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ABSTRACT
Motivation: Feature subset selection is an important
preprocessing step for classification. In biology, where
structures or processes are described by a large number
of features, the elimination of irrelevant and redundant
information in a reasonable amount of time has a number
of advantages. It enables the classification system to
achieve good or even better solutions with a restricted
subset of features, allows for a faster classification, and
it helps the human expert focus on a relevant subset of
features, hence providing useful biological knowledge.
Results: We present a heuristic method based on Estima-
tion of Distribution Algorithms to select relevant subsets of
features for splice site prediction in Arabidopsis thaliana.
We show that this method performs a fast detection of rel-
evant feature subsets using the technique of constrained
feature subsets. Compared to the traditional greedy meth-
ods the gain in speed can be up to one order of magni-
tude, with results being comparable or even better than the
greedy methods. This makes it a very practical solution for
classification tasks that can be solved using a relatively
small amount of discriminative features (or feature depen-
dencies), but where the initial set of potential discriminative
features is rather large.
Keywords: Machine Learning, Feature Subset Selection,
Estimation of Distribution Algorithms, Splice Site Predic-
tion.
Contact: yvsae@gengenp.rug.ac.be

INTRODUCTION
For many biological processes, it is still not clear which
elements contribute to the observed behaviour. One
example is the occurrence of splice sites in gene se-
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quences, an important characteristic for gene finding
in genome sequencing projects. The DNA sequences
of most genes are coding for messenger RNA (mRNA)
themselves encoding proteins. While in lower organisms
(prokaryotes) the mRNA is a mere copy of a fragment
of the DNA, in higher organisms (eukaryotes) the DNA
contains non-coding segments in genes (introns) which
should be precisely spliced out to produce the mRNA.
The splice sites we refer to here are the border sides of
such introns. The splice site in the upstream part of the
intron is called the donor site, the other site is termed
the acceptor site. Due to the completion of sequencing
the genome from several eukaryotes, much data became
available, allowing the use of supervised learning methods
to automate the process of splice site prediction. Here
we used sequence data from the model plant Arabidopsis
thaliana, for which more than 12000 full length cDNAs
are now available, providing a large dataset of genes
with documented exon/intron structure. To complete this
task these learning methods need information sources to
enable them to distinguish between true and false sites.
These information sources are termed features in machine
learning. As it is not clear which features are relevant for
an accurate splice site prediction these learning methods
are usually provided with many features, assuming that
this will increase the probability of including relevant
information.

Since not all features are relevant to the classification
task and others might be correlated, there is a need
to search for a ‘minimal’ set of features with ‘best’
classification performance. Traditional Feature Subset
Selection (FSS) methods are sequential and are based on
a greedy heuristic (Kohavi and John, 1997). Sequential
Forward Selection (SFS) starts with the empty feature set
and iteratively adds features, while Sequential Backward
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Elimination (SBE) starts with the full feature set and
iteratively discards features. More advanced methods use
heuristics to search the space of feature subsets, like e.g.
genetic algorithms (Kudo and Sklansky, 2000; Siedelecky
and Sklansky, 1988; Vafaie and De Jong, 1993). Recently,
Estimation of Distribution Algorithms (EDAs) emerged
as a more general framework of genetic algorithms
(Mühlenbein and Paass, 1996). Instead of using the tradi-
tional crossover and mutation operators to create the new
population, a more statistical approach is used to estimate
the distribution of the parameters from a selected group
of individuals. Creation of the new population is then
performed by sampling individuals from the estimated
distribution. EDAs have proven to outperform the stan-
dard genetic algorithms in many problems where multiple
dependencies among parameters exist, and they usually
need fewer fitness evaluations to obtain good solutions. In
this paper we present an approach for feature subset se-
lection for splice site prediction, using a simple EDA as a
wrapper for feature subset selection. We will demonstrate
the usefulness of EDAs when the number of features in
the subset is constrained, resulting in a very practical
algorithm being considerably faster than the sequential
methods. The results of our experiments show that this
approach is able to select feature subsets with equal or
higher relevance than the traditional sequential methods,
resulting in a better classification of the splice sites.

METHODS
Splice site data sets
The A.thaliana dataset was generated by aligning cognate
mRNAs obtained from the public EMBL database with
the BAC-sequences that were used for the Arabidopsis
chromosome assembly. Redundant genes were excluded
resulting in a dataset containing 1495 genes. From each
gene only those introns confirming the GT-AG consensus
were used to construct the set of positive instances. All
GT dinucleotides at the upstream border of these introns
are positive donor instances and all AG dinucleotides
at the downstream border of these introns are positive
acceptor instances. The negative donor instances are
defined as, for all genes, all GT dinucleotides that are
located between 300 nucleotide positions upstream of the
first donor and 300 nucleotide positions downstream of
the last acceptor in that gene and that are not donor
sites. The negative acceptor instances are defined as all
AG dinucleotides within the same range and that are
not acceptor sites. Additional negative instances were
extracted in the same range from the complementary DNA
strand. These datasets and the way they were created
(Degroeve et al., 2002) can be found on http://www.psb.
rug.ac.be/gps#eccb03.

Splice site prediction can be divided into two subtasks :

Table 1. Class distribution of the unbalanced datasets

Dataset # Positives # Negatives # Total

400AG.test.50 277 18516 18793
400AG.holdout.50 263 20886 21149
400GT.test.50 309 16077 16386
400GT.holdout.50 239 14937 15176

prediction of donor sites and prediction of acceptor sites.
Each of these subtasks can be formally stated as a two-
class classification task : {donor site, non-donor site} and
{acceptor site, non-acceptor site}. The features describing
the positive and negative instances were extracted from
a local context around the splice site. In our experiments
we used a fixed window of p nucleotide positions to
the left (upstream the splice site) and q positions to the
right (downstream the splice site) where p = q = 50.
This results in 100 position-dependent features, which
were converted into binary format using sparse vector
encoding yielding 400 binary features. Training sets with
balanced class distribution were compiled by random
selection of 1000 positive instances and 1000 negative
instances (400AG.train.2000 and 400GT.train.2000). For
the test sets we extracted all candidate splice sites within
the interval as defined above from 50 independant genes
(400AG.test.50 and 400GT.test.50). For feature subset
selection, an independent dataset termed the holdout
set is used to evaluate the subsets (see further). Two
kinds of holdout sets for feature subset selection were
created : balanced sets containing 1000 positive and
1000 negative instances not occurring in the training
set (400AG.holdout.2000 and 400GT.holdout.2000),
and unbalanced sets containing instances from an-
other 50 independant genes (400AG.holdout.50 and
400GT.holdout.50). Table 1 summarizes the number of
positive and negative instances in the unbalanced datasets.

Estimation of Distribution Algorithms
During the last years, Estimation of Distribution Algo-
rithms (EDAs) emerged as a more general framework for
genetic algorithms. The main critics for standard genetic
algorithms include the large number of parameters that
have to be tuned, the difficult prediction of the movements
of the populations in the search space and the fact that
there is no mechanism for capturing the relations among
the variables of the problem. EDAs try to overcome these
difficulties by providing a more statistical analysis of the
selected individuals, thereby explicitly modelling the rela-
tionships among the variables.

Figure 1 illustrates the main scheme of the EDA
approach. After the generation of the initial population
an iterative procedure is carried out until the termination
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Fig. 1. Schematic overview of the EDA algorithm.

criteria are met (e.g. a fixed number of iterations). In
each step of the iteration a number of individuals is
selected from the population (e.g. the better half) and from
these a probability distribution of the encoded variables is
estimated.

The actual estimation of the underlying probability dis-
tribution represents the core of the EDA paradigm, and
can be considered an optimization problem on its own.
Depending on the domain (discrete or continuous), differ-
ent estimation algorithms with varying complexity (mod-
elling univariate, bivariate or multivariate dependencies)
were designed. For an overview see Larrañaga and Lozano
(2001). In the most complex case of multivariate depen-
dencies, Bayesian Networks are frequently used. A greedy
search algorithm is then used to find a suitable (and often
constrained) network that is likely to generate the selected
individuals.

In the following step, the estimated probability distribu-
tion is used to generate the next population. This is done
by sampling the probability distribution, i.e. generating in-
dividuals according to this distribution. A simple estima-
tion algorithm is the Univariate Marginal Distribution Al-
gorithm (UMDA, Mühlenbein, 1998). The UMDA simpli-
fies the estimation by assuming all variables are indepen-
dent. For each iteration l the probability model pl(x) is
estimated as

pl(x) =
n∏

i=1

pl(xi ) =
n∏

i=1

p(xi |DSe
l−1)

where each pl(xi ) (the relative frequency) is estimated
from the selected set of individuals of the previous
generation DSe

l−1. Generation of a new individual is then
achieved by sampling a value from the distribution pl(xi )

for each variable xi .

Classification models
As described above, our datasets contain positive and neg-
ative instances that are described by q nucleotide posi-
tions downstream and p nucleotide positions upstream the
consensus. Formally, a data set T contains l instances xi
(i = 1, . . . , l) with each xi labelled as y+ or y− (known
as classes), indicating a positive or negative instance, re-
spectively. Each index xi j ( j = 1, . . . , n) in vector xi is a
feature Fj .

Two methods for discriminating between positive and
negative instances are described below : the Naive Bayes
Method (NBM) and the Support Vector Machine (SVM).
These are supervised classification methods that induce a
decision function from the instances in T which can then
be used to classify a new instance z not seen in T .

Support Vector Machines The Support Vector Ma-
chine (Boser et al., 1992; Vapnik, 1995) is a data-driven
method for solving two-class classification tasks. The
Linear SVM (LSVM) separates the two classes in T with
a hyperplane in the feature space such that:

(a) the ‘largest’ possible fraction of instances of the
same class is on the same side of the hyperplane,
and

(b) the distance of either class from the hyperplane is
maximal.

The prediction of a LSVM for an unseen instance z is
1 (classified as a positive instance) or −1 (classified as a
negative instance), given by the decision function

pred(z) = sgn(w ∗ z + b). (1)

The hyperplane is computed by maximizing a vector of
Lagrange multipliers α in

W (α) =
l∑

i=1

αi − 1

2

l∑
i, j=1

αi α j yi y j K (xi, xj),

constrained to: 0 ≤ αi ≤ C and
l∑

i=1

αi yi = 0, (2)

where C is a parameter set by the user to regulate the effect
of outliers and noise, i.e. it defines the meaning of the word
‘largest’ in (a).

Function K is a kernel function and maps the features
in T , called the input space, into a feature space defined
by K in which then a linear class separation is performed.
For the LSVM this mapping is a linear mapping:

K (xi, xj) = xi ∗ xj. (3)

The non-linear mapping used in this paper is the
Polynomial-SVM (PSVM):

K (xi, xj) = (s xi ∗ xj + r)d , (4)
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The degree d in the polynomial kernel describes the
maximum order of feature interactions/dependencies. In
the case of splice site prediction e.g. a kernel of degree 3
is able to model dependencies between up to 3 nucleotide
positions (codon information). Similarly a kernel of
degree 6 is able to extract dicodon (hexamer) information
and a kernel of degree 9 can model tricodon (nonamer)
information. Remark that these dependencies need not
necessarily be between adjacent positions.

After calculating the αi ’s in (2), the decision function
(1) becomes:

pred(z) = sgn

(
l∑

i=1

αi yi K (xi, z) + b

)
. (5)

For the LSVM this function reduces to (1) with

w =
l∑

i=1

αi xi yi . (6)

In (5) each αi is associated with xi. After optimizing (2)
many αi ’s will become zero and the corresponding xi will
not be used in the decision function (5). All xi for which
the αi is not zero are called the support vectors. Typically
the size of the set of support vectors is much smaller than
l. The run-time complexity for training a Support Vector
Machine is low order polynomial, usually approximately
quadratic in the number of training samples (Hush and
Scovel, 2000; Joachims, 1998).

Naive Bayes Method The Naive Bayes Method (Duda
and Hart, 1973) follows the Bayes optimal decision rule,
that tells us to assign a class yc (c in {+,-}) to an unseen
instance z with features (Fz

1 , Fz
2 , . . . , Fz

n ) that maximizes
P(yc|Fz

1 , . . . , Fz
n ), or the probability of the class yc given

the features (Fz
1 , Fz

2 , . . . , Fz
n ). By using Bayes’ rule we

can write pred(z) = yc as:

yc = argmaxc
P(Fz

1 , . . . , Fz
n |yc) × P(yc)

P(Fz
1 , . . . , Fz

n )
(7)

The NBM then simplifies the problem of estimating
P(Fz

1 ...Fz
n |yc) by making the arguable naive indepen-

dence assumption that the probability of the features
given the class is the product of the probabilities of the
individual features given the class:

P(Fz
1 , . . . , Fz

n |yc) =
∏

1≤ j≤n

P(Fz
j |yc). (8)

The time complexity of the NBM is essentially linear in
the number of training samples (McCallum et al., 1998).

It is known that the NBM can achieve considerably
better results when feature subset selection is applied, yet
also the SVM can benefit from feature selection, although
it already performs an implicit feature weighting (Guyon
et al., 2000).

Feature subset selection methods
To select an optimal subset of features from {F1, . . . , Fn},
given the instances in T , one needs to define what is meant
by ‘optimal subset of features’ (referred to as the selection
criterion), and define a search algorithm to search for this
optimal subset of features in the space of feature subset
candidates. As this is an optimization problem on its own,
the evaluation of some subset needs to be calculated on
a dataset. This dataset should be independent of both the
training and test set and is termed the holdout set. As
mentioned before we created two versions of the holdout
set : balanced and unbalanced. The feature subset selection
procedure then uses the training set to create a model,
based on a particular subset of features. During the whole
search process, only the holdout set is used for evaluation,
and when the search has finished, a final evaluation on
the test set is performed. We used a wrapper approach
(Kohavi and John, 1997) for feature selection, embedding
the classification methods within a greedy or heuristic
framework.

Selection criterion The selection criterion used in most
classification tasks is the accuracy ratio, defined as

ac =
TP + TN

TP + TN + FP +FN

where TP and TN denote the number of true posi-
tives/negatives, and FP and FN denote the number of
false positives/negatives. However, the unbalanced class
distribution of splice sites (the number of pseudo sites in
a sequence is a number of magnitudes higher than the
number of actual sites) makes things more complicated.
Let Z be a set of instances where 98% of the instances
are labelled as pseudo site. Then a simple classifier
that always outputs the class ‘pseudo’ would have an
accuracy ratio of 0.98. This would be hard to beat by
a classifier that tries to capture the actual dependencies
between features. Although current evaluation criteria
such as sensitivity and specificity introduced by Snyder
and Stormo (1995), or the correlation coefficient do not
seem to suffer so drastically from this problem, they are
still correlated to the class distribution of Z . A recent
proposal, the q9 statistic (Zhang and Zhang, 2002),
incorporates content-balancing, which means the measure
is independent of the class distribution in Z .

q9 =




TN−FP
TN+FP if TP+FN = 0

TP−FN
TP+FN if TN+FP = 0

1 − √
2

√(
FN

TP+FN

)2

+
(

FP
TN+FP

)2

if TP+FN �= 0 and TN+FP �= 0

(9)
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This yields a number between −1 and +1, which can then
be rescaled to a number between 0 and 1 by applying
q9 = 1+q9

2 . As the class distribution between our test set
and holdout sets differs considerably, we adopted the q9
statistic as the selection criterion to guide the search for
good feature subsets.

Search algorithms A review of different search algo-
rithms can be found in Kohavi and John (1997) and
Boz (2002), and techniques to combine feature subset
selection and naive Bayes have been discussed in the
literature (Hall, 1999; Langley et al., 1994). As the
number of feature subsets increases exponentially with
increasing n (number of features) and n is relatively large,
two techniques are justified : greedy search and heuristics.
In this paper we will compare greedy search and heuristic
search with the EDA-approach. Both techniques were
combined with the Support Vector Machine and the Naive
Bayes Method.

SVM and NBM are known to perform well in high-
dimensional input spaces because they implicitly avoid
overfitting. This allows us to start the greedy search
algorithm with the full feature set. The candidate space
is explored with just one operator which eliminates a
feature from the current subset. This bottom-up search
procedure is called a sequential backward elimination
(SBE) procedure. Another possibility would be to start
with an empty feature set and iteratively add features.
Such a method is termed a sequential forward selection
(SFS) procedure. The strength of using backward feature
elimination in comparison to forward selection is that
correlated features are better discovered using SBE than
with SFS.

We tested the SBE procedure both in combination with
the SVM and the NBM. This was done as follows : at
iteration l the feature set consists of nl features and nl
models have to be trained, leaving out each feature once
in each model. At iteration l + 1 the feature set for the
model with the best predictive performance (i.e. the best
q9 statistic on the holdout set) is then chosen as the new
feature subset.

For the heuristic approach we combined Estimation
of Distribution Algorithms both with the Support Vector
Machine and the Naive Bayes Method. The individuals in
the population are represented as binary feature vectors, a
0 indicating an irrelevant/redundant feature, a 1 indicating
a relevant feature. The goal of the EDA is then to look
for the best subset with respect to some optimization
criterion. As the number of features for splice site
prediction is quite large, we need to use rather large
populations (up to 500 individuals) to allow a good
estimation. Furthermore, a considerable amount of time is
spent in analysing the fitness of each individual. For each
individual a new model has to be trained, and this model

has to be evaluated on the holdout set. Therefore, a fast
classification algorithm and a fast estimation algorithm
is preferred. In our experiments we used the NBM and
SVM as the classification system, and the Univariate
Marginal Distribution Algorithm (UMDA; Mühlenbein
(1998)) as the estimation algorithm. It has to be noted
that NBM and linear SVM are fast algorithms, the higher
order polynomial SVMs are rather slow. Although using
the naive assumption that parameters are independent
both NBM and UMDA have shown to perform well in
several fields such as text and image classification. As an
adaptation to the standard UMDA we slightly modified
the algorithm by replacing zero/one probabilities by very
small/large probabilities.

Constraining feature subsets An important characteris-
tic of using a string representation like in EDAs is the fact
that we can easily constrain the size S of the feature sub-
set (i.e. the number of features in the subset, so the number
of 1’s in the string) by adding or removing features. This
can be used to explicitly search for the best feature subset
given a number of features. To achieve a subset of the same
size S using SBE, the algorithm starts with the full feature
set, and iteratively discards features until S features are
retained. If we denote the total number of features by N ,
then the SBE procedure needs

NumevalSBE = N ∗ (N + 1) − S ∗ (S + 1)

2
(10)

model evaluations to complete this task. Each model
evaluation involves the training of the model on the
training set, and an evaluation on the holdout set. The
average number of features over all model evaluations can
then be calculated as ∑N

i=S+1 i2

NumevalSBE
(11)

For an EDA with a population size of P , running for
I iterations and using an elitist approach of E elitists
(the best E individuals survive) the number of model
evaluations can be calculated as

NumevalEDA = P + (I − 1) ∗ (P − E) (12)

Whereas the number of evaluations needed for SBE only
depends on the total number of features and the size S of
the subset, the number of evaluations for the EDA depends
on P , I and E , but not directly on N and S. The average
number of features over all model evaluations using the
EDA-approach is fixed (S).

Implementation
The wrapper methods for feature selection were all imple-
mented in C++, making use of the SVMlight implementa-
tion for Support Vector Machines (Joachims, 1998). Both
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Fig. 2. Acceptor prediction : FSS on a balanced holdout set
(400AG.holdout.2000).

SBE and EDA are suitable candidates for parallellizing,
providing a linear speedup of the selection process. This
was done making use of the MPI libraries, available at
http://www-unix.mcs.anl.gov/mpi/mpich. All experiments
were run on a cluster of 5 dual-processor (1.2 Ghz) Linux
machines running RedHat Linux 7.2.

RESULTS
All methods (NBM, LSVM and PSVM) were trained on a
balanced dataset (400AG.train.2000 and 400GT.train.2000)
and evaluated on an unbalanced test set (400AG.test.50
and 400GT.test.50). The experiments for feature subset
selection were run on two holdout sets : a balanced
data set (400AG.holdout.2000 and 400GT.holdout.50)
and an unbalanced data set (400AG.holdout.50 and
400GT.holdout.50). For the polynomial SVM we used
a ninth degree polynomial kernel function (d=9 in (4)),
a linear coefficient of 0.01 (s=0.01) and a constant of 1
(r=1). For both the LSVM and PSVM we used a value
of 0.05 for the c-parameter. These parameter values
were determined experimentally using a cross-validation
procedure.
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Fig. 3. Acceptor prediction : FSS on an unbalanced holdout set
(400AG.holdout.50).

Feature subset selection
To compare greedy and heuristic feature selection for
splice site prediction we evaluated both techniques with
NBM, LSVM and PSVM. The greedy algorithm starts
with the full feature set and iteratively removes features,
the heuristic algorithm finds an optimal subset of features
with regard to the q9 ratio on the holdout set. Afterwards
a greedy algorithm is applied to the solution found by
the EDA, iteratively discarding features. For NBM and
LSVM the population size P was set to 500, the number
of elitists E to 50 and the number of iterations I to 150. As
a standard practice we used the best half of the population
to estimate the underlying probability distribution. For the
PSVM the procedures for EDA-based and greedy FSS had
to be adapted, as otherwise computations would take too
long. Whereas in the greedy versions of NBM and LSVM
only one feature was eliminated during each iteration, we
eliminated five features at the time for each iteration in
the case of PSVM. For the EDA approach P was changed
to 100 and E to 10. Figure 2 compares the q9 ratios for
NBM, LSVM and PSVM with a SBE and EDA method
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Table 2. Acceptor prediction : evaluation of FSS on a balanced holdout set
(400AG.holdout.2000)

Algorithm # Features CC q9 ratio

NBM 150 31.26 90.94
SBE 80 29.89 90.51

40 29.63 90.82
Max 32.89 91.93

NBM 150 32.25 ± 0.41 91.75 ± 0.16
EDA 80 31.55 ± 0.77 91.55 ± 0.47

40 28.18 ± 0.35 89.15 ± 0.35
Unconstrained 33.18 ± 0.22 92.19 ± 0.18

LSVM 150 32.60 91.83
SBE 80 32.30 91.52

40 29.86 90.31
Max 33.52 92.57

LSVM 150 34.03 ± 0.43 92.55 ± 0.28
EDA 80 33.04 ± 0.64 92.32 ± 0.35

40 29.47 ± 0.47 90.32 ± 0.48
Unconstrained 34.65 ± 0.43 92.62 ± 0.44

PSVM 150 34.49 92.05
SBE 80 32.47 91.57

40 28.57 90.00
Max 35.77 93.30

PSVM 150 34.73 ± 0.84 92.68 ± 0.49
EDA 80 30.64 ± 0.44 90.75 ± 0.36

40 26.82 ± 0.81 88.51 ± 0.84
Unconstrained 36.24 ± 0.52 93.42 ± 0.35

in the case of acceptor prediction and FSS on a balanced
holdout set. On the x-axis the number of features that
is eliminated so far is shown, starting at the origin with
the full feature set. Figure 3 shows the q9 ratios in the
case of acceptor prediction and FSS on an unbalanced
holdout set. It is clearly observed that for each of the three
classification methods, the EDA approach outperforms the
SBE, being able to select more relevant features, yielding
a better classification. Both greedy and heuristic feature
selection achieve better results on the unbalanced holdout
set. Similar trends were seen for donor prediction. The
results and analysis for these sites are available online at
http://www.psb.rug.ac.be/gps#eccb03.

Constraining the number of features
As already mentioned before, using the EDA-approach,
the size S of the feature subset can be constrained by
adapting the binary feature vectors. We compared the
greedy and heuristic approach for three fixed values of
S : 150, 80 and 40 features. The parameters we used
were the same as described in the previous experiment,

Table 3. Acceptor prediction : evaluation of FSS on an unbalanced holdout
set (400AG.holdout.50)

Algorithm # Features CC q9 ratio

NBM 150 33.57 92.25
SBE 80 32.20 92.00

40 30.04 90.38
Max 34.20 92.87

NBM 150 35.19 ± 0.11 93.07 ± 0.10
EDA 80 33.49 ± 0.54 92.37 ± 0.59

40 30.06 ± 0.37 90.17 ± 0.51
Unconstrained 35.97 ± 0.25 93.14 ± 0.20

LSVM 150 34.95 92.43
SBE 80 33.20 91.92

40 31.32 91.36
Max 34.99 92.68

LSVM 150 36.88 ± 0.56 93.25 ± 0.46
EDA 80 35.04 ± 0.18 92.57 ± 0.19

40 31.72 ± 0.44 91.37 ± 0.40
Unconstrained 38.34 ± 0.32 93.31 ± 0.38

PSVM 150 35.02 92.57
SBE 80 32.94 91.35

40 28.66 88.75
Max 37.46 93.77

PSVM 150 36.20 ± 0.41 92.98 ± 0.37
EDA 80 32.46 ± 0.79 91.39 ± 0.80

40 27.49 ± 0.49 88.47 ± 0.49
Unconstrained 38.29 ± 0.38 93.94 ± 0.26

again adapting the parameters in the case of PSVM to
enable computational feasibility. Table 2 summarizes the
results for acceptor prediction with FSS on a balanced
holdout set. The first column in the table describes the
combination of the classification algorithm and the feature
selection algorithm. In the second column the number
of features that was used is displayed. It contains the
evaluation values for fixed subsets of 150, 80 and 40
features. An additional value Max was added for SBE;
this value indicates the best q9 ratio over all iterations.
For the EDA the field Unconstrained indicates the value
in the case the size of the feature subset is not constrained.
This value is equal to the starting point of the EDA
curves in Figures 2 and 3. The last two columns show the
correlation coefficient (CC) and the q9 ratio. As the EDA-
approach is a heuristic, we repeated these experiments in
five independent runs. The results in the table show the
mean and the standard deviation (Mean ± Stddev).

Similar results for FSS on an unbalanced holdout set are
shown in Table 3. In the case where the size of the subset
is constrained it is observed that the constrained EDA-

ii185



Saeys et al.

Table 4. Comparisons of the running times for constrained subsets on a Linux cluster (5 dual-processors at 1.2 Ghz)

Algorithm # Features # Evaluations Average # Features Time on 400AG.holdout.2000 Time on 400AG.holdout.50

NBM 150 68875 294.40 0 h 34 m 1 h 58 m
SBE 80 76960 275.98 0 h 36 m 2 h 09 m

40 79380 269.48 0 h 37 m 2 h 11 m

NBM 150 67100 150 0 h 20 m 0 h 46 m
EDA 80 67100 80 0 h 09 m 0 h 21 m

40 67100 40 0 h 05 m 0 h 11 m

LSVM 150 68875 294.40 2 h 15 m 2 h 38 m
SBE 80 76960 275.98 2 h 19 m 2 h 52 m

40 79380 269.48 2 h 20 m 2 h 54 m

LSVM 150 67100 150 0 h 38 m 0 h 59 m
EDA 80 67100 80 0 h 17 m 0 h 27 m

40 67100 40 0 h 14 m 0 h 19 m

PSVM 150 13875 296.26 9 h 11 m 62 h 02 m
SBE 80 15520 277.68 9 h 42 m 63 h 24 m

40 16020 271.03 9 h 48 m 63 h 40 m

PSVM 150 13510 150 4 h 54 m 16 h 48 m
EDA 80 13510 80 2 h 48 m 9 h 38 m

40 13510 40 1 h 52 m 6 h 16 m

The first two columns indicate the algorithm and the size of the constrained subset. The third column shows the number of model evaluations that is needed,
calculated using formulas 10 and 12. The average number of features that has to be evaluated is shown in the fourth column and can be calculated with
formula 11. The last two columns show the running time (in hours and minutes) that is needed for a balanced holdout set (400AG.holdout.2000) and an
unbalanced holdout set (400AG.holdout.50)

approach performs comparable to the greedy method. A
McNnemar statistical test with p=0.05 did not reveal any
significant difference to prefer one method over the other
on the basis of their q9 values. Furthermore the results
of the EDA-approach can be obtained in much less time,
showing the advantage of a simple EDA method like the
UMDA.

To compare the running time (speed) of the greedy and
heuristic algorithm, two aspects need to be considered :
the number of model evaluations and the average number
of features for a model evaluation. The number of model
evaluations needed for both methods can be calculated
using formulas 10 and 12. For the greedy algorithm the
average number of features that has to be evaluated is
calculated with formula 11, the heuristic algorithm with
a constrained subset size has a fixed number of features.
Table 4 shows the results of the time comparisons for
constrained subsets. Clearly the EDA-approach needs
considerably less model evaluations as the size of the
feature subsets decreases, resulting in a faster feature
selection algorithm. Furthermore, all models in the EDA-
approach have a fixed number S of features to be trained
on, whereas the greedy approach starts with the full feature

set and gradually decreases the number of features until
a set of S features remains. For both holdout sets it is
observed that the EDA-approach provides a considerable
speedup. The increase in speed depends on a number
of things like e.g. complexity of the algorithm, size of
the constrained subset and the holdout set. Whereas the
increase in speed is not so much in the case of NBM on an
unbalanced holdout set and a subset of 150 features, the
speedup for the PSVM on the unbalanced holdout set for
a fixed number of 40 features is about a factor 10.

These results support the view that the use of EDAs
for feature selection provides a very practical approach
when feature sets get larger or when very time-demanding
algorithms (like e.g. PSVM) are used. In these cases the
use of SBE becomes computationally infeasible and by
tuning the EDA-parameters P , E and I , a relevant subset
of S features can be discovered.

RELATED WORK
Genetic Algorithms (GAs) have been frequently used for
feature subset selection in small scale (less than 100
features) domains (Kudo and Sklansky, 2000; Siedelecky
and Sklansky, 1988; Vafaie and De Jong, 1993). The use of
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EDA’s for feature subset selection was pioneered by Inza
et al. (1999) and the use of EDA’s for FSS in large scale
domains was reported to yield good results (Larrañaga and
Lozano, 2001). Cantú-Paz (2002) compared several EDA’s
with the simple GA for small scale domains (at most 35
features) using a Naive Bayes classifier, and concluded
that the complicated dependency learning EDA’s are not
significantly better than the simple compact GA. It has
to be pointed out that the EDA-UMDA approach is very
similar to the compact GA (Harik et al., 1998) or to a GA
with uniform crossover.

Recently, the technique of feature distributional clus-
tering was combined with Support Vector Machines for
text categorization (Bekkerman et al., 2001). This method
performs feature selection by distributional clustering of
words via the information bottleneck method (Tishby et
al., 1999) and can be considered a sophisticated filter
method.

An extensive overview of splice site recognition, in-
cluding new methods like Support Vector Machines can
be found in Sonnenburg (2002), while a more general
overview and a comparison of gene and splice site
prediction is discussed in Mathé et al. (2002) and Zhang
(2002).

CONCLUSIONS AND FUTURE WORK
The results displayed in this paper are showing that feature
subset selection by estimation of distribution algorithms is
able to select highly relevant features for splice site pre-
diction. We presented a method that is scalable to larger
feature sets and, when applied with a constraint on the
size of the feature subset, provides a considerable gain in
speed. This was obtained at no expense on efficiency, on
the contrary. The method can be used for any optimisation
problem where the feature set is sufficiently large, like e.g.
gene selection in microarray datasets. Future research on
splice site prediction will include position-independent in-
formation, possibly also structural information to achieve
better results. Other future directions we would like to ex-
plore are the combination of EDAs with other classifica-
tion systems, and the development of faster estimation al-
gorithms for multiple dependencies.
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