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ABSTRACT
Motivation: Remote homology detection between protein
sequences is a central problem in computational biology.
Discriminative methods involving support vector machines
(SVMs) are currently the most effective methods for the prob-
lem of superfamily recognition in the Structural Classification
Of Proteins (SCOP) database. The performance of SVMs
depends critically on the kernel function used to quantify the
similarity between sequences.
Results: We propose new kernels for strings adapted to biolo-
gical sequences, which we call local alignment kernels. These
kernels measure the similarity between two sequences by
summing up scores obtained from local alignments with gaps
of the sequences. When tested in combination with SVM on
their ability to recognize SCOP superfamilies on a benchmark
dataset, the new kernels outperform state-of-the-art methods
for remote homology detection.
Availability: Software and data available upon request.
Contact: Jean-Philippe.Vert@mines.org

INTRODUCTION
As the number of protein sequences in biochemical databases
keeps increasing much faster than our ability to experiment-
ally characterize their functions, the need for accurate protein
annotation from an amino acid sequence only is more than
ever a central problem in computational biology. A core tool
in the annotation process is the detection of sequence simil-
arities, because homology often implies functional similarity.
While satisfactory methods exist to detect homologs with a
high level of similarity, remote homologs are often difficult to
separate from pairs of proteins that share similarities due to
chance. Detecting homologs in the so-called ‘twilight zone’
remains challenging nowadays.

A large panoply of methods and algorithms have been pro-
posed to detect homology between amino acid sequences.
Historically, an important milestone in this collection is
the Smith–Waterman (SW) algorithm (Smith and Waterman,
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1981), which measures the similarity between two sequences
by a local gapped alignment. While still widely used in its
original form to compare small numbers of sequences, more
efficient heuristic algorithms such as BLAST (Altschul et al.,
1990) or FASTA (Pearson, 1990) have been developed to
detect homologies in large databases. Better annotation accur-
acy was later obtained by comparing a candidate protein with
pools of annotated or unannotated proteins with methods
such as profiles for protein families (Gribskov et al., 1990),
hidden Markov models (HMMs) (Krogh et al., 1994; Baldi
et al., 1994), PSI-BLAST (Altschul et al., 1997) or SAM-
T98 (Karplus et al., 1998). These methods are generative,
in the sense that they fit a model to a set of proteins with a
given annotation, and check how well the model explains a
candidate protein in order to annotate it or not.

Further accuracy improvement resulted from the use of dis-
criminative approaches, as opposed to generative approaches.
A discriminative approach learns a rule to classify any candid-
ate sequence into a class of proteins by using both sequences
known to belong to this class (positive examples) and
sequences known to be outside the class (negative examples).
Particular attention has been paid to the use of support vector
machines (SVMs) in this context that are reported to yield
good performance. SVM is an algorithm to learn a discrim-
ination rule from a set of positively and negatively labeled
examples, which can then be used to predict the class of any
new example. A core component of SVM is the kernel func-
tion that measures the similarity between any pair of examples,
typically as a dot product between vector representations of the
examples. Depending on the choice of the kernel function, a
number of variants of SVM can be developed with varying per-
formances. In the case of remote homology detection, several
kernels for protein domain sequences have been developed in
the recent years. The first attempt resulted in the SVM–Fisher
method (Jaakkola et al., 2000), where a generative HMM is
estimated on a set of proteins, and used to extract a vector rep-
resentation for each protein sequence (the Fisher score vector).
The kernel to measure the similarity between two sequences is
then obtained as a product between the corresponding Fisher
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score vectors. Another attempt to make a kernel for protein
sequences is the SVM-pairwise method (Liao and Noble,
2002), which consists of representing each domain sequence
by a vector of pairwise similarities with all domains in the
training set (each coordinate of this vector is typically the
E-value of the SW score), and taking as a kernel the dot prod-
uct between these vector representations. The spectrum kernel
(Leslie et al., 2002) and the mismatch kernel (Leslie et al.,
2003) measure the similarity between sequences by evaluating
the amount of similar short subsequences (typically 4–6 amino
acids in length) they share. Tested on a benchmark experiment
that consists of recognizing homology at the level of super-
families in the SCOP database, these SVM-based methods are
reported to slightly outperform generative methods.

In this paper, we present a new family of kernels for bio-
logical sequences, which we call local alignment kernels.
They are motivated by the observation that the SW alignment
score between two sequences provides a relevant measure
of similarity between protein sequences, which incorporates
biological knowledge about protein evolution and whose para-
meters have been optimized over the years to yield reasonable
scoring, at least for close homologs. It is, however, not a valid
kernel for strings because it lacks positive definiteness, and
therefore cannot be used as such by an SVM. Our first con-
tribution in this paper is to introduce a family of valid kernels
that mimic the behavior of the SW score, and to highlight the
connection between the SW score and these local alignment
(LA) kernels. For practical applications, however, LA kernels
suffer from the diagonal dominance problem, i.e. the fact that
the kernel value decreases extremely fast with the similarity.
SVMs are known not to perform well in such cases, and we
therefore propose a modification of these kernels to overcome
this issue, which involves taking their logarithm and ensuring
that they remain positive definite after this operation by adding
a diagonal term. We then end up with a family of kernels for
strings, which includes a slight modification of the SW score.
When tested on a benchmark experiment to detect remote
homologs at the SCOP superfamily level, they are shown to
outperform all other state-of-the-art SVM-based methods.

ALGORITHMS
Support vector machine
Our approach to protein classification involves the SVM
algorithm, which has been developed by Vapnik et al. in
the early 1990s (Boser et al., 1992). In order to discrimin-
ate between members (positive examples) and non-members
(negative examples) of a given class of proteins (e.g. a super-
family in the SCOP hierarchy), the SVM learns a classification
function from a set of positive examples X+ and negative
examples X−. The classification function takes the form:

f(x) =
∑

i:xi∈X+

λiK(x, xi) −
∑

i:xi∈X−

λiK(x, xi), (1)

where the non-negative weights λi are computed during train-
ing by maximizing a quadratic objective function, and the
function K(., .) is called a kernel function. Any new sequence
x is then predicted to be positive (resp. negative) if the func-
tion f (x) is positive (resp. negative). More details about how
the weights λi are computed and the theory of SVM can be
found in Vapnik (1998); Cristianini and Shawe-Taylor (2000)
and Schölkopf and Smola (2002).

Any function K(., .) can be used as a kernel function in
(1) as long as it satisfies Mercer’s conditions, namely that
for any number n and any possible set of distinct sequences
{x1, . . . , xn}, the n × n Gram matrix defined by Ki,j =
K(xi , xj ) be symmetric positive semidefinite. We call such
functions Mercer kernels, or simply string kernels below.

The kernel function can be thought of as a measure of
similarity between sequences. Different kernels correspond
to different notions of similarity, and can lead to discrim-
inative functions with different performance. While typical
approaches to design kernels consist of first choosing an
appropriate vector representation for sequences, and then tak-
ing the inner product between these representations as a kernel
for sequences (Jaakkola et al., 2000; Leslie et al., 2002, 2003;
Liao and Noble, 2002), we explore below an alternative path
that is to start from a measure of similarity known to be
relevant for a given problem, and turn it into a valid kernel.

Local alignment kernel
Starting with basic notations, let A be a finite set, called the
alphabet (the set of 20 amino -acids in our case). A string is a
concatenation of letters, and we denote by X = {ε}∪⋃∞

i=1 Ai

the set of finite-length strings, where ε denotes the empty
strings. For any string x ∈ X , the length of x is denoted by
|x|. For any two strings x and y, xy denotes the string obtained
by concatenation of x and y.

Following the work of Haussler (1999), we define a kernel to
detect local alignment between strings by convolving simpler
kernels. To this end, we first recall the convolution operation
for string kernels. Let K1 and K2 be two string kernels, then
the convolution kernel K1 �K2 is the string kernel defined for
any two strings x and y by

K1 � K2(x, y) =
∑

x1x2=x, y1y2=y

K1(x1, y1)K2(x2, y2).

It is known that if K1 and K2 are valid string kernels, then K1�

K2 is also a valid string kernel (Haussler, 1999). For any kernel
K , we denote by K(n) the kernel obtained by n convolutions
of K with itself.

Convolution kernels can be useful to compare strings of dif-
ferent lengths that share common parts. For example, Watkins
(2000) and Haussler (1999) show that the probability P(x, y)

of emitting two strings x and y under a pair HMM model is a
valid convolution kernel. We now extend this approach to the
definition of convolution kernels that mimic local alignment
scoring schemes.
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To this end, let us first define three basic string kernels. The
first kernel, useful to model the null contribution of substrings
before and after a local alignment in the score, is the following
constant kernel:

∀(x, y) ∈ X 2, K0(x, y) = 1.

Next, the alignment between two residues is quantified by the
following string kernel, which is null except when strings are
reduced to single letters:

K(β)
a (x, y) =

{
0 if |x| �= 1 or |y| �= 1,

exp[βs(x, y)] otherwise,
(2)

whereβ ≥ 0 is a parameter and s : A2→R is a symmetric sim-
ilarity score. Observe that this is a Mercer kernel only for the
values of β, which ensure that the matrix (exp(βs(a, b)))a,b∈A
is positive semidefinite. This is the case whatever β ≥ 0 if and
only if the matrix [s(a, b)]a,b∈A is conditionally positive def-
inite (Berg et al., 1984), which can be checked case by case
[this holds in particular if the matrix (s(a, b))a,b∈A is positive
semidefinite].

Finally, to translate the affine penalty gap model, we
introduce the following string kernel:

K(β)
g (x, y) = exp{β [g(|x|) + g(|y|)]} ,

where β ≥ 0 is a parameter and g(n) is the cost of a gap of
length n given by{

g(0) = 0 if n = 0,

g(n) = d + e(n − 1) if n ≥ 1,
(3)

where d and e are two parameters called gap opening and
extension costs. Observe that this is indeed a valid string ker-
nel, as it can be simply written as a scalar productK(β)

g (x, y) =
�

(β)
g (x) · �(β)

g (y) between one-dimensional vectors given by

�
(β)
g (x) = exp (βg(|x|)).
Now, for any fixed integer n ≥ 1, let us consider the

following string kernel:

K
(β)

(n) (x, y) = K0 �
(
K(β)

a � K(β)
g

)(n−1)

� K(β)
a � K0.

This kernel quantifies the similarity of two strings x and y

based on local alignments of exactly n residues. Indeed, the
convolution operation sums up the contributions of all pos-
sible decompositions of x and y simultaneously into an initial
part (whose similarity is measured by K0), a succession of n

aligned residues (whose similarity is measured by K
(β)
a ) pos-

sibly separated by n − 1 gaps (whose similarity is measured
by K

(β)
g ), and a terminal part (whose similarity is measured

by K0). For n = 0 (no residue aligned), we use the kernel
K(0) = K0.

In order to compare two sequences through all possible local
alignments, it is necessary to take into account alignments
with different numbers n of aligned residues. A simple solu-
tion is to sum up the contributions of all kernels K(n)(β) for
n ≥ 0, which results in the following local alignment kernel
(which we call LA kernel below):

K
(β)

LA =
∞∑
i=0

K
(β)

(i) . (4)

Note that for any pair of finite-length sequences (x, y) ∈ X 2

the right-hand term of (4) estimated at (x, y) is a convergent
series (because it has only a finite number of non-null terms),
so K

(β)

LA is defined as a pointwise limit of Mercer kernels, and
is therefore a Mercer kernel by closure property of the class
of Mercer kernel under pointwise limit (Berg et al., 1984).

Link with the SW score
The SW score SW(x, y) between two sequences x and y is the
score of the best local alignment with gaps between the two
sequences (Durbin et al., 1998), computed by the SW dynamic
programming algorithm (Smith and Waterman, 1981). Let
us denote by π a possible local alignment between x and y,
defined by a number n of aligned residues, and by the indices
1 ≤ i1 < · · · < in ≤ |x| and 1 ≤ j1 < · · · < jn ≤ |y| of the
aligned residues in x and y, respectively. Let us also denote
by

∏
(x, y) the set of all possible local alignments between

x and y, and by p(x, y, π) the score of the local alignment
π ∈ ∏

(x, y) between x and y, i.e. the sum of the contribution
of the aligned residues

∑n
k=1 s(xik , yjk

), where s(., .) is the
function used in (2), and of the gap costs defined in (3) when
gaps exist between aligned residues in x or y. By definition,
the SW score SW(x, y) between sequences x and y can be
written as

SW(x, y) = max
π∈�(x,y)

p(x, y, π). (5)

By construction, it is easy to check that the local alignment
kernel defined in (4) can be written as follows (Vert et al.,
2004):

K
(β)

LA (x, y) =
∑

π∈�(x,y)

exp [βp(x, y, π)] . (6)

From (5) and (6) it follows that:

lim
β→+∞

1

β
ln K

(β)

LA (x, y) = SW(x, y). (7)

These equations clarify the link between the LA kernel (4) and
the SW score, and highlight why the SW score is theoretically
not a valid kernel. First, the SW score only keeps the contri-
bution of the best local alignment to quantify the similarity
between two sequences, instead of summing up the contribu-
tions of all possible local alignments like the LA kernel does.
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Second, the SW score is the logarithm of this alignment score,
and taking the logarithm is usually an operation that does not
preserve the property of being positive definite (Berg et al.,
1984).

Diagonal dominance issue
In many cases of practical interest, the LA kernel defined in
(4) suffers from the diagonal dominance issue, namely the
fact that K(x, x) is easily orders of magnitudes larger than
K(x, y) for two different sequences x and y, even though x

and y might share interesting similarities. This is particularly
evident for increasing values of the parameter β. In practice,
it has been observed that SVMs do not perform well in this
situation (Schölkopf et al., 2002).

In order to decrease the effect of diagonal dominance, we
propose to consider the function:

K̃
(β)

LA (x, y) = 1

β
ln K

(β)

LA (x, y). (8)

An obvious problem with this operation is that the logarithm
of a Mercer kernel is not a Mercer kernel in general (Berg
et al., 1984; Schölkopf et al., 2002). Even though K̃

(β)

LA might
not be a valid Mercer kernel, it has the following interesting
properties. First, observe that K̃(β)

LA is a monotonically increas-

ing function of K
(β)

LA , and that by (6) the value of K̃
(β)

LA (x, y)

is always non-negative, because at least one local alignment
between x and y has a non-negative score. Observe also by (7)
that for large β, K̃

(β)

LA behaves like the SW score. Intuitively,

K̃
(β)

LA is therefore of the order of magnitude of the SW score
but includes contribution from all possible local alignments.

Because K̃
(β)

LA might not be a positive definite kernel, some
care must be taken to ensure that the SVM converges to a
large margin discrimination rule during learning. We tested
two approaches to make the symmetric funtion K̃

(β)

LA positive
definite on a given training set of sequences, which we now
describe.

The first approach we propose is to add to the diagonal of the
training Gram matrix a non-negative constant large enough to
make it positive definite. In all experiments presented below
we perform this operation by subtracting from the diagonal
the smallest negative eigenvalue of the training Gram matrix,
if there are negative eigenvalues. The resulting kernel, which
we call LA-eig, is equal to K̃

(β)

LA except eventually on the
diagonal.

We compare this approach to the method proposed by
Schölkopf et al. (2002), which consists of working with
the empirical kernel map. In this case, for a given train-
ing set x1, . . . , xn of sequences, each possible sequence x

is mapped to the n-dimensional vector (K̃
(β)

LA (x, x1), . . . ,

K̃
(β)

LA (x, xn))
T. These vector representations are then used

to train the SVM and predict the class of new sequences.
The corresponding kernel between two sequences x and y,

which we call the LA-ekm kernel, is therefore equal to∑n
i=1 K̃

(β)

LA (x, xi)K̃
(β)

LA (y, xi).

Implementation

The computation of the kernel K
(β)

LA [and therefore of K̃
(β)

LA ]
can be implemented with a complexity in O(|x| · |y|) using
dynamic programming by a slight modification of the SW
algorithm. Indeed, it can be checked that the kernel is obtained
from the following recursive equations (Vert et al., 2004):

• Initialization: for i = 0, . . . , |x| and j = 0, . . . , |y|:
M(i, 0) = M(0, j) = 0,

X(i, 0) = X(0, j) = 0,

Y (i, 0) = Y (0, j) = 0,

X2(i, 0) = X2(0, j) = 0,

Y2(i, 0) = Y2(0, j) = 0.

• Dynamic programming equations: for i = 1, . . . , |x| and
j = 1, . . . , |y|:
M(i, j) = exp[βs(xi , yj )] [1 + X(i − 1, j − 1)

+Y (i − 1, j − 1) + M(i − 1, j − 1)] ,

X(i, j) = exp(βd)M(i − 1, j) + exp(βe)X(i − 1, j),

Y (i, j) = exp(βd) [M(i, j − 1) + X(i, j − 1)]

+ exp(βe)Y (i, j − 1),

X2(i, j) = M(i − 1, j) + X2(i − 1, j),

Y2(i, j) = M(i, j − 1) + X2(i, j − 1) + Y2(i, j − 1).

• Termination:

K
(β)

LA (x, y) = 1+X2(|x|, |y|)+Y2(|x|, |y|)+M(|x|, |y|).
Observe that the SW score is obtained exactly by replacing
each addition in these equations by a max operator, and by
taking the logarithm of the result.

METHODS
We tested the kernels on their ability to classify protein
domains into superfamilies in the Structural Classification of
Proteins (SCOP) (Murzin et al., 1995) version 1.53. We fol-
lowed the benchmark procedure presented in (Liao and Noble,
2002). The data consist of 4352 sequences extracted from
the Astral database (www.cs.columbia.edu/compbio/svm-
pairwise), grouped into families and superfamilies. For each
family, the protein domains within the family are considered
positive test examples, and protein domains within the super-
family but outside the family are considered positive training
examples. This yields 54 families with at least 10 positive
training examples and five positive test examples. Negative
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examples for the family are chosen from outside of the posit-
ive sequences’ fold, and were randomly split into training and
test sets in the same ratio as the positive examples.

To measure the quality of the methods, we use the receiver
operating characteristic (ROC) scores, the ROC50 scores, and
the median rate of false positives (RFP). The ROC score is the
normalized area under a curve that plots true positives against
false positives for different possible thresholds for classifica-
tion (Gribskov and Robinson, 1996). The ROC50 is the area
under the ROC curve up to 50 false positives, and is considered
a useful measure of performance for real-world application.
The median RFP is the number of false positives scoring as
high or better than the median-scoring true positives.

All methods involving SVM are tested with a common pro-
cedure. We use the Gist publicly available SVM software
implementation (http://microarray.cpmc.columbia.edu/gist),
which implements the soft margin optimization algorithm
described in Jaakkola et al. (2000). For any given positive
semi-definite kernel Gram matrix K to be tested, we first nor-
malize the points to unit norm in the feature space and separate
them from the origin by adding a constant, i.e. consider the
following kernel:

Knorm(x, y) = K(x, y)√
K(x, x)K(y, y)

+ 1. (9)

Second, because many classification problems below are very
unbalanced we use a class-dependent regularization parameter
that consists of adding to the diagonal a constant 0.02α+ (resp.
0.02α−) to all positive (resp. negative) examples, where α+
(resp. α−) is the fraction of positive (resp. negative) examples
in the training set [see Liao and Noble (2002) and Jaakkola
et al. (2000) for details and justifications].

The LA kernels have several parameters: the gap penalty
parameters e and d, the amino acid mutation matrix s and the
factor β that controls the influence of suboptimal alignments
in the kernel value. A precise analysis of the effects of these
parameters would be beyond the scope of this paper so we
limit ourselves to the analysis of the effect of the β parameter.
In order to be consistent with the SVM-pairwise method, the
substitution matrix is always the BLOSUM 62 matrix and the
gap parameters are always set to (e = 11, d = 1).

For comparison purpose we also tested three other state-
of-the-art kernels: the Fisher kernel (Jaakkola et al., 2000),
the pairwise kernel (Liao and Noble, 2002) and the mismatch
kernel (Leslie et al., 2003). In each case, we tested the best
method presented in the references.

RESULTS
Table 1 summarizes the performance of the various methods.
We tested the local alignment kernels LA-eig and LA-ekm for
several values of β ranging from +∞, in which case they are
derived from the SW score (8), to β = 0.1.

Table 1. ROC, ROC50 and median RFP averaged over 54 families for
different kernels

Kernel Mean ROC Mean ROC50 Mean mRFP

LA-eig (β = +∞) 0.908 0.591 0.0654
LA-eig (β = 1) 0.912 0.612 0.0626
LA-eig (β = 0.8) 0.908 0.597 0.0679
LA-eig (β = 0.5) 0.925 0.649 0.0541
LA-eig (β = 0.2) 0.923 0.661 0.0637
LA-eig (β = 0.1) 0.868 0.429 0.111
LA-ekm (β = +∞) 0.916 0.585 0.0580
LA-ekm (β = 1) 0.920 0.587 0.0539
LA-ekm (β = 0.8) 0.916 0.585 0.0592
LA-ekm (β = 0.5) 0.929 0.600 0.0515
LA-ekm (β = 0.2) 0.877 0.453 0.125
LA-ekm (β = 0.1) 0.596 0.052 0.500
Pairwise 0.896 0.464 0.0837
Mismatch 0.872 0.400 0.0837
Fisher 0.773 0.250 0.204

The LA-eig and LA-ekm kernels with β = +∞ correspond to the SW score (modified
to become positive definite on the set of proteins used to train the SVM). Bold numbers
indicate the best results in each column.

These results show that both LA-eig and LA-ekm perform
best for β in the range 0.2–0.5, and have almost similar per-
formances. This suggests first that the normalization of K̃

(β)

LA
into a positive definite kernel through the empirical kernel
map of (Schölkopf et al., 2002) or by subtracting the smallest
negative eigenvalue from the diagonal has little influence on
the final performance.

Second, the fact that the performance of the LA-eig and
LA-ekm kernels is better for β in the range 0.2–0.5 than for
β = ∞ shows that in the context of this paper, the SW score as
a kernel is outperformed by variants that take into account sub-
optimal alignments to quantify the similarity between protein
sequences.

More importantly, these experiments show that most of the
local alignment kernels tested slightly outperform all three
other methods in this benchmark. As an illustration, the dis-
tribution of ROC, ROC50 and median RFP scores for all three
methods and the LA-eig kernel with β = 0.5 and β = ∞
are shown in Figures 1–3. The LA-eig kernel with β = 0.5
retrieves more than twice as many families as the best other
method tested (the pairwise method) at a ROC50 score of 0.8
or higher. This remains true for a wide range of values for β,
including β = +∞. This means that the SW score as a kernel
also outperforms the Fisher, pairwise and mismatch kernels.

Another important factor for practical use of these kernels
is their computation cost and speed. The mismatch kernel has
a complexity O(|x| + |y|) with respect to the length of the
sequences, and is by far the fastest to operate. The complex-
ity of the LA kernel is O(|x||y|). Moreover, the LA kernel
is faster to compute for β = +∞ (SW score) than for other
values of β, because in that case all computations can be
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Fig. 1. ROC score distribution for different kernels. The curve
denoted LA kernel corresponds to the LA-eig kernel with β = 0.5.
The curve denoted SW kernel corresponds to the LA-eig kernel with
β = ∞, which is equal to the SW score up to a constant on the
diagonal.

Fig. 2. ROC50 score distribution for different kernels.

performed with sum and max operations on the integer instead
of logarithms on floating point real numbers. In our exper-
iments, the computation of the SW kernel was four times
slower than the computation of the mismatch kernel (using
the SSEARCH software for the SW score, and an implement-
ation of the mismatch kernel described in Leslie et al. (2003),
which is likely to be optimized in the future.

The computation of the kernel Gram matrix on the training
set for SVM-pairwise and the LA-ekm kernels requires O(n3)
further operations to multiply the empirical kernel map matrix
by its transpose. Only O(n2) are approximately required by
the LA-eig kernels to compute the smallest eigenvalue using
the power method (Golub and Loan, 1996) and subtract it
from the diagonal. However, in both cases this operation is

Fig. 3. Median RFP distribution for different kernels.

very fast compared with the time required to compute the LA
kernel values or E-values.

Finally, classification of a new sequence with SVM-
pairwise or LA-ekm kernels requires computing the explicit
empirical kernel map representation of the sequence, i.e. com-
puting n E-value or LA kernels. In the case of the mismatch
and LA-eig kernels, the kernels are only computed between
the new sequence and the support vector sequences, which
usually form only a subset of the training set. Because the
performances of LA-eig and LA-ekm are very similar, this
suggests to prefer the former to the latter.

DISCUSSION AND CONCLUSION
This paper introduces a family of kernels for protein
sequences, based on the detection of high-scoring local align-
ments. These kernels are biologically motivated, and extend
classical work on local alignment scoring to the framework
of kernel functions. The theoretically valid local alignment
kernels we introduce suffer in practice from diagonal dom-
inance. Hence, we employed a trick to turn them into useful
kernels by taking a logarithm and adding a constant on the
diagonal. The resulting kernels significantly outperform all
other state-of-the-art methods when used with an SVM on
a benchmark experiment of SCOP superfamily recognition,
which was designed to simulate the problem of remote homo-
logy detection. As a result, we obtain a new powerful method
for remote protein homology detection.

The remarkable accuracy of our method comes from the
combination of two widely used algorithms. On the one
hand, the SVM algorithm is based on a sound mathemat-
ical framework and has been shown to perform very well
on many real-world applications. One of its particularities is
that it can perform classification of any kind of data, such as
strings in our case, as soon as a kernel function is provided.
On the other hand, local alignment scores, in particular the
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SW score, have been developed to quantify the similarity of
biological sequences. Their parameters have been optimized
over the years to provide relevant measures of similarity for
homologous sequences, and they now represent core tools in
computational biology.

However, direct pairwise comparisons of sequences through
local alignment scores such as the SW scores are often
considered naive and weak methods to detect remote homo-
logy. They are usually outperformed by methods such as
PSI-BLAST that extend pairwise comparisons to pools of
sequences extracted iteratively. The main contribution of this
paper is to show that pairwise sequence comparison can be
extremely powerful when used as a kernel function combined
with an SVM, and that the SW score itself provides a state-of-
the-art method for remote homology detection when used as a
kernel. An interesting conclusion of our experiments is that the
SW score, however, is outperformed by local alignment scores
that sum up the contributions of all possible local alignments.
Summing up over local alignments has an important cost in
terms of computation time due to the operations required with
floating point numbers, but can be worth the cost when one
is interested in precision more than in speed. On the other
hand, the SW score itself is computed by dynamic program-
ming and is therefore slower to compute than the mismatch
kernel that it outperforms. Here again a trade-off must be
found between speed and accuracy, depending on the applic-
ation. However, due to its wide use in computational biology
the SW score has been precomputed and stored in databases
such as KEGG’s SSDB (Kanehisa et al., 2002) for virtually
all known or predicted proteins of sequenced genomes, which
suggests that practical applications for the SW kernel could
be implemented in relation with such databases.

The only parameter whose influence was tested is the para-
meter β of the LA kernel, which controls the importance of
the contribution of non-optimal local alignments in the final
score. It should be pointed out here that the optimal values for
β we observed (in the range 0.2–0.5) are only optimal for an
average performance on the 54 families tested, and that the
optimal value for each family might fluctuate. Moreover, a
number of other parameters could be modified, in particular
the gap penalty parameters and the similarity matrix between
amino acids, and the optimal values for β might also depend
on these parameters. Further theoretical and practical studies,
which are beyond the scope of this paper, should be performed
to evaluate the influence of these parameters. In particular,
it would be interesting to know for which values of these
parameters the SW score itself is a valid kernel, and which
parameter tuning results in the most accurate remote protein
homology detection.

An important open problem with the LA kernels as well as
with most other string kernels is the following: how to make
the kernel independent of the lengths of the sequences com-
pared? Indeed, long sequences typically result in small kernel
values when the kernel is normalized with (9). While much

work has been done to estimate the significance of alignment
scores for varying sequence length, these approaches remain
difficult to adapt to the kernel framework. The importance of
this issue might be underestimated in the benchmark experi-
ment presented in this paper, because protein sequences in a
SCOP family tend to have similar sequence lengths. However
applying kernel-based homology detection in a more realistic
setting might reveal important effects of this issue.

Finally, it should be pointed out that possible uses of string
kernels go far beyond the single goal of remote homology
detection. In combination with SVM or other kernel meth-
ods, they can be applied to a variety of problems such as
gene structure and function prediction, or heterogeneous data
integration, as highlighted in Schölkopf et al. (2004).
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