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High throughput genomic/proteomic strategies, such as
microarray studies, drug screens, and genetic screens,
often produce a list of genes that are believed to be
important for one or more reasons. Unfortunately it is
often difficult to discern meaningful biological relation-
ships from such lists. This study presents a new bioinfor-
matic approach that can be used to identify regulatory
subnetworks for lists of significant genes or proteins. We
demonstrate the utility of this approach using an interac-
tion network for yeast constructed from BIND, TRANS-
FAC, SCPD, and chromatin immunoprecipitation (ChIP)-
Chip data bases and lists of genes from well known
metabolic pathways or differential expression experi-
ments. The approach accurately rediscovers known reg-
ulatory elements of the heat shock response as well as
the gluconeogenesis, galactose, glycolysis, and glucose
fermentation pathways in yeast. We also find evidence
supporting a previous conjecture that approximately half
of the enzymes in a metabolic pathway are transcription-
ally co-regulated. Finally we demonstrate a previously
unknown connection between GAL80 and the diauxic shift
in yeast. Molecular & Cellular Proteomics 4:683–692,
2005.

High throughput genomic and proteomic strategies gener-
ate lists of genes or proteins that are believed to be signifi-
cant. These distinguished sets, such as sets of genes that are
differentially expressed between two conditions (e.g. tumor
versus normal or mutant versus wild type), alone provide little
insight into if and why these genes are important in a partic-
ular context. One approach to gain deeper insight into such
questions is to focus on determining the regulatory relation-
ships between members of the set (1). For example, the
relationships between a set of co-expressed genes might be
adequately explained if it is determined that they share a small
group of transcription factors or if their proteins are known to
form a complex.

A common technique to find such regulatory relationships is

to examine the distinguished set of genes relative to a so-
called interaction network (2). High throughput methods, such
as ChIP1-Chip, combined with computational approaches
have generated transcriptional regulatory networks (3, 4). Pro-
teomic approaches, such as tandem affinity purification tag-
ging (5) and yeast two-hybrid assays, have yielded large scale
protein-protein interaction maps (6, 7). Interaction networks
are formed from the union of these two data types. Whereas
the challenge of proteomics is to generate complete interac-
tion networks for many different organisms and to compile
this information in data bases, the challenge of bioinformatics
is to automate strategies for extracting meaningful information
from these massive graphs. Due to the size and complexity of
these networks (!30,000 nodes for human), a manual search
for regulatory subgraphs is nearly impossible for even a hand-
ful of distinguished genes. Several related approaches exist in
the literature for investigating interaction networks.

Oyama et al. (8) present a feature selection strategy. Given
a protein-protein interaction network and various types of
information such as enzyme functionality (EC number), func-
tional annotations (Swiss-Prot keywords), PROSITE motifs,
and conserved sequences, they attempt to automatically
learn association rules from the data to more accurately char-
acterize protein-protein interactions. A second approach from
Lappe et al. (9) uses hierarchically organized functional anno-
tations of proteins to contract or “distill” a protein-protein
interaction graph into a more manageable but equally inform-
ative representation. A third approach from Kelley et al. (10)
entitled PathBLAST allows investigators to compare interac-
tion networks across species to identify pathways and com-
plexes that have been conserved. The framework takes as
input a protein “interaction path” and searches for high scor-
ing alignments between pairs of protein interaction paths for
which proteins of the first path are paired with putative or-
thologs occurring in the same order in the interaction network.

A fourth strategy from Ideker et al. (2) essentially maps
mRNA expression data on to an interaction network. The
weight of a node is a measure of significance of differential
expression over one or more microarray hybridizations. The
goal is to search for subnetworks that display a statistically
significant amount of differential expression. Such subnet-
works might correspond to small sets of proteins belonging to
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a common metabolic pathway for instance. The underlying
computational problem is to find a maximum-weight con-
nected component of the network (a set of proteins in the
network in which there is a path between any two members).
Although a solution may contain nodes that do not exhibit
differential expression, such nodes must lie on a path be-
tween nodes that do exhibit differential expression. The non-
differentially expressed proteins might then represent impor-
tant “lost connections” between sets of differentially
expressed proteins. In Ideker et al. (2) the authors show that
these subnetworks succeed in finding proteins that are in-
volved in common biological processes (e.g. the same meta-
bolic pathway).

This study presents a new approach using so-called Steiner
trees (see “Experimental Procedures”) for investigating inter-
action networks. The goal is to find subnetworks within an
interaction network that are plausibly responsible for regulat-
ing a given distinguished set of genes/proteins. Whereas the
Ideker et al. (2) approach is a global search of the interaction
network for differentially expressed subnetworks, our ap-
proach allows the user to specify a “distinguished” set of
nodes. This distinguished set might, for example, represent a
list of differentially expressed genes from a microarray exper-
iment, chemical-genetic/synthetic-lethal interactions (11), or
any other type of assay that produces lists of interesting
genes/proteins and where similar questions regarding regu-
latory relationships are important. The Steiner tree solution
provides a “backbone” consisting of genes that are the most
likely candidates to be involved in regulatory relationships
between members of the distinguished set. Additional nodes
and edges are added to this backbone to include as many
potential regulatory genes as possible while excluding most
irrelevant interactions. Although it is likely impossible to infer
a complete causal explanation of how/why a gene is impor-
tant from an interaction network, the approach does produce
subnetworks that are typically of a size that allows investiga-
tors to perform a more detailed, literature-based analysis. This
data reduction technique is analogous to a BLAST search for
a given uncharacterized sequence where the goal is to find a
relatively small set of likely homologues within a large data
base of sequences.

To investigate the utility of our approach, we performed
three sets of experiments using an interaction network for
yeast composed of 5,458 proteins and 23,642 interactions
from the BIND version 2 (12) (yeast protein-protein interac-
tions), TRANSFAC (13), SCPD (34) (yeast protein-DNA inter-
actions), and yeast ChIP-Chip (protein-DNA) (3) data sets.
First, to test the ability of our framework to find plausible
regulatory subnetworks, we conducted experiments on the
GAL80 deletion expression data set (14). Our results support
the claim in Jansen et al. (15) that examining co-expression
alone may not always be sufficient for finding regulatory sub-
networks and allowed for the discovery of a previously un-
known connection between GAL80 and the diauxic shift in

yeast. Second, we analyzed the advantages of different inter-
action networks using a heat shock microarray expression
data set (16). This allowed for the identification of a heat shock
transcriptional response subnetwork that integrates known
but dispersed observations and offers new insights into this
process. Third, we present evidence in support of a claim of
Ihmels et al. (17) that approximately half of the enzymes in a
metabolic pathway are transcriptionally co-regulated and
show that our framework accurately rediscovers known reg-
ulatory elements of the gluconeogenesis, galactose, glycoly-
sis, and glucose fermentation pathways in yeast.

EXPERIMENTAL PROCEDURES

To simplify the figures, names such as GAL4 refer to both the gene
and the protein it encodes (for example in Fig. 1, the gene GAL4 is
shown to be transcriptionally regulated by MIG1, and the GAL4 pro-
tein transcriptionally regulates the gene GAL80). We use this conven-
tion throughout the text as well.

Interaction Graphs—We represent an interaction network as a
graph in which nodes represent proteins. The graph is the union of the
protein-protein and protein-DNA interaction networks. When two pro-
teins bind directly, we term this a protein-protein interaction. A pro-
tein-protein interaction is represented by an undirected edge between
the two nodes corresponding to the proteins. In the case of protein-
DNA interactions, an edge from node u to node v is included in the
graph when it is known that the protein u is a transcription factor that
regulates the expression of the gene corresponding to v. (Our ap-
proach can be modified to use the directional information implicit in
protein-DNA interactions but is omitted from the discussion here.) In
the following experiments, the graph is built using the BIND data set
(12) (restricted to yeast protein-protein interactions), TRANSFAC (13)
(yeast protein-DNA interactions), SCPD (yeast protein-DNA inter-
actions), and ChIP-Chip data (yeast protein-DNA interactions) (3).
We include protein-DNA interactions from the ChIP-Chip data if
their associated p value is 0.001 or less, a conservative threshold
(3). In total, this yields 5,458 nodes (proteins) and 23,642 edges
(interactions).

Steiner Trees—Suppose we have an interaction network and a
distinguished set of nodes S, a set of proteins in the interaction graph
whose regulation (and possibly co-regulation) we wish to understand.
A natural question is to ask how to connect the nodes of S together.
Ideally there would be short paths between any two nodes in S.
Moreover we would like to “highlight” nodes that are used by many
paths between pairs of elements in S. The notion from mathematics
that captures these criteria is the Steiner tree. A Steiner tree is a
connected subgraph of the interaction network that includes all the
distinguished nodes. That is, for any pair of nodes in the distinguished
set, there is a path between the nodes in the Steiner tree. Fig. 1b
depicts a Steiner tree for the distinguished set of vertices (dark
shaded) given in Fig. 1a. The nodes in the tree that are not in S are
called Steiner points. Note that nodes such as HAP4, PUT3, and
CAT8 lie on the path between many pairs of proteins.

Finding a Steiner tree is trivial. However, what one seeks is a
Steiner tree that is optimal in some sense. In the “classical” Steiner
tree problem, each edge e is assigned a positive real number w(e)
called the weight or cost of the edge. The cost of a Steiner tree T is
simply the sum of the weight of each edge in the tree. The problem is
to find a Steiner tree with minimal cost. To address the problem of
finding regulatory subnetworks, we consider a modified version of this
problem called the node-weighted Steiner tree problem. Rather than
weighting edges, each node v is assigned cost w(v). This cost typi-
cally represents a measure of differential expression associated with
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v. The problem is to find a Steiner tree T for which the sum of node
costs is minimal. Intuitively we are asking to connect the distinguished
vertices in the “most compact” way possible. Each edge in the
resultant network could then be examined for a regulatory role with
respect to the elements of the distinguished set.

Both of these problems have been studied extensively in the com-
puter science literature (18–21), and there is likely no efficient algo-
rithm for solving these problems optimally. However, there is an
algorithm for the node-weighted Steiner tree problem that guarantees
a solution no more than 2log"S" times optimal (20). This means that
although we cannot be guaranteed that the algorithm will find the best
solution, it will most often produce a sufficiently good solution. A
contribution of this study is the observation that it is feasible to solve
the node Steiner tree problem if the distinguished set S is small. By
modifying the Dreyfus-Wagner algorithm (18) we can solve the node
Steiner problem in time on the order of 3k " 1!n # n3 time where k is
the size of the distinguished set and n is the number of nodes in the
interaction network. In practice, k tends to be as small as 10, but n is
over 5,000. When k is too large for exact solution to be feasible, we
default to the approximation algorithm from Klein et al. (20). In our
experiments, this has always given solutions that are optimal or very
close to optimal. Moreover there are many small simplifications one
can automate that speed up the computation further. Succinctly our
software is fast and gives accurate solutions; it is capable of handling
the size of distinguished sets typically created by microarray, chem-
ical-genetic, or synthetic-lethal assays.

Weight Functions—Our framework considers two types of weight
functions denoted wd and w1. The weight function wd measures the
amount of differential expression over a set of m microarray hybrid-
ization experiments. Any package for deciding differential expression
can be used as long as it returns a p value, pu, as the measure of
differential expression for gene u. We assign wd(u) $ "log(1 " pu).
Further background corrections can be applied to improve wd, but we
omit this discussion here. Intuitively this cost function corresponds to
choosing those nodes in the network that connect the distinguished
set and show the most differential expression. The weight function w1

simply assigns the weight of every node to be 1. This cost function
corresponds to finding the shortest way to connect the nodes in the
distinguished set. Intuitively wd corresponds to finding the most likely
regulatory explanation, whereas w1 corresponds to the most parsi-
monious explanation.

Steiner Trees as Backbones to Be Augmented—It is not likely that
the Steiner tree alone constitutes a regulatory subnetwork for the
distinguished set. Instead it is hoped that the Steiner tree prunes
down the search for regulatory networks to a small, manageable
number of alternative nodes. In this sense, the Steiner tree is a
backbone that we can augment with additional nodes that are also
likely to be relevant. Our software is implemented in the VisANT
interactive visualization software (22). Beyond the computation of the
Steiner tree, we offer several routines that search the neighborhood of
the Steiner tree in a rational manner.

The general flavor of how Steiner backbones are extended is
captured by the notion of an (i,l)-augmented graph. The intuition is as
follows. If a node is within distance i of the Steiner tree (the shortest
path to the Steiner tree has length at most i) and if there are at least
l different such short paths, then this node is included in the subnet-
work. Fig. 3 depicts the (1,2)-augmented tree from Fig. 1. Additional
rules for augmenting backbones use functional annotations (including
Gene Ontology annotations) to help decide the relevance of the
gene/protein.

Other Strategies for Discovering Regulatory Subnetworks—In ad-
dition to our work based on Steiner trees, we have experimented with
simpler, more efficient strategies for finding small regulatory subnet-
works. For example, one approach we have used is to compute the

shortest paths between all pairs of nodes in the distinguished set. The
graph formed as the union of these paths can then serve as a
backbone. Alternatively one can choose any one of the distinguished
nodes and take the union of paths from that node to all the other
distinguished nodes. This is a sensible approach, for example, for
connecting a gene to the proteins that are differentially expressed in
a knock-out expression experiment. These routines will also be made
available within our implementation in VisANT. We plan to also im-
plement them in CytoScape (23) in the near future.

RESULTS

Most Likely Versus Smallest Steiner Trees—Two important
and conflicting observations have emerged recently from
studies of interaction networks and high throughput protein-
protein interaction data from Ideker et al. (2) and Jansen et al.
(15), respectively. The strategy of Ideker et al. (2) requires that
many of the proteins involved in a common pathway either as
enzymes or regulatory transcription factors exhibit co-expres-
sion. If this assumption is valid, these proteins should belong
to subnetworks whose members are significantly differentially
expressed. Ideker et al. (2) and Ihmels et al. (17) provide
evidence that such statistically significant co-expression does
exist. However, studies such as Jansen et al. (15) find that
mRNA expression levels do not correlate strongly to known
protein-protein interactions unless the interactions are part of
a so-called stable complex (complexes that are maintained
throughout most cellular conditions) and not simply transient
complexes. In such cases, looking for subgraphs that exhibit
common differential expression will miss key proteins partic-
ipating in a common biological process or proteins responsi-
ble for regulation via either protein-DNA or protein-protein
interactions. To investigate these conflicting observations, we
used the results of GAL80 deletion microarray expression
experiments (14). We noticed that in the experiments where
GAL80 is deleted and in the absence of galactose a surpris-
ingly large set of genes is highly overexpressed (compared
with wild-type yeast grown in the presence of galactose), and
many of these genes are involved in sugar metabolism.

We investigated the connectivity between GAL80 and a set
of genes S that represents all genes whose average log ratio
of expression is greater than #2.0 in these conditions. To test
the ability of our framework to find plausible regulatory sub-
networks, two new experiments were conducted. In the first
experiment, we weighted the nodes of the interaction graph
using the function wd (nodes are weighted as a function of the
p value of their differential expression, see “Experimental
Procedures”). If the proteins that play a regulatory role “be-
tween” GAL80 and the other members of S show sufficient
co-expression, then intuitively the algorithm should find
Steiner trees containing plausible regulatory proteins. In the
second experiment, we used function w1 (all nodes are
equally weighted regardless of their expression ratio, see
“Experimental Procedures”). If it is not the case that there is
sufficient differential expression among the regulatory pro-
teins, then intuitively it may be more effective to simply look
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for the smallest Steiner trees connecting the elements of S.
Table I depicts the lengths of paths between GAL80 and

each remaining element of S in an optimal Steiner tree using
either w1 or wd. The columns labeled "V" contain the number of
nodes between GAL80 and elements of S. The first observa-
tion is that the average length of such paths is 10.7 when the
wd function is used but only 5.3 when w1 is chosen. We take
a 2-fold increase to be significant. Additionally we note that
the algorithm includes many more edges from the BIND data
base when using wd (%65% of the edges) as compared with
w1 (%25% of the edges). It tends to be very difficult to con-
struct plausible arguments establishing that the paths found
under wd are biologically interesting. BIND contains many
interactions from high throughput projects, and there have
been several studies suggesting that more than 40% of the
interactions in these data sets are not physiologically relevant
(6). Although it would be very interesting to find paths that use
one or two protein-protein interactions (and thus data from
BIND should be included), we are less confident that larger
linear chains of protein-protein interactions reflect biological
reality; larger chains increase the probability that a false pos-
itive interaction pairing has been included. Conversely it is
interesting to note that the inclusion of ChIP-Chip data with a
conservative p value threshold of 0.001 does not seem to
cause the same types of problems. Many of the edges in the
networks we found that originate from this data set seem
plausible or are at least good targets for further study.

Because the set S includes all proteins that exhibit the most
up-regulation when GAL80 is deleted, it had seemed plausible
that the average length of a path from an element of S to
GAL80 (under either w1 or wd weighting functions) would be
shorter than the average length of a path from a randomly
chosen node. We calculated the average length of a path for
each yeast protein to GAL80 and found that the length of
these paths is the same as for elements of S. This was
somewhat surprising, although in retrospect it may simply be
a result of the scale-free nature of the interaction graph.

Fig. 1 depicts an optimal Steiner tree for S using the w1

function. (There can be more than one Steiner tree with the
same cost. We depict one arbitrarily chosen tree from the
small set of optimal trees.) Note that all paths between ele-
ments of S and GAL80 “pass through” GAL4. This makes
some intuitive sense: because GAL80 is known to inhibit
GAL4 activity in the absence of galactose, the deletion of
GAL80 allows unfettered GAL4 function. It can be hypothe-
sized that GAL4 in turn is somehow responsible for the up-
regulation of the remaining elements in S.

The Steiner tree of Fig. 1 contains several known interaction
subnetworks. For example, the subnetwork formed by CAT8
and its interactors corresponds to the well studied diauxic
shift response of yeast. This response is known to require
CAT8, which up-regulates genes involved in gluconeogenesis
(such as PCK1 and FBP1) and the glyoxylate cycle (ICL1) as
well as in the production of acetyl-CoA from acetate (ACS1),
the import of succinate into mitochondria (SFC1), and the
import of lactate in the cell (JEN1) (24). Three of these diauxic
shift CAT8-activated genes are part of the distinguished set S
(ICL1, JEN1, and ACS1), and three additional genes (FBP1,
PCK1, and SFC1) are found to be highly overexpressed in the
conditions under study. These latter three genes have in fact
log expression ratios between 1.7 and 1.9, marginally below
our 2.0 threshold for differential expression (depicted as
shaded nodes in Fig. 1).

The HAP activator complex is also known to increase the
expression of its target genes, which are mostly involved in
the tricarboxylic acid cycle and the respiratory chain during
the diauxic shift. HAP4, the subunit that provides the principal
activation function of the HAP complex, is a Steiner point in
the solution for the distinguished set. It allows for the connec-
tion of two highly overexpressed genes PHO89 and PUT1.
These are likely both required during a diauxic shift (to ensure
the appropriate concentration of inorganic phosphate and
nitrogen, respectively, in the cell during this cellular response
(25)). Taken together, the solution found by the Steiner pro-

TABLE I
Cost of shortest and most likely paths connecting GAL80 to the remaining elements of S in an optimal Steiner tree under

two weighting schemes !1 and !d

M $ metabolic is yes (Y) if the protein is an enzyme in a metabolic pathway. "V" is the number of nodes in the path connecting the protein
to GAL80. B denotes edges unique to BIND. S denotes edges unique to SCPD. T denotes edges unique to TRANSFAC. C denotes edges
unique to the ChIP-Chip data at p $ 0.001. TS denotes edges in both T and S. Row “Average” denotes the average path length of elements
of S to GAL80 in the interaction network. Row “Random” denotes the average path length of all yeast proteins to GAL80 in the interaction
network.
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gram suggests that, under these particular growth conditions,
the yeast underwent a diauxic shift. This is remarkable be-
cause the yeast were exponentially growing in a 2% raffinose
solution (14). Under such conditions, glycolysis is the major
energy-providing pathway. It has been shown that activation
of diauxic shift genes in wild-type yeast occurs well after the
initial exponential growth phase (26). Because our solution is
based upon GAL80 deletion expression data, this suggests
that GAL80 may play a role in controlling the shift from glu-
cose to ethanol metabolism.

Alternative and Augmented Backbones for S—We also ex-
perimented with backbones created by the unions of the
shortest path from GAL80 to each member of the distin-
guished set (see “Other Strategies for Discovering Regulatory
Subnetworks” under “Experimental Procedures”). Fig. 2 de-
picts the results. In this analysis, it is interesting to note that
apart from GAL4 no other node is common to more than one
path between GAL80 and elements of the distinguished set S.
In several cases, this alternative strategy provided very little

insight into the regulatory relationships between the elements
of S. (This approach, which essentially studies each element
of S individually with respect to GAL80, is more similar to
traditional non-automated analyses one would perform using
only the literature.) As such, it renders difficult the task of
explaining why the elements of S are simultaneously highly
up-regulated under the conditions studied. For example, the
backbone described in Fig. 2 does not allow us to conclude
that yeast is undergoing a diauxic shift under these condi-
tions. This illustrates an important advantage of the full Steiner
analysis when querying relationships among a group of
proteins.

To further illustrate the power of our approach for querying
interaction networks, we explored the “neighborhood” of the
Steiner tree in Fig. 1. If we were to include all nodes that are
adjacent to the tree ((1,1)-augmented tree), the subgraph
would have over 437 nodes. The analysis of so large a number
of interactions certainly would be arduous. The (2,1)-aug-
mented tree contains 1,600 nodes. However, when we exam-

FIG. 1. a, a list of distinguished genes with their corresponding measure of differential expression. b, a Steiner tree backbone connecting
target GAL80 (red, highlighted) with the set of proteins exhibiting "2-fold differential expression (red nodes). t denotes an arc from TRANSFAC.
c denotes an arc from the ChIP-Chip data. b denotes an edge from BIND. s denotes an arc from SCPD. Shaded nodes represent proteins where
the corresponding genes show slightly less than a factor 2 differential expression. GAL80, transcriptional regulator involved in the repression
of GAL genes in the absence of galactose, inhibits transcriptional activation by Gal4p; GAL4, DNA-binding transcription factor required for the
activation of the GAL genes in response to galactose; MIG1, transcription factor involved in glucose repression; HAP4, subunit of the
glucose-repressed Hap2p/3p/4p/5p CCAAT-binding complex, a transcriptional activator of respiratory gene expression; YML089C, hypothet-
ical; PHO89, Na#/Pi cotransporter; PUT3, positive regulator of PUT (proline utilization) genes; PUT1, proline oxidase; ABF1, DNA binding
protein involved in transcriptional activation and gene silencing; ATO3, plasma membrane protein, possible role in export of ammonia from the
cell; ACS1, acetyl-CoA synthetase isoform, expressed during growth on nonfermentable carbon sources; CAT8, zinc cluster protein involved
in activating gluconeogenic genes; JEN1, lactate transporter whose expression is derepressed by transcriptional activator Cat8p under
nonfermentative growth conditions; SFC1, mitochondrial succinate-fumarate transporter, required for ethanol and acetate utilization; ICL1,
isocitrate lyase, responsible for a key reaction of the glyoxylate cycle; PCK1, phosphoenolpyruvate carboxykinase, key enzyme in glucone-
ogenesis; FBP1, fructose-1,6-bisphosphatase, required for glucose metabolism.

FIG. 2. The backbone created for the GAL80 distinguished set using the union of the shortest paths to GAL80. Dark nodes represent
members of the distinguished set. Edges are labeled according to the conventions followed in Fig. 1.
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ine the (1,2)-augmented tree, we are left with only 25 addi-
tional nodes. The (1,3)-augmented tree contains only one
additional node. This augmented backbone is depicted in Fig.
3. Note that some of these nodes have extremely high de-
grees of connectivity in the full interaction network and that
many GAL genes appear in this set.

Transcriptional Regulatory Networks Versus Interaction Net-
works—We used a heat shock microarray data set available
from Gene Expression Omnibus (platform GPL51, series
GSE18 (16)) to investigate subnetworks found by the Steiner
approach when only protein-DNA or both protein-DNA and
protein-protein interactions are used. This data set is com-
prised of samples collected 20 min after yeast cells are ex-
posed to a temperature shift from either 17, 21, 25, 29, or 33
to 37 °C. The goal is to identify plausible regulatory subnet-
works that connect the most highly overexpressed genes in
these experiments. Results shown here use the data from the
29 to 37 °C temperature shift experiment (other temperature
shift experiments generate similar subnetworks, data not
shown). The distinguished set is composed of the 12 most
highly overexpressed genes between these conditions (Table

II). Two types of experiments were conducted to study the
usefulness of using different underlying networks.

If we restrict our attention to only protein-DNA interactions,
the Steiner tree approach searches for plausible transcrip-
tional subnetworks regulating the distinguished set of genes.
One such transcriptional subnetwork is depicted in Fig. 4.

In this subnetwork, the general transcription factor RAP1 is
shown to influence the transcription of the HSP12 gene (which
encodes a plasma membrane-located heat shock protein)
and of the genes encoding the MSN4 and HSF1 proteins.
Both MSN4 and HSF1 are transcription factors known to be
up-regulated under some stress conditions (27). Although

FIG. 3. The (1,2)-augmented tree for
the GAL80 backbone. Dark gray nodes
represent proteins not in the backbone
but having a distance of 1 from the back-
bone and at least two distinct (undi-
rected) paths to the backbone.

FIG. 4. Transcriptional subnetwork for the 12 most highly over-
expressed yeast genes in the temperature shift from 29 to 37 °C
(16). Here the interaction network is restricted to only protein-DNA
interactions. Edges are labeled according to the conventions followed
in Fig. 1. RAP1, repressor activator protein; MSN4, transcription
factor activated in stress conditions; HSF1, heat shock transcription
factor; HSP12, plasma membrane-localized protein that protects
membranes from desiccation, induced by heat shock; YHR087W,
hypothetical; HSP104, responsive to heat shock; SSA4, member of
70-kDa heat shock protein family; TSL1, subunit of trehalose-6-phos-
phate synthase/phosphatase complex; GLK1, glucokinase; MED8,
member of RNA polymerase II transcriptional regulation mediator;
HXK1, hexokinase isoenzyme 1. The remaining six differentially ex-
pressed genes from Table II were not present in the interaction
network restricted to protein-DNA interactions.

TABLE II
Distinguished set for a 29 to 37 °C heat shock experiment

Systematic name Common name log expression ratio

YFL014W HSP12 7.608
YER103W SSA4 6.844
YMR105C PGM2 6.445
YHR087W YHR087W 6.271
YGR248W SOL4 5.718
YPR160W GPH1 5.665
YML128C MSC1 5.43
YFR053C HXK1 5.265
YLR178C TFS1 5.265
YML100W TSL1 5.251
YMR250W GAD1 5.246
YLL026W HSP104 5.224
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both transcription factors have unique transcriptional binding
targets, they share two targets in this subnetwork: the genes
encoding proteins HSP104 and SSA4. The coordination be-
tween these two transcription factors has been noted in the
case of the transcriptional regulation of HSP104 (28, 29) but
not in the case of SSA4, suggesting that this mechanism of
stress response might be more widely used than previously
thought. This subnetwork shows a highly structured transcrip-
tional response to heat shock in yeast. A previous study
reported an MSN4- and HSF1-dependent increase in protein
abundance of several members of our subnetwork following
heat shock treatment (27). More specifically, increases in the
protein levels of HXK1, GLK1, HSP12, and enzymes involved
in trehalose metabolism (although not TSL1) were shown to
be dependent upon MSN4. Increases in the protein levels of
HSP104, SSA4, and HSP12 were shown to be dependent
upon HSF1 following heat shock treatment. Our subnetwork
suggests a structured transcriptional response that can ex-
plain these dependences. We note that although it would have
been possible (but probably long and arduous) to identify
some parts of this Steiner solution by literature searches,
other key links would have been very difficult to identify be-
cause they originate from ChIP-Chip experiments. The Steiner
approach thus provides a rapid way of constructing plausible
regulatory networks of a manageable size that can be subse-
quently expanded and used to direct effective literature
searches and further experiments (much more so than simply
using the distinguished set directly). Furthermore the Steiner
solution provides additional information when hypothetical
proteins are part of the distinguished set. For example, the
hypothetical protein YHR087W, which is up-regulated under
conditions of heat shock, seems to be the transcriptional
target of MSN4 as are the HSP104, SSA4, and GLK1 proteins
according to information provided by the Steiner solution.

When both protein-DNA and protein-protein interactions
are used in the underlying interaction network, the Steiner tree
algorithm provides solutions containing elements of transcrip-
tional regulation as well as direct protein-protein regulation.
Fig. 5 shows such a subnetwork for the heat shock-distin-

guished set of genes. In this subnetwork, the only transcrip-
tion factor present, HSF1, influences the transcription of four
genes that encode the proteins SSA4, TSL1, HSP104, and
CPR1. HSP104 and CPR1 are involved in protein-protein
interactions with other elements of the subnetwork, including
LSP1, which is a central Steiner point in this subnetwork.

The LSP1 protein is believed to play a role in heat stress
resistance and to negatively regulate the kinase Pkh1p and
downstream signaling pathways PKC1-mitogen-activated
protein and YPK1 (30). Several elements of this subnetwork
are involved in carbohydrate metabolism including HXK1,
GPH1, HXT7, TSL1, and PGM2. This has been noted previ-
ously and is possibly caused by the increase in ATP utilization
following heat shock (16). Overall this subnetwork suggests
an important role for chaperone protein complexes and pro-
teins involved in carbohydrate metabolism pathways follow-
ing heat shock treatment.

It should be noted that the subnetworks in Figs. 4 and 5
provide useful and different information. Although the tran-
scriptional network in Fig. 4 is easier to interpret and readily
suggests a sequence of events (or possibly “causation”) fol-
lowing heat shock treatment, Fig. 5 does connect more ele-
ments of the distinguished set (because the interaction net-
work is much larger when protein-protein interactions are
included) and provides some insight as to which protein com-
plexes are involved in the response.

Finding Regulators of Pathways—Ihmels et al. (17) estimate
that approximately half of the metabolic proteins in any path-
way exhibit co-expression. Our methodology allows us to
further evaluate this claim and to identify regulators of these
metabolic proteins in the interaction network. We use the 20
microarray results from Ideker et al. (14) containing wild-type
and single deletions of GAL genes, 10 metabolic pathways
from Saccharomyces Genome Database (25), and an interac-
tion network consisting of data from only TRANSFAC, ChIP-
Chip, and SCPD (BIND is excluded from this analysis because
we want to only look at transcriptional regulation).

The pathways chosen can be divided into two groups
based on their proximity to the galactose pathway in the yeast
metabolic network. Table III lists these pathways. The “Close
to galactose” category contains those pathways that are
nearly adjacent to the galactose pathway, whereas the “Far
from galactose” category contains several pathways that are
not directly related to galactose. For each pathway, we begin
by identifying a set of co-expressed genes based on their
pairwise correlation coefficients of the log ratio expression
levels over all 20 conditions. A subset of the metabolic pro-
teins were chosen if their correlation coefficient was suffi-
ciently high (a conservative &0.35). We computed a Steiner
tree using the weight function w1 for the set of co-expressed
genes in each pathway. If the co-expression of these genes is
due to the fact that the genes share a common set of regu-
lators, then we expect to find relatively small Steiner trees. If
so, this may in turn imply that a small number of related

FIG. 5. Interaction subnetwork for the 12 most highly overex-
pressed yeast genes in the temperature shift from 29 to 37 °C
(16). The interaction network includes both protein-protein and pro-
tein-DNA interactions. The remaining three differentially expressed
genes from Table II were not present in the interaction network. Edges
are labeled according to the conventions followed in Fig. 1.
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transcription factors are responsible for the expression of
these genes.

Our results indicate that the size of the Steiner trees for the
set of pathways close to the galactose pathway are signifi-
cantly below the expected size of a random tree (Table III,
columns "V", R, and p value) with the exception of the Krebs
cycle. The p values were estimated empirically by generating
random sets of size "V". Fig. 6 shows three interesting exam-
ples of very small Steiner trees for co-expressed genes in
metabolic pathways. In the gluconeogenesis pathway, there
exists a Steiner tree for eight of nine of the co-expressed
genes with only three Steiner points: ABF1, RAP1, and GCR2.
ABF1 is known to be a multifunctional transcription factor with
a role in carbon source regulation (25). The RAP1 transcription
factor has been shown to target almost 300 yeast genes,
including ENO1, ENO2, FBA1, and PGK. GCR2 is an impor-
tant transcription factor for the activation of glycolysis (FBA1
and TDH2 are involved in both glycolysis and gluconeogene-
sis). Note that this tree has many fewer Steiner points than
expected by a random sampling, and the edges originate from

a variety of data sources including the ChIP-Chip source.
A second example is the Steiner tree formed by the co-

expressed genes of the galactose pathway. GAL4 is the
unique Steiner point. This is as expected because it is known
to be the central transcription factor in the regulation of the
galactose pathway (2). A third example consists of the co-
expressed genes of the glycolysis pathway where nine of 11
are present in the network and can be connected together by
only two Steiner points, GCR1 and GCR2. Both Steiner points
are known to positively regulate the transcription of glycolytic
genes and may function in a complex together (31, 32).

The pathways that are far from the galactose pathway serve
as a control and, as expected, have Steiner trees that are
close to the expected size of a random tree (Table III, R and p
value columns). Because the expression experiments perturb
the galactose pathway (through the deletion of GAL genes),
the genes we identify as co-expressed in these pathways are
likely unrelated to galactose metabolism and have no obvious
physiological relevance (because this set of genes is essen-
tially chosen randomly, we do not expect to detect co-regu-

FIG. 6. A subset of the gluconeogenesis, galactose, and glycolysis pathways exhibiting strong co-expression (nodes within boxes)
and the resulting Steiner trees. Edges are labeled according to the conventions followed in Fig. 1.

TABLE III
Steiner transcriptional analysis of metabolic pathways

N is the total number of metabolic proteins in the pathway. C is the total number of co-expressed genes. "V" is the size of the Steiner tree
(number of nodes). If the Steiner tree is disconnected, we examined only the tree in this forest with the maximum number of leaves (L). R is
the average size of a Steiner tree with L leaves.

Pathway N C L "V" R p value

Close to galactose
Galactose metabolism 5 3 3 4 7.5 0.02
Krebs cycle 21 9 3 8 7.5 0.81
Gluconeogenesis 19 9 8 11 18.3 0
Glycolysis 18 11 9 11 20.3 0
Glucose fermentation 29 15 12 18 25.7 0

Far from galactose
Pentose phosphate pathway 9 3 2 5 5 0.72
De novo pyrimidine biosynthesis 10 5 4 7 10.2 0.02
Pantothenate and coenzyme A biosynthesis 13 5 2 5 5 0.72
Ergosterol biosynthesis 20 6 2 4 5 0.25
Lysine biosynthesis 7 5 4 9 10.2 0.31
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lation). This explains why the sizes of the optimal Steiner trees
are not significantly different from the size of random trees for
these pathways.

DISCUSSION

This study develops a method that generates insights into
the regulatory relationships between a set of genes/proteins.
Such sets of distinguished genes/proteins appear more fre-
quently in the literature as the results of high throughput gene
expression, protein expression, chemical-genetic, and ge-
netic interaction platforms are published. Unfortunately, from
the sets themselves, it is often difficult to ascertain gene/
protein significances and relationships. The interaction net-
works generated using standard protein interaction visualiza-
tion tools quickly become too complex for relevant
information to be extracted even when the distinguished sets
are of moderate size. Our framework allows for a backbone
containing likely relevant proteins to be computed quickly.
Additional heuristics allow for the augmentation of this back-
bone in biologically meaningful ways. We believe that our
approach provides an extremely useful methodology for the
extraction of biologically salient information from interaction
networks.

Our framework has identified an interesting subnetwork that
suggests a new connection between GAL80 and the diauxic
shift. The diauxic shift occurs when glucose and other fer-
mentable carbon sources have been exhausted in the growth
medium; this was not the case in the experimental conditions
used by Ideker et al. (14). Only those cultures with a GAL80
deletion mutant resulted in elevated expression levels of di-
auxic shift genes. We propose that these cells are prematurely
activating or priming the diauxic shift response and that
GAL80 contributes to the correct regulation of induction of
this response in wild-type cells. It has been observed that
GAL80-null cells grow slowly in raffinose (14), and this fact
may be a reflection of the competition between two opposing
pathways in these cells.

We also show that our framework when applied to graphs
containing only protein-DNA interactions is capable of finding
plausible transcriptional regulatory subnetworks. In particular,
the framework shows that the general transcription factors
RAP1 and HSF1 directly regulate a third of the most overex-
pressed genes in a temperature shift from 29 to 37 °C.

Gene expression experiments often incorrectly identify
genes as being differentially expressed due to the technical
and biological errors associated with microarrays. The sub-
networks approach in this study can complement current
statistical approaches to locating these false positives. If
genes from the distinguished set are not closely connected to
remaining members (and are therefore not physiologically
related to the remaining members), such genes are possibly
more likely to be simply experimental artifacts and could be
considered less interesting. It is estimated that current tran-
scriptional regulatory networks capture only 10% of existing

transcriptional regulatory relationships (33). Such false nega-
tives in the interaction network may result in Steiner trees
containing longer paths that are not biologically relevant (or at
least very difficult to rationalize). False positive edges in the
interaction network may also cause our approach to return
irrelevant trees. Our implementation explicitly labels edges
with the source of the interaction to help investigators navi-
gate such issues. Nevertheless, as the accuracy of the under-
lying interaction networks improves, the framework will be
able to find more plausible regulatory subnetworks.

The framework presented here is a first step. Better weight
functions for the nodes in the interaction network remain to be
developed to determine which such functions most closely
reflect biological reality. Expression measurements alone are
unlikely to return meaningful results in many contexts. It is
also possible to weight (with likelihoods) our confidence in
each interaction and integrate more types of data into the
interaction networks. Weightings that incorporate Gene On-
tology classifications and algorithms that use this information
to make choices as to how to build and augment the back-
bone may provide a solid improvement. The challenge will be
to find accurate ways to compute these more complex
problems.
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