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ABSTRACT
Motivation: Both small interfering RNAs (siRNAs) and anti-
sense oligonucleotides can selectively block gene expression.
Although the two methods rely on different cellular mechan-
isms, these methods share the common property that not all
oligonucleotides (oligos) are equally effective. That is, if mRNA
target sites are picked at random, many of the antisense or
siRNA oligos will not be effective. Algorithms that can reli-
ably predict the efficacy of candidate oligos can greatly reduce
the cost of knockdown experiments, but previous attempts to
predict the efficacy of antisense oligos have had limited suc-
cess. Machine learning has not previously been used to predict
siRNA efficacy.
Results: We develop a genetic programming based predic-
tion system that shows promising results on both antisense
and siRNA efficacy prediction. We train and evaluate our sys-
tem on a previously published database of antisense efficacies
and our own database of siRNA efficacies collected from the
literature. The best models gave an overall correlation between
predicted and observed efficacy of 0.46 on both antisense and
siRNA data. As a comparison, the best correlations of support
vector machine classifiers trained on the same data were 0.40
and 0.30, respectively.
Availability: The prediction system uses proprietary hardware
and is available for both commercial and strategic academic
collaborations. The siRNA database is available upon request.
Contact: paal.saetrom@interagon.com

INTRODUCTION
Antisense oligonucleotides and RNA interference are the
two technologies that are available for sequence-specific
knockdown of mRNA. Antisense oligonucleotides (ODNs)
typically consist of 15–20 nt that inhibit gene expression
by complementary base-pairing to target mRNA. The result
is a simple mechanistic blocking of the ribosome thereby
inhibiting protein translation, or activation of the RNase
H enzyme that subsequently induces cleavage and degrad-
ation of mRNA (Kurreck, 2003). Modern ODNs have been
chemically modified in various ways to increase their potency.

More recently, RNA interference (RNAi)—a natural
biological pathway for mRNA depletion—was discovered:
21–23 nt long double-stranded RNA with characteristic
3′ overhangs is incorporated into a ribonucleoprotein
complex called RNA-induced silencing complex, which
cleaves mRNA with complementarity to its RNA compon-
ent (McManus and Sharp, 2002). The RNA agent is called
short interfering RNA (siRNA).

Scherer and Rossi (2003) reviews the relative strengths and
weaknesses of ODNs and siRNAs as well as catalytically act-
ive classes of oligonucleotides (oligos) for mRNA knockdown
that will not be discussed here.

The question of oligo efficacy arises because not all oligos
are equal; common to both ODNs and siRNAs are that only
a fraction of the oligos are effective in biological assays.
Methods that can predict the efficacy of potential oligos are
important since these would reduce the cost of carrying out
antisense and siRNA knockdown experiments.

There has been some previous work on in silico methods
that predicts oligo efficacy. The work range from con-
sidering thermodynamic properties (Matveeva et al., 2003;
Khvorova et al., 2003; Schwarz et al., 2003), to using sequence
motifs (Matveeva et al., 2000) and artificial neural networks
(Giddings et al., 2002; Chalk and Sonnhammer, 2002) for
predicting efficacy. Since the RNAi pathway is a more recent
discovery, however, most of this work has been done on
ODNs. Here, we bridge the gap by (i) collecting a database of
publicly available siRNA efficacy data and (ii) developing and
evaluating a machine learning method that can predict both
ODN and siRNA efficacy.

Our main contribution is a machine learning system that
predicts ODN and siRNA efficacy and is consistently better
than previously published methods. Furthermore, we present
a uniform analysis of the thermodynamic properties of ODNs
and siRNAs.

METHODS
In the following sections, we will describe the databases
used in our experiments and present the algorithms used in
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Fig. 1. Our genetic programming solution language. (a) Grammar. The grammar is shown in Backus–Naur form, with non-terminals
represented by uppercase letters and terminals represented by boldface letters. Syntactical elements in the language, such as parentheses and
operators, are in normal typeface. Alternatives are represented as separate productions. Adjacent symbols are concatenated. (b) Semantics.
An expression matches a string if R.hit is true. match(a) returns 1 if a is identical to the character it is compared with, and 0 otherwise.

our classification system. This includes sections on genetic
programming (GP), boosting and boosted GP. We also briefly
discuss the inherent stochastic properties of GP, and describe
how support vector machines (SVMs) can be used to predict
ODN and siRNA efficacy. SVMs are often regarded as state-
of-the-art among the different machine learning methods, and
will be used as a benchmark throughout this work. Finally,
we describe a procedure for estimating the predictive accur-
acy of classifiers, and detail the methods used to compute
oligo thermodynamics.

Databases
A collection of experimentally evaluated siRNAs were col-
lected from different sources (Vickers et al., 2003; Kawasaki
et al., 2003; Harborth et al., 2003; Holen et al., 2002;
Khvorova et al., 2003). We cross-referenced the siRNAs
with their corresponding GenBank sequences when pos-
sible, and otherwise used the sequences as given in the
articles.

We assigned an efficacy score based on the reported mRNA
or protein knockdown levels to each siRNA. For the human
cyclophilin sequences in Khvorova et al. (2003), where indi-
vidual efficacies were missing, we assigned 0.05 and 0.75
knockdown to the effective and ineffective sequences. The
efficacy score measures the fraction of mRNA or protein that
remains after the knockdown experiment. Hence, effective
and ineffective siRNAs are assigned low and high effic-
acy scores. The same measure was used in Giddings et al.
(2000).

For our antisense experiments, we used the set of antisense
sequences collected by Giddings et al. (2000).

We partitioned both the siRNA database and the antisense
database into a set of positive and negative sequences. We
used a cut-off score of 0.5; i.e. the sequences that scored
above the threshold were classified as negative and vice versa.
After duplicates were removed, a total of 101 positive and
103 negative siRNAs, and 125 positive and 186 negative
ODNs remained.

Genetic programming
Genetic programming (Koza, 1992), as the genetic algorithms
of Holland (1975), use evolution in a population of candid-
ate solutions to solve problems. The main difference between
genetic algorithms and GP is that the former operate on a
population of (bit) strings, whereas the GP populations usually
consist of syntax trees in some solution language. The solu-
tion language defines the structure of the possible solutions.
Other solution representations such as linear or graph-based
GP exist (see Banzhaf et al., 1997 for an overview and a good
introduction).

Our GP algorithm is designed to solve two-class classifica-
tion problems where the positive and negative data consists of
strings. It uses subtree swapping crossover, tree generating
mutation and reproduction as generic operators. Individu-
als are chosen for participation in new generations using
tournament selection.

Each individual in the population is a syntax tree in a formal
query language (Interagon AS, 2002, http://www.interagon.
com/pub/whitepapers/IQL.reference-latest.pdf). To ensure
that all individuals are legal expressions, we use a set of
production rules when generating and combining the indivi-
duals, as Montana (1995). These production rules correspond
to the grammar of the query language.

In the experiments described in this paper, only a subset
of the full query language is used. Figure 1 gives a gram-
mar for this subset along with a formal definition of its
semantics.

The semantics can be explained as follows: the numeral N

in the p >= N part indicates the minimum number of termin-
als in the C-production that must match. This means that if the
fourth production is removed from the language, the expres-
sions search for strings with Hamming distance less than
|C| − N , where |C| is the number of characters in the expres-
sion. For example, the expression {gcggtt : p >= 4} will
match the strings gcgatt and acgatt, but not acgata and actatt.

Alternatives (production 4) enables, in addition to altern-
ative bases at the same string position, the construction of
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expressions where some positions in the string are considered
more important than others. To illustrate this, consider the
expression {gc(g|g)gtt : p >= 4}, where (g|g) matches g in
the same string position twice (we will in the following use the
shorthand (g|g) = g2 for weighted positions). This expression
now matches the string acgata, but still misses actatt.

Note that if the string is longer than the expression, the
expression reports a match if it matches any of the string’s
possible substrings. Thus, the expression {gcggtt : p >= 4}
will match strings aagcaatt and gcgcgtt, but will miss agcaaatt
and aattgcgg.

The Interagon pattern matching chip (PMC) (Halaas et al.,
2004) is an application specific integrated circuit designed to
provide orders of magnitude higher performance than com-
parable regular expression matchers. In our GP system, we
use the PMC to evaluate the individual expressions in the GP
population, thus reducing the GP system’s total computation
time. This increased performance becomes important when
the datasets are large, or when many GP runs must be done,
as for instance in cross-validation experiments or when GP is
used as the base learner in a boosting algorithm.

Given an oligo sequence, the expressions generated by our
GP system will only be able to answer ‘yes’ or ‘no’ as to
whether the sequence is effective or not. The following section
describes a method that creates classifiers with a more refined
output.

Boosting
Boosting algorithms combine a set of simple rules to form a
single model. The algorithms construct the combined model
so that the performance of the model is increased compared
to each of the single rules. Given a learning algorithm that
generates a set of hypotheses h1, h2, . . . , hT , the boosting
algorithms construct a combined hypothesis f on the form

f (x) =
T∑

t=1

αt · ht (x). (1)

αt is the weight of hypothesis ht , and both weights and
hypotheses are learned by the boosting algorithm.

The AdaBoost algorithm, introduced by Freund and
Schapire (1997), was the first step towards practical boost-
ing algorithms. AdaBoost constructs classifiers that maximize
the minimal margin in the training data (Meir and Rätsch,
2003), but as a result, the algorithm does not handle noise
or outliers in the dataset very well. To solve this, regular-
ized boosting algorithms, such as AdaBoostReg (Rätsch et al.,
2001) and ν-Arc (Rätsch et al., 2000), have been developed.
Boosting algorithms are related to other large margin classi-
fiers such as SVMs (Vapnik, 1995; Müller et al., 2001); for
instance, Rätsch et al. (2002) constructed a boosting algorithm
for detecting outliers from a corresponding support vector
algorithm.

Generally, boosting algorithms works as follows (Meir and
Rätsch, 2003): given a training set S of m examples (x, y),
the algorithms start by assigning weights di=1, ..., m to each
element in the set. Then the algorithms iteratively construct
the T hypothesis in (1), so that for each iteration t the
algorithms:

(1) Train a basic hypothesis ht on the weighted data.

(2) Find the hypothesis weight αt , which is found by
minimizing the loss function G(ft + α · ht , S).

(3) Set ft+1 = ft + αt · ht .

(4) Update each data weight so that d
(t+1)
i =∂/[∂ft+1(xi)]

G(ft+1, S), i ∈ {1, . . . , |S|}.
See Meir and Rätsch (2003) for further information on the
loss functions used by different boosting algorithms.

Boosted GP
The idea of combining boosting algorithms with GP was first
presented by Iba (1999). Here the training set for the GP
algorithm was constructed by sampling from S, using the
weight distribution D. Paris et al. (2001) extended this, by
training on the complete set S, and including the data weights
in the fitness function

ε(h, D, S) =
|S|∑

i=1

di · |h(xi) − yi |. (2)

The GPboost algorithm presented by Paris et al. (2001) is
based on AdaBoost, and was used to solve simple benchmark
regression problems without noise. Since GPboost is based on
the AdaBoost algorithm, it is expected that GPboost will have
difficulties on datasets that contain noise and outliers. To alle-
viate this, we propose a regularized algorithm, GPboostReg,
which is based on the AdaBoostReg algorithm of Rätsch et al.
(2001).

Our implementation uses the GP system described in the
Genetic programming section as the base learner, with (2) as
the fitness function. It produces classifiers of the form
given in (1).

Variance in GP
Genetic programming is inherently a stochastic method. Con-
sequently, two separate GP runs are not guaranteed to produce
identical results. This also goes for boosted GP, hence there
will be some variance in the predictions of different GPboost
classifiers. This inherent variance can, however, be used to
create even better classifiers. Hansen and Salamon (1990)
showed that diverse and accurate classifiers can be combined
to produce a more accurate classifier, which also has the added
benefit of a reduced variance compared with the individual
classifiers.

In our experiments, we create combined classifiers by taking
the simple average of the individual classifiers. That is, for a

3057



P.Sætrom

set of classifiers f1, f2, . . . , fn, the combined classifier F is
given by

F(x) = 1

n

n∑

i=1

fi(x). (3)

Support vector machines
The classic SVM algorithm (C-SVM) was introduced by
Vapnik (1995). In our experiments, we compare the perform-
ance of this algorithm and the ν-SVM algorithm by Schölkopf
et al. (2000) with the performance of our GP system. Both
SVM algorithms use radial basis functions as kernels. The
implementation used in this study is part of the LIBSVM lib-
rary (available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm/).

While our GP system uses the oligo sequences as input, the
input to the SVMs must be numerical data. In our experiments
we solve this by using three different encodings, where the
first encoding simply transforms the sequences into numer-
ical data by mapping as to 0, cs to 0.33, gs to 0.67 and ts to
1. This encoding ensures that the letters are evenly distrib-
uted in the [0, 1] attribute range suggested in the LIBSVM
documentation.

The second encoding uses the relative number of each nuc-
leotide and dinucleotide in the sequence. That is, the input is
a 20-dimensional vector where the first element in the input
is the relative number of as in the sequence, the fifth element
is the relative number of aas, and so forth.

Our third encoding use the relative number of tetramers in
each sequence. We use this representation because Matveeva
et al. (2000) showed that certain tetramers correlate with anti-
sense efficacy. In addition, Giddings et al. (2002) found that
using the relative number of tetramers in the sequence as input
to an artificial neural network classifier gave better results than
using dimers or trimers.

Classifier accuracy
The predictive accuracy (or generalization accuracy) of a clas-
sifier is important, because it gives a measure of how well the
classifier will perform on unseen data. That is, it estimates the
probability that the classifier will correctly predict the class
of unseen data. The classifier accuracy is given by

Acc = Tp + Tn

Tp + Tn + Fp + Fn
, (4)

where Tp, Fp, Tn and Fn are the number of true positive, false
positive, true negative and false negative predictions.

A 10-fold cross-validation is known to create a good
estimate of the predictive accuracy of classification meth-
ods (Martin and Hirschberg, 1996). The average of the 10
testing accuracies from the cross-validation procedure estim-
ates the predictive accuracy of a classifier trained on the
original dataset.

In our experiments, we use cross-validation for both accur-
acy and parameter estimation. That is, we do a separate

10-fold cross-validation experiment on each of the 10 training
sets to determine the optimal parameters of the classific-
ation algorithm. This is done to ensure that the training
process—both parameter estimation and model generation—
is completely independent of the test data.

An alternative to using the accuracy as the 10-fold estimate
is to use the Matthews correlation:

M = Tp · Tn − Fp · Fn√
(Tn + Fn)(Tn + Fp)(Tp + Fn)(Tp + Fp)

. (5)

Matthews (1975) points out that this correlation measure is
often a more informative quality measure than the accuracy.

The receiver operating characteristic (ROC) is an even more
general quality measure (Hanley and McNeil, 1982). A ROC
curve is a plot of the sensitivity Se versus the specificity Sp
of a given classifier, where

Sp = Tn

Tn + Fp
, and (6)

Se = Tp

Tp + Fn
. (7)

A ROC curve can be characterized by the area under its curve:
perfect classification gives an area of 1.0, and random classi-
fication gives an area of 0.5. The ROC area or ROC score gives
a good indication of whether one classifier has a higher over-
all performance than another classifier. One can also use sign
tests on the classifiers’s output (Salzberg, 1997) for varying
specificity levels to test whether one classifier is significantly
better on the given specificity level. In this work, we focus
these tests on the high specificity levels, since in practical
applications, users will in most cases only be interested in the
oligos that are highest ranked. That is, they want few false
positives among the highest ranked oligos (on high specificity
levels), and do not care if there are some false negatives among
the oligos of low rank (on low specificity levels).

All the above measures assumes that the examples to be
classified have been characterized as being either positive or
negative sequences. The correlation coefficient R between the
predicted and the observed efficacy is an alternative quality
measure that does not depend on such a characterization. R2

represents the proportion of variation in the observed efficacy
that can be explained by the classifiers. A Student’s t-test gives
the statistical significance of a given correlation.

Oligo thermodynamics
We use the nearest-neighbour model (Xia et al., 1998) to com-
pute the oligo/mRNA duplex stability. The model is used in
several of our custom applications that in addition to the over-
all duplex stability, also compute the oligo 5′ stability and the
difference in oligo 5′ and oligo 3′ stability.

The oligo 5′ stability is computed from the first five nucle-
otides in the oligo (antisense) sequence. When computing the
difference in 5′ and 3′ stability, we compute the stability of

3058

http://www.csie.ntu.edu


Antisense and siRNA efficacy prediction

Table 1. The average results from 10 different 10-fold cross-validation experiments using the genetic programming algorithms on the antisense data

Algorithm ROC R P M Se Sp

GP N/A −0.18 ± 0.06 1 × 10−3 0.15 ± 0.05 0.34 ± 0.05 0.79 ± 0.04
GPboost 0.71 ± 0.01 −0.37 ± 0.02 2 × 10−11 0.31 ± 0.03 0.61 ± 0.03 0.70 ± 0.03
GPboostReg 0.71 ± 0.02 −0.38 ± 0.04 4 × 10−12 0.29 ± 0.05 0.59 ± 0.05 0.71 ± 0.02

R is the correlation and P is its statistical significance. M , Se and Sp are the Matthews correlation, sensitivity and specificity when using the the standard cutoff for the algorithms
(≥0 for the boosted GP algorithms). Note that because the standard GP classifiers are binary, no ROC score is given for this algorithm.

the first four (5′) and the last four (3′) nucleotides in the oligo
sequence. The difference is given by the 5′ stability minus the
3′ stability, and a negative value means that the 5′ end of the
antisense strand is more stable than the 3′ end.

We use the parameters of Xia et al. (1998) in all our
RNA/RNA nearest-neighbour model computations, except for
the 5′ stability calculations where we use the same parameters
as that of Khvorova et al. (2003). For DNA/RNA interactions,
we use the parameters of Sugimoto et al. (1995).

The Mfold web server of Zuker (2003) is used to compute
the oligo secondary structure stability.

RESULTS AND DISCUSSION
The following sections detail the results from our experiments
at predicting siRNA and antisense efficacy. Furthermore, we
show how different thermodynamic properties correlate with
the observed efficacies sequences, and that effective antisense
and siRNA oligos have different thermodynamic properties.
We also show that the genetic programming classifiers for
the antisense and siRNA oligos differ. Finally, we discuss the
possibilities of using our predictors in the genomewide oligo
design.

Antisense predictions
We analyzed the antisense data using the GP, GPboost and
GPboostReg algorithms, and Table 1 shows the average res-
ults of 10 different 10-fold cross-validation experiments for
these algorithms. The GP solutions were binary classifiers
of the form given in Figure 1 and the boosted GP classifiers
had the form given in (1). Although all three methods have
a significant correlation between the predicted and observed
efficacy, the boosted GP algorithms get better results than the
standard algorithm.

Table 2 compares the accuracy of the three input encodings
for the two SVM algorithms with the accuracy of the GP-based
algorithms. The GP-based algorithms use the average of 10
different models as output (3); i.e. the basic GP models are the
average of 10 binary classifiers of the form given in Figure 1,
and the boosted GP classifiers are the average of 10 classi-
fiers of the form given in (1). ROC curves for the GP-based
algorithms were generated by measuring the sensitivity and
specificity for different thresholds of the average classifiers
(the average GP classifier has 10 different thresholds; the

Table 2. Antisense results

Algorithm ROC R P M Se Sp

GP 0.61 −0.28 5.2 × 10−7 0.22 ± 0.20 0.35 0.83
GPboost 0.75 −0.45 8.1 × 10−17 0.38 ± 0.20 0.64 0.75
GPboostReg 0.76 −0.46 1.7 × 10−17 0.43 ± 0.18 0.66 0.77
ν-SVM(seq) 0.54 −0.04 0.45 0.01 ± 0.14 0.09 0.93
C-SVM(seq) 0.52 −0.01 0.86 0.03 ± 0.13 0.10 0.94
ν-SVM(1–2) 0.68 −0.35 5.6 × 10−10 0.28 ± 0.15 0.45 0.82
C-SVM(1–2) 0.67 −0.37 1.6 × 10−11 0.16 ± 0.24 0.26 0.89
ν-SVM(4) 0.66 −0.31 2.8 × 10−8 0.23 ± 0.17 0.50 0.72
C-SVM(4) 0.69 −0.40 2.2 × 10−13 0.26 ± 0.13 0.36 0.85

See Table 1 for table header explanations.

Fig. 2. ROC graphs for the GPboostReg, and best SVM classifiers
on the antisense data. The GPboostReg algorithm has the highest
sensitivity for almost all specificity levels.

average boosted GP classifiers have more). This table shows
that the two boosting algorithms have the best overall results
in terms of ROC score and correlation. They also get the best
Matthews correlation. Figure 2 shows the ROC graphs for the
GPboostReg algorithm and the input-encodings to the ν-SVM
and C-SVM algorithms that have the highest ROC-score. To
test whether the GPboostReg algorithm had a significant better
performance than the other two classifiers, we used a sign test
(Salzberg, 1997) on specificities 0.95, 0.9, 0.8 and 0.6 (for a
motivation see Classifier Accuracy section). The GPboostReg

algorithm was significantly better (P ≤ 0.05) than the ν-SVM
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Table 3. The average results of 10 different runs of the genetic programming based algorithms on the siRNA data

Algorithm ROC R P M Se Sp

GP N/A −0.19 ± 0.05 7 × 10−3 0.16 ± 0.05 0.47 ± 0.05 0.68 ± 0.05
GPboost 0.65 ± 0.03 −0.31 ± 0.03 6 × 10−6 0.21 ± 0.07 0.58 ± 0.04 0.63 ± 0.06
GPboostReg 0.67 ± 0.03 −0.33 ± 0.05 1 × 10−6 0.22 ± 0.08 0.59 ± 0.04 0.63 ± 0.05

See Table 1 for table header explanations.

algorithm on specificities 0.95 and 0.9, and significantly better
than the C-SVM algorithm on specificities 0.9 and 0.8.

Another point worth considering is that using (3) to combine
several GP-based classifiers do result in better classifiers. This
is evident from comparing the results in Tables 1 and 2: the
results for the GP-based classifiers in Table 2 are consistently
better than the corresponding results in Table 1; the GP-based
classifiers in Table 2 use the algorithm from (3).

Giddings et al. (2002) observed that using the complete
tetramer vector gave poor results. To reduce the risk of over-
fitting, they went on to consider only the 40 most significant
tetramers in the dataset. However, the cross-validation proced-
ure does not remain independent when the complete dataset
is used to select the input. Consequently, one would expect
that the cross-validation accuracy estimate becomes positively
biased; i.e. the estimates are better than they would be if tested
on a truly independent test set. Indeed, when subsequently
testing their classifiers on an independent test set, Giddings
et al. found that the accuracy was lower than the reported
10-fold cross-validation accuracy.

To test this hypothesis of a possible bias, we did an exper-
iment where we first estimated the 10-fold cross-validation
accuracy using the 40 most significant tetramers in the global
dataset, as measured by the Mathews correlation coeffi-
cient (5). This is analogous to the experiments of Giddings
et al. (2000). We then did a 10-fold cross-validation experi-
ment where we used the 40 most significant tetramers in each
local training set as input to the SVM classifiers. When we
compared the results of these two experiments, we found that
although the local top 40 estimates gave results similar to using
the complete tetramer input, the global top 40 estimate gave
much higher accuracy estimates (ROC score, correlation and
Matthews correlation of 0.77, −0.47 and 0.39). Hence, using
the 40 most significant tetramers in the dataset does give a
biased estimate of the classifier accuracy.

siRNA predictions
We did the same analysis on the siRNA data as we did
on the antisense data. Table 3 shows the average results
of 10 different runs of the GP, GPboost and GPboostReg

algorithms (please confer the relevant Methods sections and
the comments to Tables 1 and 2 for details on the different
GP classifiers). The results are similar to the antisense results
(confer Table 1).

Table 4. siRNA results

Algorithm ROC R P M Se Sp

GP 0.62 −0.27 9.4 × 10−5 0.19 ± 0.09 0.45 0.73
GPboost 0.70 −0.42 4.0 × 10−10 0.27 ± 0.18 0.56 0.70
GPboostReg 0.72 −0.46 4.5 × 10−12 0.24 ± 0.24 0.50 0.73
ν-SVM(seq) 0.57 −0.05 0.48 0.09 ± 0.23 0.52 0.56
C-SVM(seq) 0.53 −0.02 0.78 0.05 ± 0.20 0.35 0.70
ν-SVM(1–2) 0.70 −0.21 2.6 × 10−3 0.31 ± 0.19 0.61 0.68
C-SVM(1–2) 0.64 −0.30 1.3 × 10−5 0.26 ± 0.14 0.45 0.80
ν-SVM(4) 0.62 −0.14 0.046 0.25 ± 0.16 0.49 0.73
C-SVM(4) 0.65 −0.30 1.3 × 10−5 0.19 ± 0.20 0.35 0.82

See Table 1 for table header explanations.

Fig. 3. ROC graphs for the GPboostReg, and best SVM classifiers on
the siRNA data.

Table 4 summarizes the performance of the SVM algorithms
and GP-based algorithms. Just as in the antisense analysis, the
GP-based algorithms use the average of 10 different models
as the final output. We also used the same input to the SVM
algorithms here as previously. The two boosting algorithms
achieve the best overall results in terms of ROC score and
correlation, which was also the case for the antisense experi-
ments. But in terms of the Matthews correlation, the ν-SVM
classifiers that use the nucleotide and dinucleotide percent-
age input are now the highest. Figure 3 shows the ROC
graphs for the GPboostReg algorithm and the input-encodings
to the ν-SVM and C-SVM algorithms that have the highest
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Table 5. The correlation of structural features with siRNA and antisense efficacy (see Methods section for details on thermodynamic computations)

Structural feature siRNA sequences Antisense sequences
oligos R P oligos R P

oligo 5′ stability 204 −0.21 2.6 × 10−3 311 0.11 0.053
oligo 5′ − oligo 3′ stability 204 −0.28 5.0 × 10−5 311 0.051 0.37
�G◦

37 oligo 2D structure 203 −0.26 1.8 × 10−4 302 −0.10 0.083
�G◦

37 oligo/target duplex 204 −0.14 0.046 311 0.20 3.9 × 10−4

Oligos with oligo/target duplex stability �G◦
37 ≤ −30 kcal/mol

�G◦
37 oligo 2D structure 176 −0.28 1.7 × 10−4 84 −0.44 2.8 × 10−5

�G◦
37 oligo/target duplex 177 −0.23 2.1 × 10−3 89 −0.011 0.92

Oligos with oligo/target duplex stability �G◦
37 > −30 kcal/mol

�G◦
37 oligo 2D structure 27 −0.35 0.073 218 0.055 0.42

�G◦
37 oligo/target duplex 27 −0.26 0.19 222 0.37 1.3 × 10−8

Significant correlations R (P = 0.05) are marked in boldface.

ROC score. A sign test on specificities 0.95, 0.9, 0.8 and 0.6
showed that the GPboostReg algorithm was significantly better
(P ≤ 0.05) than the ν-SVM algorithm on specificities 0.95
and 0.9, and significantly better than the C-SVM algorithm
on specificity 0.95.

As a final note, comparing Tables 3 and 4 again shows
that combining several GP-based classifiers results in better
classifiers.

Structural feature predictions
Several researchers have pointed at correlations between
different structural features of an oligo and its efficacy. For
antisense oligos, Matveeva et al. (2003) have identified a sig-
nificant correlation between the antisense efficacy and the free
energy �G◦

37 in the antisense and RNA target duplex form-
ation. They also found a significant correlation between the
antisense efficacy and the free energy in the predicted anti-
sense secondary structure. Finally, they found that oligos that
form less stable duplexes with target RNA depend more on
high duplex stability to be effective. Conversely, ODNs that
form highly stable duplexes depend on smaller self-interaction
potentials to be effective.

For siRNA oligos, Khvorova et al. (2003) found that the 5′
antisense region is significantly less stable in effective siRNAs
than in ineffective siRNAs. Moreover, they observed differ-
ent patterns in the internal stability profile for effective and
ineffective siRNAs. At the same time, Schwarz et al. (2003)
found that the 5′ antisense region was less stable than the 5′
sense region in functional siRNAs.

We tested these different structural features on both the
antisense and siRNA data sets. Table 5 lists the correlation
between each structural feature and the antisense and siRNA
efficacy as well as its statistical significance. The details on
the different thermodynamic computations are given in the
Methods section.

Table 5 shows that siRNA and antisense oligos share some
physical characteristics: both become less active when the
self-interaction potential of an oligo is large. However, this
seems to be the only common feature. The antisense and
siRNA oligos seem to have complete opposite characteristics,
both regarding 5′ and overall duplex stability. To determine
whether the opposite characteristics could be explained by the
differences in oligo length for the antisense data, we did a sep-
arate analysis on the antisense sequences of length 20 in the
database (178 out of 311 sequences). But this analysis gave the
same overall results as reported in Table 5 (data not shown).

In addition, we investigated the relationship between duplex
stability and self interaction potential, found by Matveeva
et al. (2003). Table 5 support these results, since it shows
that the efficacy of antisense oligos that are more stable
(�G◦

37 ≤ −30) is negatively correlated with the free energy
in the predicted secondary structure of oligos. Likewise, the
efficacy of less stable oligos (�G◦

37 > −30) is positively
correlated to the free energy in the oligo/mRNA duplex. We
found a similar trend in the smaller set of antisense sequences
of length 20. For the more stable duplexes, the P -values were
0.75 for the duplex stability and 0.085 for the self-interaction
potential; for the less stable duplexes, the corresponding
P -values were 2.4 × 10−5 and 0.83. We did not, however,
find a similar trend in the siRNA sequences.

We note that a possible extension to the method presented
here is to try to combine our sequence-based, boosted GP
predictors with the thermodynamic characteristics. This is,
however, left as an extension for further work.

Antisense and siRNA classifiers differ
As the analysis in the previous chapter showed, effective anti-
sense and siRNA oligos have very different thermodynamic
characteristics. To determine whether this difference also was
reflected in the classifiers produced by our algorithm, we
examined the binary classifiers created by the standard GP
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Table 6. Examples of GP classifiers generated on the antisense and siRNA
database

Data Classifier Example matches

ODNs {c(g6|a5|c8)(g4|a2|c6)(g3|a2|c8) .ccca.., .gcca.., .acca.., .cgca..
(a6|c2)tc : p >= 25}

siRNAs {gcct(c1|t1)ct(a1|t1)ct(t2)(c4|t1) .......a..tccc, ....c.....tccc
(c3|t1)(c3|t1) : p >= 13}

The example matches list some of the least complex subsequences matched by the corres-
ponding expression (. represents any letter). Thus, we have not listed matches involving
the characters that have the least weight, as for instance cccaatc for the ODN expression
or gcctcctacttt.. for the siRNA expression. These longer matches are more likely to be
specific to the training set than to represent general characteristics of ODNs or siRNAs.
Note that the expressions use the subscript operator to denote the weight of each letter
in alternatives (see production 4 in Fig. 1 and the accompanying examples in the text).

algorithm (Fig. 1). Because of the complexity of the boosted
GP classifiers [these classifiers are a weighted combination of
the basic expressions—see (1)], a detailed analysis of these
classifiers was not done.

Table 6 shows two typical examples of the expressions gen-
erated on the antisense and siRNA data, along with some of the
subsequences matched by each expression. The two expres-
sions illustrate the main difference between the antisense and
siRNA expressions: the subsequences matched by the anti-
sense expressions are shorter than the subsequences matched
by the siRNA expressions. Indeed, in an experiment where we
greatly increased the number of generations that the GP sys-
tem was run, the length of the subsequences matched by the
siRNA expressions increased to 19. This equals the length of
the siRNA oligos. The length of the subsequences matched by
the antisense expressions, however, remained the same (data
not shown).

This difference in motif length between the antisense and
siRNA expressions suggests that for effective siRNAs, the
base composition at different positions in the oligo is import-
ant. This dependence on base composition is also reflected in
the 5′ and 3′ thermodynamics of the siRNA oligos ( Table 5).
For effective antisense oligos, on the other hand, the occurence
of specific, short motifs is important. This was also observed
by Matveeva et al. (2000).

Genomewide oligo design
One of the important questions in genomewide oligo design is
the tradeoff between oligo efficacy and oligo uniqueness. That
is, for each gene in a genome one would like to have at least
one oligo that is sufficiently unique so that it does not target
any other genes, and has a high probability of being effective.
As not all oligos predicted to be effective will be effective,
one will need a set of candidate oligos for each gene.

To test how many potential candidate oligos our boosted GP
classifiers predict to be effective, we downloaded 10 human
mRNAs at random from the NCBI RefSeq database. We then

tested all candidate 19mer oligos on the antisense and siRNA
efficacy predictors, and counted the number of oligos where
the predictor output were above a threshold corresponding to
90% specificity. This resulted in that on average 22% of the
candididate siRNAs and 16% of the candidate antisense oligos
for each mRNA were predicted to be effective. The SD in both
cases were 4%.

We also determined the number of candidate oligos that
were unique in the human transcriptome. To do this we com-
puted the Hamming distance between each candidate oligo
and every 19mer in the Ensembl cDNA database, NCBI build
34. Oligos that had a Hamming distance greater than two to all
other 19mers in the database were considered unique. The rel-
ative number of unique oligos for each mRNA varied between
0.5 and 55%, with an average of 24%.

Each mRNA had, however, candidate oligos that were
both unique and predicted to be effective, both in RNAi
and antisense experiments. The number ranged from one
candidate to 11% of all possible oligos. The number of can-
didate oligos can be increased by decreasing the specificity
threshold, but as the result of the uniqueness screening shows,
the limiting factor on the number of candidate oligos is the
uniqueness screening. One should expect that this would also
be the case for true, genomewide oligo design.

CONCLUSION
We have developed a GP-based machine learning system that
successfully predicts the efficacy of oligos used in antisense
and siRNA experiments. The system is consistently better
than both SVMs and physical property-based classifiers at
predicting the efficacy of both antisense and siRNA oligos.

We have also showed that siRNA and antisense sequences
do not seem to share the same physical characteristics. The
only common feature is a sensitivity to a high self-interaction
potential of the oligo. That is, oligos that form more stable
secondary structures are less likely to be effective when used
in both antisense and RNAi experiments.

Antisense and RNAi are very different technologies, and, as
shown here, antisense and siRNA oligos have very different
physical characteristics. Despite this, our novel, sequence-
based machine learning system can sucessfully predict the
efficacy of both antisense and siRNA oligos. This suggests
that the oligo efficacy for both technologies is in a large part
determined by the oligo sequence itself.
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