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ABSTRACT 
A mathematical definition of the concept of elementary mode is given so as to apply 
to biochemical reaction systems subsisting at steady state. This definition relates to 
existing concepts of null-space vectors and includes a condition of simplicity. It is shown 
that for systems in which all flux- have fixed signs, all elementary modes are given 
by the generating vectors of a convex cone and can, thus, be computed by an existing 
algorithm. The present analysis allows for the more general case that some reactions 
can proceed in either direction. Basic ideas on how to compute the complete set of 
elementary modes in this situation are outlined and verified by way of several examples, 
with one of them repraenting glycolysis and gluconeogenesis. These examples show that 
the elementary modes can be interpreted in terms of the particular biochemical functions 
of the network. The relationships to (futile) substrate cycles are elucidated. 

Keywords : Biochemical pathways, mathematical modelling, elementary mode, substrate 
cycle. 

1. Introduction 

Investigation of steady states plays an important role in the modelling of biochemical 
reaction systems, because virtually stationary regimes are frequently encountered 
in experimental settings and under in-vivo conditions [3,9,16]. As for systems with 
oscillatory behaviour, stationary concentrations can be calculated as average values 
over a longer time span. In both situations, reaction rates have to  fulfil1 balance 
equations since for each substance of the reaction network, (averaged) inputs have 
to balance (averaged) outputs. In mathematical terms, this means that the vector 
of stationary reaction rates, called fluxes below, has to be situated in the null-space 
(kernel) of the stoichiometry matrix, N [11,16]. This null-space can be represented 
as being spanned by basis vectors. It is of interest to find those basis vectors that 
can be interpreted in terms of biochemical functioning. In particular, different 
functions, such as ATP production and amino acid synthesis, should be represented 
by separate vectors. So one attempts, guided by the principle of Ockham's razor, to 
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find the simplest biochemically meaningful flux vectors possible, in terms of which 
all other flux vectors can be expressed. 

Leiser and Blum [l31 put forward the idea to define "fundamental modes" of 
substrate cycles by invoking that any steady-state flux pattern could be decomposed 
as a linear superposition of these modes and that these modes are all "realizable", 
i.e., no thermodynamic laws or hypotheses about enzyme irreversibility should be 
violated. Sign constraints for fluxes are frequent in modelling studies, in particular 
if the reaction rates are defined as unidirectional rates [1,2]. This is essential, for 
example, in the description of tracer dynamics, where forward and reverse reactions 
enter the equations in a different way [20]. As for virtually irreversible reactions, 
also the net rates can be assumed to  be non-negative [9,12]. 

Fell [5,7] proposed to define fundamental modes by a proper choice of basis 
vectors of the null-space. He observed that this method meets the difficulties that 
irreversibility constraints may be violated and that there may be a greater number 
of relevant ways on how to connect the inputs to the outputs of the system than 
vectors are needed to form a basis. 

Studying reaction networks with all of their fluxes subject to sign restriction 
and using methods of convex analysis, we defined the fundamental modes as the 
generating vectors of the cone of admissible fluxes, and presented an algorithm for 
computing these generating vectors [19]. 

In the present paper, we expand that analysis by allowing for the situation that 
some reactions proceed in a fixed direction whereas others may proceed in either 
direction. Fluxes that are not restricted with respect to their sign, have frequently 
to be considered in the modelling of biochemical systems (cf. also [13]). This con- 
cerns, in particular, the fluxes through reactions shared by catabolic and anabolic 
pathways, e.g., glycolysis and gluconeogenesis, and fluxes through the reversible 
reactions of the hexose monophosphate shunt. 

In Sec. 3,  we shall formalize the concept of fundamental mode (as explained be- 
low, we prefer the term "elementary mode"). In Sec. 4,  we shall study the situation 
that all fluxes have fixed signs and explain how then to compute the elementary 
modes. The case that some fluxes are not restricted to one direction will be treated 
in Sec. 5. We shall present some basic ideas on how to compute the elementary 
modes in that case. Section 6 illustrates the analysis by way of biochemical exam- 
ples. 

2. T h e  S p a c e  o f  All  Mathemat ica l ly  Admissible  S teady-Sta te  Vectors  

We follow the formalism of describing the behaviour of biochemical systems by 
ordinary differential equations [6,9,11,16], 

where N is the stoichiometry matrix of the system, V denotes the vector of reaction 
rates and X stands for the vector of concentrations. The dimension of N is given 
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by the number of (internal) reacting species, n ,  and the number of reactions, r .  
Steady-state conditions are defined by the algebraic equation system 

N V = 0 ,  (2.2) 

which results from Eq. (2.1). 
Non-trivial solutions to this system only exist if there are linear dependencies 

between the columns of N ,  i.e., if 

is less than r. These dependencies can be expressed by the null-space matrix, K, 
N K = O .  (2.4) 

Accordingly, the columns of K  span the subspace of all steady-state vectors math- 
ematically compatible with the stoichiometric structure of the system. In addition, 
the values of fluxes may further be restricted by the rate laws, V(X). This issue 
will not be dealt with in the present paper. We follow here an idea put forward 
by several authors 12,161 saying that the theoretical investigation of reaction sys- 
tems should begin with an analysis of the structural properties (the invariants) of 
the systems, since the kinetic properties are subject to frequent changes (e.g., by 
inhibition and activation of enzymes). 

Equation (2.4) shows that K  is indeterminate to the extent of postmultiplication 
by a non-singular square matrix. One is therefore interested in finding an appropri- 
ate, "canonical", representation of the null-space matrix. In the computer program 
"CONTROL" [14], K  is computed to have the form 

where I denotes the ( r  - v) X ( r  - v) identity matrix. This can be achieved, for 
example, by using the Gaussian elimination method. Since this representation has 
the advantage that it contains a considerable number of zeros, it meets, to a certain 
extent, the criterion of simplicity of the particular vectors. Importantly, the rep- 
resentation (2.5) transforms into a block-diagonal form by permutation of columns 
and rows, provided K  is block-diagonalizable 1221. The blocks of K  correspond to 
subnetworks the fluxes of which are completely independent. 

Some problems involved in using basis null-space vectors as fundamental modes 
reveal already here. Since it is not uniquely determined which r - v columns of N  
are chosen so as to correspond to  the submatrix I, there is still some ambiguity in 
calculating matrix K  according to Eq. (2.5). Furthermore, on calculating K,  it may 
occur that elements of KO are negative although the corresponding flux should be 
non-negative for thermodynamic reasons. 

3. Definition of Elementary Modes 
On studying biochemical reaction systems, one can generally distinguish between 
boundary reactions and internal reactions. Boundary reactions have the property 



that all the reactants utilized or all the products formed by these reactions are 
external (i.e. their concentrations are fixed). In the example shown in Fig. 1, re- 
actions 1, 2 and 5 are boundary reactions, while reactions 3 and 4 are internal. 
This distinction can be made by investigating the stoichiometry matrix. Boundary 
reactions are represented by those columns that only contain elements of the same 
sign or zeros, while columns corresponding to internal reactions contain elements of 
opposite sign, as can be exemplified by the stoichiometry matrix belonging to the 
system shown in Fig. 1, 

Although the stoichiometry matrix does not contain any information about external 
metabolites, it can a t  least be said that for all reactions that have no internal 
metabolites a t  one side of the reaction arrow, external reactants must be located 
there. 

Fig. 1. Branched reaction system. 

Assume now that reactions 1, 2, and 3 in this system are irreversible in the 
direction indicated by the arrows. It is then plausible to attach to  the system two 
elementary modes given by the flux vectors 

because each vector of steady-state fluxes not violating the irreversibility conditions 
can be written as non-negative linear combination of V(') and V('). 

It seems natural that the term "elementary mode" should be so general that 
two vectors that differ only by a positive factor are not considered different. For 
the above example, this means that we may choose, instead of the vectors given 
in Eq. (3.2), V(') = (2 2 0 0 o ) ~ ,  V(') = (3 0 3 3 3)T. Thus, elementary modes 
are not simply flux vectors, but classes of vectors that convert into one another by 
multiplication by a positive scalar. Two elementary modes that differ by a negative 
factor are to  be considered different, because opposite directions of flux correspond 
to different biological functions, e.g. the ATP production catalysed by the H+- 
ATPase in the rnitochondrial inner membrane and the proton transport catalysed 
by the H+-ATPase in plant vacuolar membranes. 
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The irreversibility constraint can always be written as a non-negativity condi- 
tion, since in case of negative flux we can reverse the orientation of reaction without 
loss of generality. By decomposing the flux vector into two subvectors V'" and VreV, 
we can express this condition as 

Here, V'" represents reaction rates which for thermodynamic or other reasons 
have t o  be non-negative, while VEv stands for the fluxes that are not subject to 
sign restriction. Lacking a better notion, we call the reactions represented by VreV 
reversible reactions, although those reactions that have a fixed sign of flux for some 
of the reasons mentioned in the Introduction may be reversible in a physicechemical 
sense. By "reversible reactions", we here mean reactions that can proceed in either 
direction under physiological conditions, such as the reactions shared by glycolysis 
and gluconeogenesis. 

The criterion that elementary modes be the sirnplest flux vectors possible cannot 
be phrased by just invoking that these vectors have to contain a maximum number 
of zeros each. If this were done for the system shown in Fig. 1, only V(') could 
represent an elementary mode. Thus, the principle of simplicity has rather to be 
phrased as a criterion about a "relative" maximum of zeros, i.e., there should be no 
flux vectors that have more zeros and give rise to the vector under consideration by 
non-negative combination. 

The above reasoning leads us to 

Definition 3.1: 

A flux mode, M,  is defined as the set 

where V* is an r-vector (nneqnal to the null vector) fulfilling the following two 
conditions, 

( C l )  Steady-state condition. V* satisfies Eq. (2.2). 
(C2) Sign restriction. V* contains a subvector, V'", that fulfills inequality (3.3), 

with the indices of the components of V"' being the indices of those fluxes that are 
subject to  a non-negativity condition. 

Remark: 

From this definition, it follows that V* is itself a member of the set M. It can 
be taken as a representative of M. Moreover, it is obvious that besides V*, every 
element of M obeys conditions (Cl )  and (C2). 

Definition 3.2: 

A flux mode M with a representative V* is called elementary (flux) mode if, and 
only if, V* fulfills the condition 
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(C3) Simplicity. There exists no couple of vectors V', V" (unequal to the null 
vector) with the following properties: 

(i) V* is a non-negative linear combination of V' and V", 

v* = xlvl + x2v1' , X ' ,  X Z  > 0 .  (3.5) 

(ii) V', V'' obey restrictions (Cl )  and (C2), 
(iii) both V' and V" contain a t  least the same number of zero elements as V*, 

and at least one of them contains more zero elements than V*,  
(iv) for all indices i corresponding to boundary reactions, the components are 

not of opposite sign, sgn(v:) # -sgn(vil). 

It is worth noting that due to  the non-recursive structure of these definitions, 
the elementary modes of any system are uniquely determined. Moreover, there is 
some similarity between Definition 3.1 and the concept of quotient space. If no 
sign restriction applied, the flux modes were elements of a suitably defined quotient 
space. 

Definition 3.3: 

A flux mode M is called reversible flux mode if, and only if, M' = {-VIV E M) 
is a flux mode as well. Otherwise, M is called irreversible flux mode. 

The same distinction can then be made for elementary modes. 

Definition 3.4: 

A flux mode M with a representative V* that does not contain any components cor- 
responding to  boundary reactions is termed cyclic mode (or cycle). An elementary 
cyclic mode (or elementary cycle) is a cyclic mode fulfilling condition (C3). 

The latter definition is based on an idea put forward by Fell [5,7] saying that 
substrate cycles should not involve any reactions that connect to  the external pools. 

If we assume that in the example shown in Fig. 1 only reaction 1 is irreversible, 
we obtain the elementary flux vectors (1 1 0 0 o ) ~ ,  (1  0 1 1 l)*, (0 - 1 1 1 and 
(0 1 - 1 - 1 - The former two represent irreversible modes and the latter 
two, reversible modes. 

The reaction system shown in Fig. 2 can serve for illustration of condition 
(C3). The vector (0 1 - 1 1 0 is no elementary mode since it is the sum of 
(0 1 - 1 0 - 1 o ) ~  and (0 0 0 1 1 both of which have more zeros than the 
first vector and have the same sign or zeros a t  the positions related to  boundary 
reactions (vl,  v2 and u3). 

Now consider the branched system depicted in Fig. 3. Here, the vector 
(1 1 1 0 o ) ~  is an elementary mode although it is the sum of (1  0 0 1 o ) ~  and 
(0 1 1 - 1 o ) ~ .  Since the latter two vectors have opposite signs at position 4, which 
corresponds to  a boundary reaction, they do not meet condition (C3, iv). We delib- 
erately imposed this condition in order not to exclude potential elementary modes 
representing main pathways, even if they are longer than other parts of the system. 
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Fig. 2. Cyclic reaction system. This scheme can stand, for example, for the PYR/OAA/PEP 
cycle and was also studied in [13]. 

Fig. 3. System with two ramification points. 

Although every elementary mode that is not cyclic has obviously to involve a t  
least one input and one output flux, there exist systems with elementary modes that 
include only one boundary reaction, because also internal reactions may connect to 
external metabolites. An example is shown in Fig. 4. It has the stoichiometry 
matrix 

If all reactions are irreversible, the only elementary mode is (1 1 
To elucidate the mathematical implications of Definitions 3 . 1  and 3.2, we first 

deal with the question as to  what region in the flux space is formed by the flux 
vectors fulfilling relations (2.2) and (3.3). In convex analysis, it is shown that the 
region determined by a linear homogeneous equation/inequality system is a convex 
polyhedral cone, C [15,18]. Convex analysis further states that every point of such a 
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cone is a non-negative combination of fundamental vectors, f ( k ) ,  and basis vectors, 
b("), 

Both fundamental and basis vectors are also called generating vectors or ex- 
treme rays. There are minimum numbers of fundamental and basis vectors that are 
sufficient to span the cone. The basis vectors, b (m) ,  are those extreme rays of cone 
C for which also the negative vector, -b(m), is contained in C. 

Usage of the terms basis and fundamental vectors in convex analysis [l51 is the 
reason why we prefer the term elementary mode rather than fundamental mode, as 
used in [13]. 

Fig. 4. System with only one boundary reaction. 

4. All Reac t ions  are Cons idered  Ir revers ible  

In a previous paper [19], we studied the situation that all fluxes of the system are 
subject to  non-negativity conditions, i.e., 

Let K denote the cone determined by relations (2.2) and (4.1) .  K is a pointed 
cone, that is, any two vectors contained in the cone make an angle of less than, 
or equal to, 90 degrees. Relation (4.1)  implies that K has no basis vectors. The 
fundamental vectors can be determined by an algorithm given in [19]. Generating 
vectors of pointed convex polyhedral cones are unique up to multiplication by pos- 
itive scalars [18]. It is worth mentioning that cone K can have any dimension from 
zero to  r - v, depending on how the null-space is situated relative to the positive 
orthant. Furthermore, the number of generating vectors may be greater than the 
dimension of the cone. 

An important relationship is expressed in the following 

T h e o r e m  4.1: 

The generating vectors of the cone K determined by Eq. (2.2)  and inequality (4.1) 
constitute a complete set of representatives of the elementary modes under the sign 
restriction (4.1). 
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Proof :  

All generating vectors fuifill, by definition, conditions ( C l )  and (C2). Since gener- 
ating vectors of pointed convex cones are those vectors of the cone that cannot be - 
written as non-negative linear combination of other vectors belonging to  the cone 
[M], they fulfil1 condition (C3). Hence, all generating vectors are representatives of 
elementary modes. 

Assume now that there is a vector V fulfilling conditions (Cl)  to (C3) that is no 
generating vector of K. V would then be a non-negative linear combination of a t  - 
least two different generating vectors. It can then also be written as a combination 
of exactly two vectors, one of them being a generating vector, 

As we here assume all reactions to be irreversible, any two vectors of K can- 
not have opposite signs at the same position, so that the two vectors f(') and 

Xtf(l') meet condition (iv) of (C3). Furthermore, f(') has more zeros than 
V because the generating vectors have the property that a maximum number of 
inequality side constraints are fulfilled as equality, which means in our case that 
a maximum number of fluxes are zero. Therefore, V can be expressed into two 
vectors satisfying conditions (i) to (iv). This leads to the contradiction that V does 
not fulfil condition (C3), which completes the proof. 

Due to the above Theorem, the algorithm presented in [l91 can serve to  compute 
all elementary modes. 

5. S o m e  R e a c t i o n s  are Cons idered  Revers ible  

We can distinguish the three following cases: 
(a) The system has only irreversible elementary modes, although some reactions 

of the system are considered reversible. For example, in the system shown in 
Fig. 1 with all reactions treated reversible except reactions 1 and 3, no reversible 
elementary mode occurs. 

(b) There are irreversible as well as reversible elementary modes. Consider the 
reaction system shown in Fig. 5. It has the reversible elementary modes 

and the irreversible elementary modes 
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Fig. 5. Simple branched system with one irreversible reaction 

A representative of one irreversible elementary mode together with the re- 
versible elementary modes would, however, be sufficient to span cone C, as 
seen in Fig. 6. Thus, the example shows that for systems containing some re- 
versible reactions, there may be a greater number of elementary modes than 
generating vectors are needed to span cone C, according to  Eq. (3.7). It can 
further be observed that choice of the fundamental vector is now not unique; 
we can choose f('), f('), or any non-negative linear combination of these, and 
of the basis vectors, e.g., the vector f' = (-1 2 which is orthogonal to the 
basis vectors. 
In this particular example, the basis vectors are unique (up to multiplication by 
positive scalars), since there is only one pair of them. If more basis vectors exist, 

Fig. 6. Cone of admissible steady state fluxes for the system shown in Fig. 5 .  Notations: b(1) 
and b(2), basis vectors; f', fundamental vector orthogonal to the basis vectors; f ( 1 )  and f(2) ,  
fundamental vectors representing elementary modes. 
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they span a sub-space of the kernel of the stoichiometry matrix with a dimension 
greater than one and are hence not unique (see Sec. 2). 

(c) There are only reversible elementary modes (and only basis vectors). This can 
also occur if some reactions are irreversible, namely if the respective fluxes are 
zero. Importantly, the number of reversible elementary modes need not simply 
relate to  the number of basis vectors, as seen in the system shown in Fig. 3, 
which has 2'6 = 12 reversible elementary modes, while r - v = 3. 
Whereas in the situation that all reactions are irreversible, all generating vectors 

of cone K (which are representatives of the elementary modes) are edges of this cone, 
this need not be so in the situation now considered. For example, in the system 
shown in Fig. 5, we cannot find any fundamental vector lying on an edge of cone 
C (see Fig. 6). Conversely, however, every edge of C corresponds to an elementary 
mode because it fulflls conditions (Cl)  and (C2) and, since it cannot be expressed 
as a non-negative linear combination of other vectors of the cone, also condition 
(C3). 

An algorithm for detecting the elementary modes of systems containing re- 
versible reactions can be developed on the basis of an algorithm for computing 
the generating vectors of convex polyhedral cones [15]. It is also related to the 
algorithm presented previously [19,21] for systems containing irreversible reactions 
only. In that situation, due to  condition (4.1), only fundamental vectors had to  be 
dealt with, which were obtained by a step-wise calculation of tableaux, T(?). In the 
situation of reversible reactions, we start from a tableau containing the transposed 
stoichiometry matrix and an identity matrix of dimension r X r, 

where the decomposition of N into N,,, and N,,, is done according to the decom- 
position of V into VreV and V"'. 

If all metabolites were external ones, we would not need consider the steady- 
state condition (2.2). Due to the non-negativity condition (3.3), the row vectors 
of ( I  0 )  would then be a complete set of representatives of irreversible elementary 
modes, and the row vectors of (0 I )  together with the row vectors of (0 - I) 
may be taken as representatives of the reversible elementary modes. For the sake 
of simplicity, any two preliminary reversible elementary modes b(k) and -b(k) can, 
in the algorithm, be replaced by only one of them, and at the end, the set of re- 
versible elementary modes is enlarged by including the opposites of all the ones 
calculated. Thus, the rows of the identity matrix in Eq. (5.3) represent the irre- 
versible and reversible elementary modes of the system with all metabolites consid- 
ered external. Now, one successively considers the particular equations contained 
in the matrix equation (2.2). Condition (3.3) together with the first j equations 
contained in Eq. (2.2) determines a convex polyhedral cone, Cj. Upon including a 
further, ( j  + 1)st equation out of Eq. (2.2), a cone, Cj+,,  obtains, which is a subset 
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of C,. Each of its generating vectors is either a generating vector of Cj as well, or 
it can be written as non-negative linear combination of two generating vectors of 
C,, because the extreme vectors of C,+, are determined as the intersection of the 
(r - 1)dimensional hyperplane given by the ( j  + 1)st equation out of Eq. (2.2) and 
a two-dimensional face of Cj.  As pointed out in Sec. 4, there may be elementary 
modes that are not represented by edges of the cone, but lie within the cone. Due to 
the condition of simplicity, and by analogy to the properties of generating vectors, 
one can assume that also those elementary modes are non-negative linear combi- 
nations of two elementary modes of cone Cj each. Therefore, in each step of the 
algorithm, rows of the ( j  + 1)st tableau obtain as non-negative combination of two 
rows each of the j t h  tableau representing C,, so that the ( j  + 1)st column of N* 
becomes the null vector. In extension to the algorithm presented in [19], now also 
preliminary reversible elementary modes have to be combined to give such modes 
in ~ ( j + l ) ,  

where tp) and tg? denote the i th and mth row vectors of ~ ( j ) .  

In order that these vectors b* are not equal to a combination of two other 
elementary vectors obtained in the same step, a similar condition as in combining 
irreversible modes has to be included (Eq. (14) in [19]). Moreover, some reversible 
elementary modes have also to be combined with irreversible elementary modes, to 
give fundamental vectors in T(j+'), additional to the ones found by the algorithm 
presented in [19], 

The algorithm ends with tableau ~ ( " 1 .  After including the submatrix -B("), 
the submatrix of T(") consisting of the r left-hand side columns contains, as rows, 
the elementary modes. 

In spite of the relatively simple definition of elementary modes, a general al- 
gorithm for computing the complete set of these modes, as outlined afore, turns 
out to be rather intricate, and requires elaborate mathematical reasoning. There- 
fore, we leave the detailed description and justification of the algorithm to a future 
publication. 

6. Biochemical Examples  

We illustrate the algorithm outlined in the previous section by way of the example 
shown in Fig. 2 ,  which may serve as a model of the p h o s p h o e n ~ l ~ y r u v a t e / ~ ~ r u v a t e /  
oxaloacetate cycle [13]. Here, we assume the reactions 4, 5, and 6 to be irreversible 
so as to operate in clockwise orientation. The starting tableau reads (zeros are 
omitted for clarity's sake). 
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We first exatnine the left-hand side column of NT .F(') results from summation 
of t,he fourth and sixth row, because the elernents a t  positions (4,7) and (6,7) are 
non-zero and of opposite sign, and from conhination of the first row with all rows 
of F('), according to  formula (5.5). B(') obtains by combining the first row with 
tlie second and third rows according to  forninla (5.4). This gives 

In  a similar way, we obtain 



Since B(') contains one vector only, which has a non-zero element a t  the last posi- 
tion, B ( ~ )  is empty. Thus, we only obtain irreversible elementary modes, 

The combinations of the third and fifth row of ~ ( ' 1 ,  and of the fourth and 
sixth row of ~ ( ' 1 ,  and of the fifth and sixth row of T(') have to be ruled out by a 
condition imposed on the combination of fundamental vectors (Eq. (14) in [19]). 

Figure 7 illustrates the seven (irreversible) elementary modes. f ( ' ) ,  for example, 
represents the elementary mode -U' = uz = v4, u3 = ug = ug = 0. The fact that 
no reversible elementary mode is obtained, corresponds to the feature that due to 
the irreversibility of reactions 4, 5, and 6, no elementary mode of the system shown 
in Fig. 2 can be inverted to  obtain another elementary mode. f ( ' ) ,  f ( ' )  and f ( 3 )  

form a complete set of generating vectors of cone C. Although the remaining modes 
contained in T ( ~ )  can be obtained by non-negative linear combination of generating 
vectors, they are elementary modes since they fulfill condition (C3). Although the 
cyclic mode (0 0 0 1 1 does not belong to the generating vectors, it contains as 
many zeros as these. The fact that it obtains as an elementary mode is in support 
of the appropriateness of condition (C3). The remaining three elementary modes 
encompass one zero less, but they are elementary in the sense that there is no route 
of the same orientation that connects the same two external metabolites in a simpler 
way. For instance, the mode (0 1 -1 1 0 would also obtain as the sum o f f ( ' )  
and f ( 3 ) ,  but this would involve an extra boundary reaction and is therefore ruled 
out by condition (C3, iv). The same external metabolites are also connected by the 
mode f ( 2 ) ,  which is oriented, however, in the opposite direction and is, hence, not 
equivalent in terms of biochemical functioning. 

Leiser and Blum [l31 also indicate seven fundamental modes for this system, 
with one of them being the (futile) cyclic mode, and the other six being non-futile. 
As these modes have five non-zero components each, they do not, to  our eyes, fulfill 
a condition of simplicity. 
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Fig. 7 .  Elementary modes of the PYR/OAA/PEP cycle. In contrast to Fig. 2, the reactions 
within the cycle are here considered irreversible. 

If all reactions in the considered system are assumed to be reversible, as shown 
in Fig. 2 ,  one obtains reversible elementary modes only, as given by 

and -b('), k = 1, . . . , 4 ,  where, for instance, b('), b(2) and b(3) can be taken 
as a complete set of generating vectors. Now, modes with less than three zero 
elements drop out because they can be written as the sum of a non-cyclic and a 
cyclic elementary mode. 

In what follows, we deal with a reaction scheme describing glycolysis and glu- 
coneogenesis (see Fig. 8). By the algorithm outlined in the previous section, we 
obtain nine irreversible elementary modes, 
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V1 V4 V6 

(Glc) Z G b - 6 - P  +% Fru-6-P = Fru-1 ,6-P - P E P ~ P ~  2 
v2 v5 

v 1 ~ 0  

Oxaloacetate 
!v, l 

Fig. 8 .  Simplified reaction scheme of glycolysis and gluconeogenesis. Glucose is treated as external 
metabolite. Reaction 10 represents both the interconvelsion of pyruvate and lactate or acetyl-CoA, 
and of pyruvate and related amino acids. 

f(') represents the glycolytic pathway. fi2) stands for the anaplerotic route from 
glucose to  oxaloacetate, which serves to replenish citric acid cycle intermediates. f(3) 
and f(4) correspond to gluconeogenesis pathways emerging from lactate (or amino 
acids as alanine and serine) and from oxaloacetate (or amino acids such as aspartate 
and threonine), respectively. f(') represents the anaplerotic route from lactate and 
several amino acids to oxaloacetate. f(6) can be interpreted as part of the synthesis 
of several amino acids (such as alanine) under lack of glucose. fi7), fi8) and f(') 
are futile cycles (for definition see [5,7,10,13]). The vector f(7) is no cyclic mode 
in the sense of Definition 3.4. This is because glucose is here treated as external 
metabolite. 

7. Discussion 

The present analysis provides a tool for detecting essential structural features of 
any given biochemical system not just by inspecting the reaction scheme, but by 
algebraically analysing the stoichiometry matrix. This method widens the approach 
of calculating null-space vectors to  that matrix. As all elementary modes fulfil1 the 
steady-state equation (2.2), they are situated in this null-space, the dimension of 
which can be less or greater than the number of elementary modes. In the latter 
case, some of its basis vectors principally cannot represent biochemically meaningful 
fluxes. 

An important application of the null-space matrix K is, amongst others, 
Metabolic Control Analysis [6,9], where K is frequently used to determine control 
coefficients, based on the generalized summation theorems of Metabolic Control 
Analysis presented by Reder [16]. Accordingly, computer programs for analysing 
control properties [14,23] include routines for computing matrix K.  It could be of 
interest to use elementary modes instead of the columns of K ,  to facilitate interpre- 
tation of the generalized summation theorems in terms of biochemical functioning. 

It is worth noting that contrary to  the the null-space matrix K ,  the elementary 
modes are uniquely determined. Since they meet the condition of simplicity and 
have to reflect the decomposability of the null-space if K can be transformed into 
block-diagonal form, we suppose that they relate in some way to the representation 
(2.5) of K .  This relationship deserves further study in the future. 
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The definition of cycles as given in the present paper (Definition 3.4) obviously 
covers futile cycles (also called substrate cycles) [5,7,10,13]. A special case are cycles 
contained in enzyme cascades 181. The fact that the definition does not apply to 
moiety-conserved cycles [l71 (e.g., systems preserving the sum of ATP and ADP, or 
catalytic cycles preserving the sum of enzyme and enzyme-substrate complex), may 
indicate that usage of the term cycle is somewhat misleading in those situations. 

From another point of view, a distinction between cyclic and non-cyclic routes 
in reaction systems was also made by Feinberg [4], who used the terms circuit and 
tree. Interestingly, moiety-conserved cycles are no circuits either in that formalism. 

It may occur that for a given reaction scheme, some reactions are represented 
by zero entries in all elementary modes calculated, such as for the pyruvate export 
reaction in the scheme developed and studied in [12]. If these reactions are known, 
from experiment, to have non-zero net fluxes, this outcome shows that the biochem- 
ical system is not consistently modelled by the scheme. Nevertheless, there do exist 
reactions that have zero net fluxes independently of the values of kinetic parameters 
(strictly detailed balanced reactions 1221). 

The example of glycolysis and gluconeogenesis shows that the elementary modes 
relate to the biochemical functions of the network. Therefore, their number may be 
an important index characterizing biochemical systems. It indicates the richness of 
the system considered, by showing the variety of its realizable functions. Which of 
these functions are operative or in what proportions they operate simultaneously 
is determined by the extent of inhibition and activation of enzymes, i.e., by the 
actual values of kinetic parameters, which we have not considered in our structural 
analysis. In consequence of the above reasoning, we believe that on reducing the 
number of variables in kinetic models (for instance, in applying the quasi-steady 
state approximation), one should put attention to maintain the number of elemen- 
tary modes. 

Acknowledgements  

The authors would like to thank Dr D. A. Fell (Oxford) and two anonymous referees 
for helpful comments. 

References  
[l] Clarke B. L., Stability of complex reaction networks. In Adv. in Chem. Phys. 43 ,  ed. 

by Prigogine I. and Rice S. A. (Wiley, New York, 1980) pp. 1-216. 
[2] Clarke B. L., Stoichiometric network analysis. Cell Biophys. 12 (1988) pp. 237-253. 
[3] Edelstein-Keshet L., Mathematical Models in Biology (Random House, New York, 

1988). 
[4] Feinberg M,, Necessary and sufficient conditions for detailed balancing in mass action 

systems of arbitrary complexity. Chem. Eng. Sci. 44 (1989) pp. 1819-1827. 
[5] Fell D. A., Substrate cycles: theoretical aspects of their role in metabolism. Comments 

on Theor. Biol. 6 (1990) pp. 1-14. 
[6] Fell D. A., Metabolic control analysis: a survey of its theoretical and experimental 

development, Biochem. J. 286 (1992) pp. 313-330. 



182 Schusler €4 Hilgelag 

[7] Fell D. A., T h e  analysis of flux in substrate cycles. In Modern Trends in Biothermoki- 
netics, ed. by Schuster S., Rigoulet M., Ouhabi M. and Mazat J .  P. (Plenum Press, 
New York and London, 1993), pp. 97-101. 

[8] Goldbeter A. and Koshland Jr.  D. E., Ultrasensitivity in biochemical systems con- 
trolled by covalent modification. J. Biol. Chem. 259 (1984) pp. 14441-14447. 

[g] Heinrich R., Rapoport S. M. and Rapoport T .  A., Metabolic regulation and mathe- 
matical models, Prog. Biophys. Mol. Biol. 32 (1977) pp. 1-82. 

[l01 Hers H. G. and Hue L., Gluconeogenesis and related aspects of glycolysis. Ann. Rev. 
Biochem. 52 (1983) pp. 617-653. 

[l11 Horn F. and Jackson R., General mass action kinetics. Arch. Rational Mech. Anal. 
47 (1972) pp. 81-116. 

[l21 Joshi A. and Palsson B. O., Metabolic dynamics in the human red cell. I. A compre- 
hensive kinetic model. J. Theor. Biol. 141 (1989) pp. 515-528. 

[l31 Leiser J .  and  Blum J .  J., On the analysis of substrate cycles in large metabolic systems, 
Cell Biophys. 11 (1987) pp. 123-138. 

[l41 Letellier T.,  Reder C. and Mazat J. P., Control: Software for the analysis of the control 
of metabolic networks. Comp. Appl. Biosci. 7 (1991) pp. 383-390. 

[l51 NoEiZka F.,  Guddat  J., Hollatz H.  and Bank B., Theorie der linearen parametrischen 
optimierung (Akademie-Verlag, Berlin, 1974). 

[l61 Reder C., Metabolic control theory: A structural approach. J. Theor. Biol. 135 (1988) 
pp. 175-201. 

[l71 Reich J .  G .  and Selkov E. E., Energy Metabolism of the Cell (Academic Press, London, 
1981). 

[l81 Rockafellar R.,  Convex Analysis (Princeton Univ. Press, Princeton, 1970). 
[l91 Schuster R. and Schuster S., Refined algorithm and computer program for calculating 

all non-negative fluxes admissible in steady states of biochemical reaction systems 
with or without some flux rates fixed. Comp. Appl. Biosci. 9 (1993) pp. 79-85. 

[20] Schuster R., Schuster S. and Holzhiitter H. G., Simplification of complex kinetic mod- 
els used for the quantitative analysis of nuclear magnetic resonance or radioactive 
tracer studies, J .  Chem. Soc. Faraday Trans. 88 (1992) pp. 2837-2844. 

[21] Schuster S. and Heinrich R., Minimization of intermediate concentrations as a sug- 
gested optimality principle for biochemical networks. I. Theoretical analysis. J. Math. 
Biol. 29 (1991) pp. 425-442. 

[22] Schuster S. and Schuster R., Detecting strictly detailed balanced subnetworks in open 
chemical reaction networks. J .  Math. Chem. 6 (1991) pp. 17-40. 

[23] Thomas S.  and Fell D. A., A computer program for the algebraic determination of 
control coefficients in metabolic control analysis. Biochem. J. 292 (1993) pp. 351-360. 


	Schuster1994_10001.pdf
	Schuster1994_10002.pdf
	Schuster1994_10003.pdf
	Schuster1994_10004.pdf
	Schuster1994_10005.pdf
	Schuster1994_10006.pdf
	Schuster1994_10007.pdf
	Schuster1994_10008.pdf
	Schuster1994_10009.pdf
	Schuster1994_10010.pdf
	Schuster1994_10011.pdf
	Schuster1994_10012.pdf
	Schuster1994_10013.pdf
	Schuster1994_10014.pdf
	Schuster1994_10015.pdf
	Schuster1994_10016.pdf
	Schuster1994_10017.pdf
	Schuster1994_10018.pdf

