odds. One can
optimize the correct prediction of active compounds, for
instance, but generally only at the expense of specificity;
predicting all compounds to be active will correctly predict
all active compounds, but the model will be of limited use
in practice. The enrichment factor, EF, as defined in Table
1, suffers from similar problems. For instance, in a collection
of 10 000 compounds containing 10 actives, a model that
correctly classifies 1 of the active compounds and predicts
the remaining 9999 as inactive will have an EF of 1000,
whereas one that correctly classifies 9 of the 10 actives and
9090 of the 9990 inactives has an EF of 9.9. It could be
argued that the second model is more attractive because it
is able to recover 9 out of the 10 actives even though it has
a much lower EF.

Several statistical metrics have been suggested that can
simultaneously measure sensitivity and specificity. Lewis and
Gale41 suggested the Fâ measure as a metric that takes into
consideration a weighted measure of precision and sensitivity.

The widely used Kappa statistics42 compare the predicted
values with what may be expected by chance. It is, however,
a measure that is highly influenced by prevalence. Gu¨ner43

suggested a goodness of hit score, GH. Similar to the Fâ

measure, the GH score is a linear combination of sensitivity
and precision with a fixed weighting. He also defines a
normalized GH score (GHn), which introduces a normaliza-
tion constant to account for the size of the dataset. Because
the prevalence is fixed in the training and testing sets, these
three measures are comparable. In this work, a modified
version of the GHn score was used, a linear combination of
the sensitivity and specificity. The advantage of this score
over the Kappa statistics, which is sensitive to low preva-
lence, is that the modified GHn score allows for the easy
comparison of the score generated for the test and validation
sets despite the low prevalence of actives in the validation
set.

Additionally, for a model to be considered, at some
threshold, it must satisfy the following two criteria. (1) It
must recall 50% of the actives, and (2) it must provide hit
rates at least twice as good as the original hit rate; that is,
EF g 2.

Of all the models that meet these criteria, the model with
the highest average score on the test set is selected. To assess
the suitability of a model, a receiver-operating-characteristic
(ROC) curve44 is generated for each model using the
predictions on the test set. The ROC plots ensure that models
are not discarded just because they do not meet the criteria
at the default threshold (the placement of the hyperplane).45,46

To illustrate the automatic model selection criteria, Figure
2 shows a plot of EF versus sensitivity for the various models
built for 5HT2c. Each point represents a model with different
SVM parameters. For each model, a ROC plot is generated,
and each threshold is ranked using the GHn score. The
threshold with the best possible sensitivity and enrichment
is kept as representative of the highest capacity of the model.
The model that was autoselected (highlighted) recalls more
than 60% of the actives and more than 95% of the inactives,
giving an EF close to 5. The model with the highest score is
retained and is used for subsequent classification of new
compounds. The performance of the model on a second left-
out set (the validation set) is used to report the robustness
of the models.

3. RESULTS AND DISCUSSION

3.1. Method Validation. In addition to testing the model
against a dataset where the biological response (active/
inactive) is scrambled, it is standard practice to test the
models on a second “external” validation set. In the absence
of a truly independent dataset, one is forced to divide
randomly the same dataset into training, test, and validation

Table 1. Summary of the Performance of the Various Models on the Held-Out Validation Setsa

TP FP TN FN sensitivity (%) specificity (%) new hit rate old hit rate EF

â1Adren 45 2791 57 209 23 66.18 95.35 1.59 .11 14.02
5HT2c 156 618 19 382 72 68.42 96.91 20.16 1.13 18.89
D2 34 1539 128 424 7 82.93 98.82 2.16 0.03 68.54

a The statistics were extracted from the usual confusion matrix, where sensitivity) TP/(TP+ FN) and specificity) TN/(FP+ TN). The hit rate
is defined as precision(A)/prevalene(A)) TP/(TP + FP)/[(TP + FN)/N], whereN is the total number of compounds in the validation set. The
enrichment factor (EF) is defined as the ratio of the new library hit rate to the old library hit rate.
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subsets (Figure 1). One obvious criticism of this approach
is that such a splitting scheme that is based on a randomiza-
tion procedure generates test and validation sets that are
similar to the training set because the samples are drawn
from the same “chemical space”. It is, therefore, not too
surprising to find that the models that perform well on the
test set perform equally well on the validation set. In this
work, an attempt was made to test and validate the models
on progressively more difficult datasets. Three approaches
are illustrated in this section. In the first approach, models
were trained and tested on proprietary datasets, and for
validation, the same model was used to classify the MDDR
data collection. In the second approach, the model is trained
on MDDR data and the validation is done using proprietary
datasets. In the absence of a true external dataset, the third
approach shows the result of applying a model that was
trained on MDDR data and validated on a dataset biased
toward GPCR-focused compounds.

3.1.1. Models Built from Proprietary Data and Vali-
dated on MDDR Datasâ1 Adrenoceptor and 5HT2C.
Proprietary screening data was used to build a model for
the GPCRâ1 adrenoceptor. The model was generated from
a dataset of 200 active and 2000 inactive compounds, and
once again, the best model was selected automatically. The
average sensitivity of the best model against the training data
was 91%, and the average specificity was 98% (see Table
1). There are 68 compounds in the MDDR labeled as being
active againstâ1. These compounds were then added to a
pool of 60 000 inactive compounds from our proprietary
collection, specifically excluding any of the 2000 inactive
compounds used in the training phase. At the default
threshold, the model correctly predicted 45 of these as being
active, out of a total prediction of 2836 active compounds.
This represents a 14-fold increase over the original 0.1% hit
rate.

For the external validation of the model above, the active
compounds were taken from the MDDR but the inactive set
was taken from those found inactive in an in-house GPCR
screening campaign. This is also the set from which the

inactives were taken for the training set. Although there were
no compounds in common in the two sets, it could be argued
that because they came from the same “chemical space”,
there might be compounds in one that are very similar to
compounds in the other, potentially biasing the results. To
some extent, this possibility can be discounted by considering
that only 1-3% of the inactives in the full set are being
used to produce a model that predicts the remaining 97-
99% of the inactive set with great success. To address this
issue, a model was built using active and inactive data from
an in-house screen testing for activity at the 5HT2c receptor,
and subsequently, data solely from the MDDR was used as
the external validation set. For this validation set, 228
compounds were listed in the MDDR as active against
5HT2c, and these comprised the active set. For the inactive
set, 20 000 compounds were selected at random from those
not listed as active against this receptor. It must be noted
that although the fact that a compound has not been listed
in the MDDR as being active against a particular receptor
implies no activity, this is not explicitly known. It may be
the case that the compound is indeed active but the test has
not been carried out.

This example illustrates the power of SVMs as a clas-
sification tool. As discussed in section 2.2, once the vectors
are generated, the SVM assigns a positive or negative value
for each compound depending on how far and on which side
of the hyperplane the compound lies. Sorting the output of
the SVM essentially prioritizes the compound list. Depending
on how many compounds a chemist is interested in screening,
one may move the threshold (the placement of the hyper-
plane) between the margin, that is, between-1 and+1, thus
increasing or decreasing the size of the suggested library.
Figure 3 is a plot of the number of active compounds
correctly classified versus the total number of compounds
in the library (20 228), Table 1 summarized the performance
of the model on the left-out validation set. If one chooses
the default placement of the hyperplane (ε ) 0) to separate
the actives from the inactives, that is, any compound with
an SVM outputg 0 as active and an output< 0 as inactive,
then 156 out of 228 actives are correctly classified (sensitivity

Figure 2. Performance of the various models built for 5HT2c on
the held-out test set. For each model, each point on the ROC curve
is scored and the threshold with the maximum score is kept. The
best model (highlighted) is automatically selected. Note that all
the models represented achieve a minimum of 50% recall and EF
g 2.

Figure 3. Vertical lines show the placement of the SVM
hyperplane. The default threshold, red circle, results in a 17-fold
enrichment in the hit rate. Moving the threshold to 0.2, blue circle,
results in better enrichment (EF) 58), see Table 4.
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) 68.4%), and the suggested library contains no more than
774 compounds, compared with 20 228 in the original library.
This translates into an enrichment factor≈ 17. The sensitivity
on the external dataset compares well with the previous tests,
where the sensitivity was no more than 60%. Using a
threshold of+0.2, which is within the margins for this
hyperplane, only 198 compounds are predicted active, of
which 131 are in fact in the original active set, resulting in
an enrichment factor of 58 and a substantial reduction in
the number of false positives.

3.1.2. Models Built from MDDR Data and Validated
on Proprietary DatasDopamine D2.This section addresses
the ability of the SVMs to build a model using MDDR data
that can predict activity for compounds tested in a proprietary
screen. A total of 613 compounds were extracted from the
MDDR database47 with reported activity against D2. The
remaining compounds in the database (129 963) were
considered inactive. The active compounds were split ac-
cording to our 80:15:5 rule. A total of 490 active compounds
were used in training the models, 92 were used for testing,
and 31 were used for validation. The inactives were split
following the procedure outlined previously; 4900 went into
the training set, 920 went into the testing set, and the
remaining MDDR compounds with associated fingerprints
went into the validation set. The model that performed best
on the test and validation sets was picked for further
validation.

The MDDR model was used to predict the activity of a
dataset containing proprietary active D2 compounds and
MDDR inactive compounds not included in training or
testing. The results are summarized in Table 1. The model
selected a list of only 1573 compounds for screening from
a list of 129 994. The hit rate was approximately 69 times
better than the hit rate in the original library.

The implication of this experiment is that SVM models
built from external sources, like MDDR, can be validated
on proprietary data. As a result, 67 SVM models have been
built from MDDR data and made available through the web
for routine screening of virtual libraries. Essentially, GPCR
e-screens have been implemented for 67 GPCRs, spanning
18 GPCR subfamilies, thus allowing a chemist not only to
flag compounds that are predicted active against a particular
receptor but also to obtain additional predicted selectivity.

3.2. Lead Hopping.The results so far demonstrate that
the SVM models can be used with some success. It is
customary to have test and validation sets selected at random
from a larger pool. Because both sets, thus, sample the same
“chemical space”, it could be argued that the fact that the
models are as successful in predicting activity in the
validation set, which was not used during training, as they
are in the training test set is due to the presence of similar
compounds in both sets. This concern has been addressed
by building models using the in-house activity data and using
the MDDR database to provide the validation set, and vice
versa, as well as altering the chemical space of the validation
sets by testing the models on GPCR-focused libraries. A
more stringent test would be to attempt to ensure that the
test and validation sets contain compounds from different
chemical classes. If the models can predict well under these
circumstances, they can truly be said to be based on the
underlying pharmacophoric requirements of the receptor and
will be of some utility in finding new chemical classes active

against the receptor, so-called “lead hopping”. A significant
problem in this approach is creating datasets of this nature,
because membership in a chemical class is a somewhat
subjective matter. In this section, three such approaches are
described, which are referred to as “leave cluster out”, “leave
nearest-neighbor out” and “leave core out”.

Leave cluster out uses a type of sphere-exclusion clustering
algorithm, described by Taylor.48 An implementation of this
algorithm using Daylight fingerprints is available as con-
tributed code in the Daylight software distribution (program
spherex.c).

Using Daylight fingerprints, it is customary to cluster
similar compounds using a high Tanimoto similarity (typi-
cally 0.85Tc). Compounds that are identical have a Tanimoto
coefficient (Tc) of 1.00; compounds that are dissimilar have
a Tc ) 0. Given an active compound, we cluster all similar
compounds (Tc > 0.65) together. Removing one cluster of
compounds at a time from the training set is an intuitive
and automated approach for simulating lead hopping.

Leave nearest-neighbors out expands the Tanimoto cutoff.
In addition to the compounds removed in the first experiment,
we remove from the training set compounds that are related
to the validation compounds by a Tanimoto coefficient of
less than 0.45. This has the disadvantage that the validation
compounds do not all belong to the same chemical class,
but the approach guarantees that the training set compounds
are sufficiently distant from the core of interest.

Leave core out explicitly removes compounds from the
training set on the basis of the presence of a core substructure.
This is done without regard to fingerprint similarities and is
arguably the best simulation of lead hopping.

3.2.1. Leave Cluster Out.The compounds in the MDDR
database were clustered using a similarity cutoff of 0.65Tc.
In this section, a cluster that contains an active compound
is considered an active cluster. Alternatively, a cluster without
any hits is labeled an inactive cluster. By systematically
leaving out one active cluster at a time from the training
data, the overall performance of the various models on these
left-out clusters may provide a more realistic measurement
of the generalization of the model to new chemical classes.

The leave-cluster-out experiment was performed on four
receptors from four different GPCR subfamilies: D2 (dopam-
ine), 5HT1A (serotonin), NK2 (neurokinin), andR2 (adr-
energic). For each receptor, the number of active compounds
in each active cluster is listed in Table 2. The active clusters
contained 4-90 compounds. Few inactive compounds clus-
tered along with the active compounds.50,51 To measure
enrichment curves, the six largest inactive clusters were
removed from the training sets. A compound was considered
inactive if it was not listed active in the entire subfamily.
For example, there were 1389 compounds that are reported
active against one or more dopamine receptors and 613
compounds listed as active against D2.

All compounds not listed as active against a dopamine
receptor were treated as inactive. The validation set consisted
of one active cluster and the six inactive clusters, a total of
6800 inactive compounds. For D2, removing the third largest
cluster (cluster #3 containing 13 active compounds) leaves
600 active compounds for training. Also included in the
training set were 6000 compounds that were pulled at random
from the inactive list. No model optimization was performed.
A linear kernel was used with the default regularization
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parameters, and the model generated was then used to
classify the left-out clusters. It is important to emphasize
that for each validation set, a new model was built on the
remaining list of compounds.

Once the model was generated, the compounds that were
left out for validation were classified. The sensitivity and
enrichment factors for the various models are reported in
Tables 3 and 4. Irrespective of the cluster removed, the model
generally performs better than random. The average enrich-
ments for the classification of the D2, 5HT1A, NK2, and
R2 adrenergic sets are 12, 67, 10, and 26, respectively (see
Table 4). It is perhaps not surprising that the best enrichment
is achieved for 5HT1A. This is due, in large part, to the far
greater number of active compounds, approximately 1500,
that were included in the training set as well as the large
number of inactives that were sampled during training
(approximately 15 000). For each cluster removed, the
enrichment varied from 32 to 121.

The average sensitivities for the D2, 5HT1A, NK2, and
R2 adrenergic predictions are 0.82, 0.89, 0.79, and 0.76
respectively (see Table 3). The sensitivity varied from 0.2
to 1.0 for the various models. In the case ofR2 adrenergic
receptor, some of the models failed to recover any of the
actives for a left-out cluster. For example, none of the seven

actives in cluster 12 were correctly classified at the default
threshold of 0.0. However, a threshold of-0.1 results in
three of the seven actives and 95% of the inactives being
correctly classified.

3.2.2. Leave Nearest Neighbors Out.Removing one
cluster at a time from the training set was motivated by lead-
hopping considerations. However, for lead hopping, the
experiment in the preceding section suffers from an objective
criticism. Given the size of the cluster (0.35Tc), it would
not be hard to find compounds in the training set that are
similar to the compounds in the left-out cluster. Some clusters
in the training set may be near the left-out cluster, and
therefore, one must consider the distance of the training
compounds to the left-out validation compounds. In this
experiment, this issue was addressed by constructing a more
stringent validation set.

Using MDDRs, 370 activeR2 adrenergic compounds were
clustered using a small Tanimoto similarity (Tc ) 0.45),
resulting in 35 clusters. This is in contrast to the previous
experiment where the compounds were clustered atTc )
0.65, which put the active compounds in 122 clusters. The
seventh largest cluster, containing 15 active compounds, was
removed from the training set. To ensure that there are no
compounds in the training set that are similar to any
compound in the validation set, an in-house neighborhood
analysis tool was used to generate each compound’s nearest
neighbor in the training set. Compounds in the training that
had a measured Tanimoto similarity greater than 0.45Tc to
any compound in the validation set were removed. Four more
compounds were found within that cutoff and were added
to the validation set along with the other 15 compounds. As
a result, the most similar active in the training set was 0.45
Tc and the least similar was 0.39Tc. In Tables 5 and 6,
examples of actives and their nearest neighbors as well as
each pair’s Tanimoto similarity are listed. In addition to the
left-out validation active set, all the compounds belonging
to the largest six inactive clusters (3011 compounds with
fingerprints) were removed. The model was trained on the
remaining active and inactive compounds. The results are
summarized in Table 7. Using the default SVM threshold,
68% of the actives (13 out of 19) are correctly classified.

Table 2. Number of Actives in Each Left-Out Clustera

cluster D2 5HT1A NK2 R2

1 13 11 15 12
2 11 17 10 8
3 13 22 9 19
4 4 20 13 9
5 26 18 10 14
6 5 23 11 11
7 15 14 31 8
8 22 27 25 7
9 18 24 10 33

10 10 29 14 7
11 4 29 10 7
12 4 36 14 14
13 12 10 8
14 22 33
15 6

a The same inactives were held out for validation. The number of
inactives in each set was 6900, chosen from the inactive MDDR data
randomly.

Table 3. Sensitivity for the Left-Out Clustera

cluster D2 5HT1A NK2 R2

1 0.85 0.73 0.6 1.00
2 1.00 1.00 0.9 1.00
3 0.69 1.00 0.89 1.00
4 1.00 0.95 1.00 1.00
5 0.27 1.00 1.00 0.93
6 1.00 1.00 0.82 1.00
7 0.2 0.43 0.94 1.00
8 0.95 1.00 0.48 1.00
9 1.00 1.00 1.00 0.61
10 0.9 0.76 0.79 0.43
11 1.00 0.83 1.00 0.14
12 1.00 0.97 0.79 0.00
13 0.83 0.10 1.00
14 1.00 0.55
15 0.67
average 0.82 0.89 0.79 0.76

a The values are at the default threshold,ε ) 0. The overall average
sensitivity for all left-out clusters is listed at the bottom of the table.

Table 4. Enrichment Factor for Each Validation Set in the
Left-Out-Cluster Experimenta

cluster D2 5HT1A NK2 R2

1 11.64 121.92 19.14 60.31
2 17.21 87.56 16.11 56.08
3 9.97 87.37 15.71 44.18
4 19.67 82.86 13.95 42.93
5 2.98 81.28 13.66 34.15
6 15.21 63.92 10.96 32.27
7 2.82 63.21 10.55 32.24
8 10.49 51.61 10.42 24.23
9 12.96 49.48 7.20 17.63
10 10.70 47.55 6.63 9.06
11 14.00 39.94 1.84 7.01
12 19.99 30.9 1.75 0.00
13 12.64 1.13 5.53
14 11.71 1.42
15 7.50
Average 11.97 67.30 9.93 26.22

a The EF is reported at the default threshold,ε ) 0. The overall
average enrichment for all left-out clusters is listed at the bottom of
the table.
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The hit rate in the new set is 37.1%, up from 0.6%.
It is customary to use 2D clustering with a high Tanimoto

similarity coefficient (0.7-0.85) to investigate an active
compound’s nearest neighbors. An acquisition or synthetic
strategy based on the 2D Tanimoto similarity would have
likely missed the 19 actives held out in this validation set.
Using our models, compounds that are not similar from a
Daylight fingerprint viewpoint, which would potentially be
discarded, are correctly identified as active.

The most similar compound in the training set to any
compound in the validation is 0.45Tc, yet the model is able
to correctly classify nearly 70% of the left-out validation
actives (Table 7). Although the results are encouraging, the

question remains: starting with compounds in the training
set, are the compounds in the validation set considered novel
leads?

It is encouraging to note that compound number 146589
(Table 5) in the validation set is correctly classified despite
the fact that its most similar compound in the training set is,
at most, 0.39Tc. Inspection of the structure of the nearest
neighbor (compound number 176334) reveals that, indeed,
these two compounds belong to different classes. Similarly,
compound number 146580, an indoline, is also correctly
classified. Its nearest neighbor in the training set is compound
number 140906, an isoquinoline derivative, with a low
Tanimoto similarity,Tc ) 0.51.

Upon further examination of the training and validation
sets, one may be surprised to find that compound number
293595, an indenyl linked to a dihydro imidazole, is in the
training set (see Table 6). In fact, it is the nearest neighbor
to two active compounds in the validation set. Some may
argue, for example, that compounds number 146578 and
number 293595 in Table 6 are very similar molecules and
that both should have been removed from the training;
however, from a Daylight similarity perspective, the similar-
ity between the compounds is only 0.4Tc.

These latter examples illustrate the problems of using
Daylight fingerprint similarities in characterizing structural
similarities. Very few will argue about the similarity of
compounds in a cluster with a tight radius. However, using
Daylight fingerprints to deduce thesimilarity or dissimilarity
of compounds outside of that cluster is more difficult.
Furthermore, a procedure that involves prioritizing com-
pounds that are similar to a probe molecule will recover
highly similar compounds but is less likely to lead to new
chemical classes and, for this application, may leave behind
similar active compounds. Because Daylight fingerprints are
based on the path analysis of atoms in a compound,
heteroatom substitutions in the structure of a small molecule
will make similar compounds highly dissimilar.49 This
problem is particularly prevalent in small molecules.50,51

It could be argued that this experiment demonstrates lead
hopping because the nearest neighbors in the training sets
are all greater than 0.45Tc. On the other hand, if one
considers compounds 146578 and 293595 to belong to the
same chemical class (despite their small Tanimoto similarity),
then the next experiment remedies the problem by explicitly
removing specific cores from the training set.

3.2.3. Leave Core Out.Given the limitations of Daylight
fingerprints, it was decided to construct another validation
set that does not rely on fingerprints but explicitly extracts
cores of interest using pattern matching (SMARTS). For this
validation, compounds that looked similar to compound
number 146587 were of interest, and it was also decided to
remove from the training set compounds that looked like
compound number 293595. Consequently, all the compounds

Table 5. Examples of Compounds Predicted Active in the
Validation Set Exhibiting Lead Hoppinga

a The nearest neighbor (NN) in the training set as well as the pair’s
Tanimoto similarity (Tc) are listed.

Table 6. Two Examples of Compounds Predicted Active in the
Left-Out Validation Set Whose Nearest Neighbors Have Low
Daylight Similarity (Tc ) 0.4) but Could Be Considered Relatively
Similar

Table 7. Summary of the Performance of the Models on the Held-Out Validation Sets for the “Leave-Cluster-and-Nearest-Neighbor-Out” and
“Leave-Core-Out” Experimentsa

TP FP TN FN sensitivity specificity new hit rate old hit rate EF

leave NN out 13 22 2989 6 68.42 99.27 37.14 0.63 59.23
leave core out 106 47 4681 37 74.13 99.01 69.28 2.94 23.6

a The performance statistics for the prediction ofR2 adrenergic activity were extracted from the usual confusion matrix (confusion matrix defined
in Table 1). For the near neighbor analysis, any compound with a similarity> 0.45 Tanimoto was left out of the training.
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Table 8. TP Compounds Exhibiting Lead Hopping in the Leave-Core-Out Experimenta

a Tc is the similarity between the validation compound and its nearest neighbor in the training set. A compound that is identical has a Tc) 1.00,
while compounds that are dissimilar have aTc ) 0.0.
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that contained the core in Figure 4 were left out. Note that
the five-membered ring is allowed to contain any heteroatom
and any bond order. As a result, the left-out compounds
contained a wide range of chemical types including benzo-
furans, benzothiazoles, benzisoxazoles, indenyls, and indo-
lines.52

The new validation set contained nearly 43% of theR2
adrenergic active compounds in the MDDR (143 com-
pounds). This left 192 active compounds in the training set.
The six largest clusters containing 4728 “inactive” com-
pounds were removed from the training and held out for
validation. A random 1920 inactive compounds were pulled
out from the remaining MDDR compounds and were added
to the training set. The model was trained on the training
dataset using default SVM parameters. A cost factor (j )
10) was used to offset the 1:10 ratio of the actives to inactives
in the training set. The performance of the model on the
held-out (core-centered) validation set is summarized in Table
7. The model correctly predicted 74% of the left-out actives
and 99% of the left-out inactive compounds.

In Figure 5, the compounds are ranked in descending order
of their SVM score (x axis). On they axis, the number of
true actives found in the new set is shown. Indirectly, the
plot illustrates the performance of the SVM model at different
thresholds. The negative margin (ε ) -1) corresponds to
roughly 10% of the validation set. The total number of

compounds at the negative margin is 451 compounds, of
which 133 are true actives. That is, in the top 451
compounds, 93% of the held-out validation actives are found,
all related to the core in Figure 4. At the default threshold,
153 compounds are chosen by the model, of which 106
compounds are active. At the default threshold, the model
recalls 74% of the actives and provides greater than 23-fold
enrichment. The inset shows that, starting with training
compounds that looked like the one on the left (nearest-
neighbor in training), it is possible to hop to the compound
on the right (predicted active) whose Tanimoto similarity is
less than 0.40. The new model correctly classifies the core
of interest, indolines, represented for example, by compounds
such as 146581 and 14658, as well as benzofurans, com-
pounds such as 256934; benzothiazoles, compounds such as
267076; benzisoxazols, compounds such as 288723; and
indenyls, compounds such as 293595 (see Table 8), thus
providing the most exhaustive and comprehensive illustration
of lead hopping.

4. CONCLUSION

This study has demonstrated that SVMs together with 3D
pharamacophore descriptors can be successfully used to
predict activity against a variety of GPCRs. To show that
the models are capable of lead hopping, three experiments
were conducted. The first two experiments were based on
clustering of the active compounds using Daylight finger-
prints and the third by using SMARTS36 to extract com-
pounds containing certain “cores” from the training set. Both
approaches provide convincing evidence of the models’
ability to generalize to new compounds and, more impor-
tantly, to generalize to new chemical classes. The models
were able to correctly classify a significant number of actives
(sensitivity ) 62-82%) in the held-out validation while
providing significant enrichment. This approach has been
applied against several in-house GPCR programs and has
been found to be as affective as the examples presented in
this paper. The approach described in this paper is general
in nature and is not restricted to the development of models
for GPCRs but may be applied to many gene families.
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Figure 4. Depiction of the core removed fromR2 adrenergic
actives. An asterisk indicates any atom, and the dotted line in the
five-membered ring indicates aσ or π bond. Compounds that
matched the query were left out for validation; the remaining
compounds were part of the training set.

Figure 5. Prediction of the left-out validation set. The active
compounds (143 in all) are related by a common core (Figure 4).
There were 198 compounds left in the training set. The validation
set also included 4728 inactive compounds belonging to the six
inactive clusters. The plot shows that in the top 10% of the ranked
leave-core-out validation set, 93% of the actives are recalled. The
top 10% are at the negative margin (ε ) -1). At the default
threshold, 153 compounds are chosen, of which 106 compounds
are active. The default threshold corresponds to a 23.6-fold
enrichment. The inset shows that training the model on compounds
such as the nearest neighbor (on the left) allows us to hop to
compounds such as the predicted active (on the right) where the
Tanimoto similarity between the two is less than 0.4.
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clusters are composed of either exclusively MDDR compounds or
corporate compounds. This is also in line with our observation that
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clusters that include active compounds in the MDDR usually do not
include a significant number of remaining (“inactive”) compounds.

(52) The compounds that were part of the training and validation sets are
included in the Supporting Information. For each compound in the

validation, we list the compound’s nearest neighbor in the training
set, as well the pair’s Tanimoto similarity.
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