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Abstract

In machine learning, one formulation of the
novelty detection problem is to build a detec-
tor based on a training sample consisting of
only nominal data. The standard (inductive)
approach to this problem has been to declare
novelties where the nominal density is low,
which reduces the problem to density level
set estimation. In this talk we consider the
setting where an unlabeled and possibly con-
taminated sample is also available at learning
time. We argue that novelty detection in this
semi-supervised setting is naturally solved by
a general reduction to a binary classification
problem. In particular, a detector with a
desired false positive rate can be achieved
through a reduction to Neyman-Pearson clas-
sification. Unlike the inductive approach,
our approach yields detectors that are opti-
mal (e.g., statistically consistent) regardless
of the distribution on novelties. Therefore, in
novelty detection, unlabeled data have a sub-
stantial impact on the theoretical properties
of the decision rule.

1 Introduction

Several recent works in the machine learning literature
have addressed the issue of novelty detection. The ba-
sic task is to build a decision rule that distinguishes
nominal from novel patterns. The learner is given a
random sample x1, . . . , xm ∈ X of nominal patterns,
obtained, for example, from a controlled experiment
or an expert. Labeled examples of novelties, however,
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are not available. The standard approach has been to
estimate a level set of the nominal density (Schölkopf
et al., 2001; Steinwart et al., 2005; Vert and Vert, 2006;
El-Yaniv and Nisenson, 2007; Hero, 2007), and to de-
clare test points outside the estimated level set to be
novelties. We refer to this approach as inductive nov-
elty detection.

In this paper we incorporate unlabeled data into nov-
elty detection, and argue that this framework offers
substantial advantages over the inductive approach.
In particular, we assume that in addition to the nom-
inal data, we also have access to an unlabeled sample
xm+1, . . . , xm+n consisting potentially of both nomi-
nal and novel data. We assume that each xi, i =
m + 1, . . . ,m + n is paired with an unobserved label
yi ∈ {0, 1} indicating its status as nominal (yi = 0)
or novel (yi = 1), and that (xm+1, ym+1), . . . , (xn, yn)
are realizations of the random pair (X,Y ) with joint
distribution PXY . The marginal distribution of an un-
labeled pattern X is the contamination model

X ∼ PX = (1− π)P0 + πP1,

where Py, y = 0, 1, is the conditional distribution of
X|Y = y, and π = PXY (Y = 1) is the a priori proba-
bility of a novelty. Similarly, we assume x1, . . . , xm are
realizations of P0. We assume nothing about PX , P0,
P1, or π, although in Section 6 we do impose a natural
“resolvability” condition on the mixture PX .

We take as our objective to build a decision rule with a
small false negative rate subject to a fixed constraint
α on the false positive rate. Our emphasis here is
on semi-supervised novelty detection (SSND), where
the goal is to construct a general detector that could
classify an arbitrary test point. This general detector
can of course be applied in the transductive setting,
where the goal is to predict the labels ym+1, . . . , ym+n

associated with the unlabeled data. Our results extend
in a natural way to this setting.

Our basic contribution is to develop a general solution
to SSND by reducing it to Neyman-Pearson (NP) clas-
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sification, which is the problem of binary classification
subject to a user-specified constraint on the false pos-
itive rate. In particular, we argue that SSND can be
addressed by applying a NP classification algorithm,
treating the nominal and unlabeled samples as the two
classes. Our approach can effectively adapt to any
novelty distribution P1, in contrast to the inductive
approach which is only optimal in certain extremely
unlikely scenarios. Our learning reduction allows us to
import existing statistical performance guarantees for
Neyman-Pearson classification (Cannon et al., 2002;
Scott and Nowak, 2005) and thereby deduce general-
ization error bounds, consistency, and rates of conver-
gence for novelty detection.

SSND is particularly suited to situations where the
novelties lie in regions where the nominal density is
high. If a single novelty lies in a region of high nomi-
nal density, it will appear nominal. However, if many
novelties are present in the unlabeled data, the data
will be more concentrated than one would expect from
just the nominal component, and their presence can
be detected. SSND may also be thought of as semi-
supervised classification in the setting where labels
from one class are difficult to obtain (see discussion
of LPUE below). We emphasize that we do not as-
sume that novelties are rare, i.e., that π is very small,
as in anomaly detection. However, SSND is applicable
to anomaly detection provided m is sufficiently large.

We also discuss estimation of π and the special case of
π = 0, which is not treated in our initial analysis. We
present a hybrid approach that automatically reverts
to the inductive approach when π = 0, while preserv-
ing the benefits of the NP reduction when π > 0. In
addition, we describe a distribution-free one-sided con-
fidence interval for π, consistent estimation of π, and
testing for π = 0, which amounts to a general version
of the two-sample problem in statistics.

The paper is structured as follows. After reviewing
related work in the next section, we present the gen-
eral learning reduction to NP classification in Section
3, and apply this reduction in Section 4 to deduce
statistical performance guarantees for SSND. Section
5 presents our hybrid approach, while Section 6 ap-
plies learning-theoretic principles to the estimation of
π. Experiments are presented in Section 7, while con-
clusions are discussed in the final section. Proofs are
presented in the text as space permits.

2 Related work

Inductive novelty detection: Described in the introduc-
tion, this problem is also known as one-class classi-
fication (Schölkopf et al., 2001) or learning for only
positive (or only negative) examples. The standard

approach has been to assume that novelties are out-
liers with respect to the nominal distribution, and to
build a novelty detector by estimating a level set of the
nominal density (Vert and Vert, 2006; El-Yaniv and
Nisenson, 2007; Hero, 2007). As we discuss below, den-
sity level set estimation is equivalent to assuming that
novelties are uniformly distributed. Therefore these
methods can perform arbitrarily poorly (when P1 is
far from uniform, and still has significant overlap with
P0). In Steinwart et al. (2005), inductive novelty de-
tection is reduced to classification of P0 against P1 ,
wherein P1 can be arbitrary. However an i.i.d. sam-
ple from P1 is assumed to be available in addition to
the nominal data. In contrast, the semi-supervised
approach optimally adapts to P1, where only an un-
labeled contaminated sample is available besides the
nominal data; estimation of the proportion of anoma-
lies is also additionally addressed.

Classification with unlabeled: In transductive and
semi-supervised classification, labeled training data
{(xi, yi)}m

i=1 from both classes are given. The setting
proposed here is a special case where training data
from only one class are available. In two-class prob-
lems, unlabeled data typically have at best a slight
affect on constants, finite sample bounds, and rates
(Lafferty and Wasserman, 2008; Singh et al., 2009),
and are not needed for consistency. In contrast, we
argue that for novelty detection, unlabeled data are
essential for these desirable theoretical properties to
hold.

Learning from positive and unlabeled examples: Clas-
sification of an unlabeled sample given data from one
class has been addressed previously, but with certain
key differences from our work. This body of work is
often termed learning from “positive” and unlabeled
examples (LPUE), although in our context we tend to
think of nominal examples as negative. Terminology
aside, a number of algorithms have been developed
which proceed roughly as follows: First, identify a re-
liable set of negative examples in the unlabeled data.
Second, iteratively apply a classification algorithm to
the unlabeled data until a stable labeling is reached.
Several such algorithms are reviewed in Zhang and Lee
(2005), but they tend to be heuristic in nature and sen-
sitive to the initial choice of negative examples.

A theoretical analysis of LPUE is provided by Denis
(1998); Denis et al. (2005) from the point of view of
computer-theoretic PAC learnable classes in polyno-
mial time. While some ideas are common with the
present work (such as classifying the nominal sample
against the contaminated sample as a proxy for the
ultimate goal), our point of view is relatively different
and based on statistical learning theory. In particular,
our input space can be non-discrete and we assume the
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distributions P0 and P1 can overlap, which leads us to
use the NP classification setting and study universal
consistency properties.

We highlight here one strand of LPUE research having
particular relevance to our own. The idea of reducing
LPUE to a binary classification problem, by viewing
the positive data as one class and the unlabeled data as
the other, has been treated by Zhang and Lee (2005);
Liu et al. (2002); Lee and Liu (2003); Liu et al. (2003).
Most notably, Liu et al. (2002) provide sample com-
plexity bounds for VC classes for the learning rule that
minimizes the number of false negatives while control-
ling the proportion of false positives at a certain level.
Our approach extends theirs in several respects. First,
Liu et al. (2002) do not consider approximation error
or consistency, nor do the bounds established there
imply consistency. In contrast, we present a general
reduction that is not specific to any particular learn-
ing algorithm, and can be used to deduce consistency
or rates of convergence. Our work also makes several
contributions not addressed previously in the LPUE
literature, including our results relating to the case
π = 0 and to the estimation of π.

Multiple testing: The multiple testing problem is also
concerned with the simultaneous detection of many po-
tentially abnormal measurements (viewed as rejected
null hypotheses). A frequently considered model in
that framework, called the random effects model (see,
e.g., Efron et al., 2001), is essentially identical to our
contamination model. Some related ideas can be found
in our proposed method for estimating the proportion
of novelties and for estimating the corresponding pa-
rameter in the random effects model as in Meinshausen
and Rice (2006); Donoho and Jin (2004). However, a
crucial difference between this setting and SSND is
that P0 is assumed to be known in advance, and via
the choice of some statistic the problem is then usually
reduced to a one-dimensional setting where P0 is uni-
form and P1 is often assumed to have a concave cdf. In
our setting, we don’t assume any prior knowledge on
the distributions, the observations are in an arbitrary
space, and we attack the problem through a reduction
to classification, thus introducing broad connections to
statistical learning theory.

3 The fundamental reduction

To begin, we first consider the population version of
the problem, where the distributions are known com-
pletely. Recall that PX = (1−π)P0 +πP1 is the distri-
bution of unlabeled test points. Adopting a hypothesis
testing perspective, we argue that the optimal tests for
H0 : X ∼ P0 vs. H1 : X ∼ P1 are identical to the op-
timal tests for H0 : X ∼ P0 vs. HX : X ∼ PX . The

former are the tests we would like to have, and the lat-
ter are tests we can estimate by treating the nominal
and unlabeled samples as labeled training data for a
binary classification problem.

To offer some intuition, we first assume that Py has
density hy, y = 0, 1. According to the Neyman-
Pearson lemma (Lehmann, 1986), the optimal test
with size (false positive rate) α for H0 : X ∼ P0 vs.
H1 : X ∼ P1 is given by thresholding the likelihood
ratio h1(x)/h0(x) at an appropriate value. Similarly,
letting hX = (1−π)h0+πh1 denote the density of PX ,
the optimal tests for H0 : X ∼ P0 vs. HX : X ∼ PX

are given by thresholding hX(x)/h0(x). Now notice

hX(x)
h0(x)

= (1− π) + π
h1(x)
h0(x)

.

Thus, the likelihood ratios are related by a simple
monotone transformation, provided π > 0. Further-
more, the two problems have the same null hypothe-
sis. Therefore, by the theory of uniformly most pow-
erful tests (Lehmann, 1986), the optimal test of size
α for one problem is also optimal, with the same size

α, for the other problem. In other words, we can dis-
criminate P0 from P1 by discriminating between the
nominal and unlabeled distributions. Note the above
argument does not require knowledge of π other than
π > 0.

The hypothesis testing perspective also sheds light on
the inductive approach. In particular, estimating the
nominal level set {x : h0(x) ≥ λ} is equivalent to
thresholding 1/h0(x) at 1/λ. Thus, the density level
set is an optimal decision rule provided the novelty
distribution has a constant density. The assumption
of uniform P1 is effectively the approach implicitly
adopted by a majority of works on novelty detection.

We now drop the requirement that P0 and P1 have
densities. Let f : Rd → {0, 1} denote a classifier. For
y = 0, 1, let

Ry(f) := Py(f(X) �= y)

denote the false positive rate (FPR) and false negative
rate (FNR) of f , respectively. The optimal FNR for a
classifier with FPR ≤ α, 0 ≤ α ≤ 1, is

R
∗
1,α := inf R1(f) (1)

s.t. R0(f) ≤ α

where the inf is over all possible classifiers. Similarly,
introduce

RX(f) := PX(f(X) = 0) = πR1(f)+(1−π)(1−R0(f))

and let

R
∗
X,α := inf RX(f) (2)

s.t. R0(f) ≤ α,



         467

Novelty detection: Unlabeled data definitely help

where again the inf is over all possible classifiers. In
this paper we will always assume that the infima in
(1) and (2) are achieved by some classifier having ex-
actly R0(f) = α (in Section 4, we will correspondingly
assume that this holds when the inf is over a class F
of classifiers). It can be shown that this assumption is
always satisfied if randomized classifiers are allowed.

By the following result, the optimal classifiers for these
two problems are the same. Furthermore, one direc-
tion of this equivalence also holds in an approximate
sense. In particular, approximate solutions to X ∼ P0

vs. X ∼ PX translate to approximate solutions for
X ∼ P0 vs. X ∼ P1. The following theorem con-
stitutes our main learning reduction in the sense of
Beygelzimer et al. (2005):
Theorem 1. Consider any α, 0 ≤ α ≤ 1 , and assume

π > 0 . Let f be such that R0(f) = α. Then RX(f) =
R
∗
X,α iff R1(f) = R

∗
1,α.

More generally, let f now be arbitrary. Let L1,α(f) =
R1(f) − R

∗
1,α and LX,α(f) = RX(f) − R

∗
X,α denote

the excess losses (regrets) for the two problems, and

assume π > 0. If R0(f) ≤ α + �, then

L1,α(f) ≤ π
−1(LX,α(f) + (1− π)�) .

Proof. Suppose RX(f) = R
∗
X,α but R1(f) > R

∗
1,α. Let

f
� be such that R0(f �) = α and R1(f �) < R1(f). Then

RX(f �) = (1− π)(1−R0(f �)) + πR1(f �)
= (1− π)(1− α) + πR1(f �)
< (1− π)(1− α) + πR1(f) = RX(f) = R

∗
X,α

contradicting minimality of R
∗
X,α. The converse is sim-

ilar, and can also be deduced from the final state-
ment. To prove the final statement, for any f we
have RX(f) = (1 − π)(1 − R0(f)) + πR1(f) . Also,
R
∗
X,α = πR

∗
1,α +(1−π)(1−α), by the first part of the

theorem. By subtraction we have

L1,α(f) = π
−1(LX,α(f) + (1− π)(R0(f)− α))

≤ π
−1(LX,α(f) + (1− π)�).

4 Statistical performance guarantees

Theorem 1 suggests that we may estimate the solu-
tion to (1) by solving an “artificial” binary classifi-
cation problem, treating x1, . . . , xm as one class and
xm+1, . . . , xm+n as the other. If a learning rule is con-
sistent or achieves certain rates of convergence for the
Neyman-Pearson classification problem X ∼ P0 vs.
X ∼ PX (Cannon et al., 2002; Scott and Nowak, 2005),
then those properties will hold for the same learning
rule viewed as a solution to X ∼ P0 vs. X ∼ P1.
In other words, if LX,α, � → 0, then L1,α → 0 at the

same rate. Although π will not affect the rate of con-
vergence, Theorem 1 suggests that small π makes the
problem harder in practice, a difficulty which cannot
be avoided.

As an illustrative example, we consider the case of a
fixed set of classifiers F having finite VC-dimension
(Vapnik, 1998) and consider

�fτ = arg min
f∈F

�RX(f)

s.t. �R0(f) ≤ α + τ ,

where �R is the empirical version of the corresponding
error quantity. Define the precision of a classifier f

for class i as Qi(f) = P (Y = i|f(X) = i) . Then we
have the following result bounding the difference of the
quantities Ri and Qi to their optimal values over F :
Theorem 2. Assume the nominal and unlabeled data

are i.i.d. realizations of their respective distributions.

Let F be a set of classifier of VC-dimension V . De-

note f
∗ the optimal classifier in F with respect to

the criterion in (1). Fixing δ > 0 define �k =�
V log k−log δ

k . There exists absolute constants c, c
�

such that, if we choose τ = c�n , the following bounds

hold with probability 1− δ :

R0( �fτ )− α ≤ c
�
�n ;

R1( �fτ )−R1(f∗) ≤ c
�
π
−1(�n + �m)

Qi(f∗)−Qi( �fτ ) ≤ c
�

P (f∗(X) = i)
(�n + �m) , i = 0, 1 .

The primary technical ingredients in the proof are
Theorem 3 of Scott and Nowak (2005) and the learn-
ing reduction of Theorem 1 above. The above theo-
rem shows that the procedure is consistent inside the
class F for all criteria considered, i.e., these quanti-
ties decrease (resp. increase) asymptotically to their
optimal value over the class F . This is in contrast
to the statistical learning bounds previously obtained
(Liu et al., 2002, Thm. 2), which do not imply con-
sistency. Also, following Scott and Nowak (2005), by
extending suitably the argument and the method over
a sequence of classes Fk having the universal approx-
imation property, we can conclude that this method
is universally consistent. Therefore, although techni-
cally simple, the reduction result of Theorem 1 allows
us to deduce stronger results than the existing ones
concerning this problem. This can be paralleled with
the result that inductive novelty detection can be re-
duced to classification against uniform data (Steinwart
et al., 2005), which made the statistical learning study
of that problem significantly simpler.

We emphasize that the above result is but one of
many possible theorems that could be deduced from
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the learning reduction. Other algorithms for which
PAC bounds are known could easily be treated. We
also remark that, although the previous theorem cor-
responds to the semi-supervised setting, an analogous
transductive result is easily obtained by incorporat-
ing an additional uniform deviation bound relating the
empirical error rates on the unlabeled data to the true
error rates.

5 The case π = 0 and a hybrid method

The preceding analysis only applies when π > 0.
When π = 0, the learning reduction is trying to classify
between two identical distributions, and the resulting
decision rule could be arbitrarily poor. In this situ-
ation, perhaps the best we can expect is to perform
as well as an inductive method. Therefore we ask the
following question: Can we devise a method which,
having no knowledge of π, shares the properties of the
learning reduction above when π > 0, and reduces to
the inductive approach otherwise? Our answer to the
question is “yes” under fairly general conditions.

The intuition behind our approach is the following:
The inductive approach essentially performs density
level set estimation. As shown in Steinwart et al.
(2005), level set estimation can be achieved by gen-
erating an artificial uniform sample and perform-
ing weighted binary classification against the nominal
data. Thus, our approach is to sprinkle a vanishingly
small proportion of uniformly distributed data among
the unlabeled data. When π = 0, the uniform points
will influence the final decision rule, but when π > 0,
they will be swamped by the actual novelties.

To formalize this approach, let 0 < pn < 1 be a se-
quence tending to zero. Assume that S is a set which
is known to contain the support of P0 (obtained, e.g.,
through support estimation), and let P2 be the uni-
form distribution on S. Consider the following pro-
cedure: Let k ∼ binom(n, pn). Draw k independent
realizations from P2, and redefine xm+1, . . . , xm+k to
be these values. (In practice, the uniform data would
simply be appended to the unlabeled data, so that in-
formation is not erased. The present procedure, how-
ever, is slightly simpler to analyze.)

The idea now is to apply the SSND learning reduction
from before to this modified unlabeled data. Toward
this end, we introduce the following notations. We
refer to any data point that was drawn from either
P1 or P2 as an operative novelty. The proportion of
operative novelties in the modified unlabeled sample
is π̃ := π(1 − pn) + pn. The distribution of operative
novelties is P̃1 := π(1−pn)

π̃ P1 + pn

π̃ P2, and the overall
distribution of the modified unlabeled data is P̃X :=

π̃P̃1 +(1− π̃)P0. Let R2, R
∗
2,α, R̃1, R̃

∗
1,α, R̃X , and R̃

∗
X,α

be defined in terms of P2, P̃1, and P̃X , respectively, in
analogy to the definitions in Section 3. Also denote
L2,α(f) = R2(f)−R

∗
2,α, L̃1,α(f) = R̃1(f)− R̃

∗
1,α, and

L̃X,α = R̃X(f)− R̃
∗
X,α.

By applying Theorem 1 to the modified data, we im-
mediately conclude that if R0(f) ≤ α + �, then

L̃1,α ≤
1
π̃

(L̃X,α+(1−π̃)�) =
1
π̃

(L̃X,α+(1−π)(1−pn)�).
(3)

By previously cited results on Neyman-Pearson classi-
fication, the quantities on the right-hand side can be
made arbitrarily small as m and n grow. The following
result translates this bound to the kind of guarantee
we are seeking.
Theorem 3. Let f be a classifier with R0(f) ≤ α+ �.

If π = 0, then

L2,α(f) ≤ p
−1
n (L̃X,α + (1− pn)�).

If π > 0, then

L1,α(f) ≤ 1
π(1− pn)

(L̃X,α + (1− π)(1− pn)� + pn).

To interpret the first statement, note that L2,α(f)
is the inductive regret. The bound implies that
L2,α(f) → 0 as long as both � = R0(f)− α and L̃X,α

tend to zero faster than pn. This suggests taking pn

to be a sequence tending to zero slowly. The second
statement is similar to the earlier result in Theorem 1,
but with additional factors of pn. These factors sug-
gest choosing pn tending to zero rapidly, in contrast to
the first statement, so in practice some balance should
be struck.

Proof. If π = 0, then L̃1,α = L2,α and the first state-
ment follows trivially from (3). To prove the second
statement, denote βn := π(1−pn)

π̃ , and observe that

R̃
∗
1,α = inf

R0(f)≤α
R̃1(f)

= inf
R0(f)≤α

[βnR1(f) + (1− βn)R2(f)]

≤ βnR
∗
1,α + (1− βn).

Therefore

L̃1,α(f) = R̃1(f)− R̃
∗
1,α

≥ βnR1(f) + (1− βn)R2(f)− βnR
∗
1,α − (1− βn)

≥ βn(R1(f)−R
∗
1,α)− (1− βn)

= βnL1,α(f) + (1− βn)

and we conclude

L1,α(f) ≤ 1
βn

L̃1,α +
1− βn

βn

≤ 1
π(1− pn)

(L̃X,α(f) + (1− π)(1− pn)� + pn).
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We remark that this hybrid procedure could be ap-
plied with any prior distribution on novelties besides
uniform. In addition, the hybrid approach could also
be practically useful when n is small, assuming the ar-
tificial points are appended to the unlabeled sample.

6 Estimating π and testing for π = 0

We first treat the population case. For convenience, we
assume that the support of P1 does not entirely contain
the support of P0. This restriction can be relaxed, with
some additional work, by alternately assuming that it
is impossible to write P1 = (1 − p)P �1 + pP0 for some
P
�
1 and p > 0.

Theorem 4. For any classifier f , we have the inequal-

ity

π ≥ 1−RX(f)−R0(f)
1−R0(f)

. (4)

Optimizing this bound over all classifiers for a fixed

value of R0(f) = α , we obtain for any α > 0:

π ≥ 1−
R
∗
X,α

1− α
.

Furthermore,

π = 1 +
dR

∗
X,α

dα

���
α=1

.

Proof. For the first inequality, just write for any clas-
sifier f

1−RX(f) = PX(f(X) = 1)
= (1− π)P0(f(X) = 1) + πP1(f(X) = 1)
≤ (1− π)R0(f) + π ,

resulting in the inequality. For a fixed α = R0(f(X)) ,
optimizing the bound over possible classifiers is equiv-
alent to minimizing RX(f) , yielding R

∗
X,α. By Theo-

rem 1,
R
∗
X,α = (1− π)(1− α) + πR

∗
1,α.

By assumption on the supports of P1 and P0, we know
that R

∗
1,α = 0 for all α > α0 for some α0. Taking the

derivative of both sides at 1− establishes the result.

The last part of this theorem suggests estimating π

by estimating the slope of R
∗
X,α at its right endpoint.

This can be related to the problem of estimating a
monotone density at its right endpoint. Rather than
pursue this approach here, however, we instead employ
learning-theoretic techniques to use (4) for deriving a
lower confidence bound on π:

Theorem 5. Consider a classifier set F for which we

assume a uniform error bound of the following form is

available: for any distribution Q on X , with probabil-

ity at least 1 − δ over the draw of an i.i.d. sample of

size n according to Q , we have

∀f ∈ F
���Q(f(X) = 1)− �Q(f(X) = 1)

��� ≤ �n(F , δ) ,

(5)
where �Q denotes the empirical distribution built on the

sample.

Then the following quantity is a lower bound on π with

probability 1 − δ (over the draw of the nominal and

unlabeled samples) :

�π−(F , δ) = sup
f∈F

1− �RX(f)− �R0(f)− (�n + �m)
(1− �R0(f)− �m)+

,

where the expression is formally defined to be −∞
whenever the denominator is 0, so that the correspond-

ing classifier is in fact discarded.

Note that there are two balancing forces at play. From
the population version, we know that we would like
to have α as close as possible to 1 for estimating the
derivative of R

∗
X,α at α = 1. This is balanced by the

estimation error which makes estimations close to α =
1 unreliable because of the denominator. Taking the
sup along the curve takes in a sense the best available
tradeoff.

Proof. As in the proof of the previous lemma, write
for any classifier f :

PX(f(X) = 1) ≤ (1− π)P0(f(X) = 1) + π ,

from which we deduce after applying the uniform
bound

1− �RX(f)− �n = �PX(f(X) = 1)− �n

≤ (1− π)( �R0(f) + �m) + π ,

which can be solved whenever 1− �R0(f)−�m ≥ 0 .

The following result shows that �π−(F , δ) leads to a
strongly universally consistent estimate of π. The
proof relies on Theorem 5 in conjunction with the
Borel-Cantelli lemma.

Theorem 6. Consider a sequence F1,F2, . . . of classi-

fier sets having the universal approximation property:

for any measurable function f
∗ : X → {0, 1} , and any

distribution Q , we have

lim inf
k→∞

inf
f∈Fk

Q(f(X) �= f
∗(X)) = 0 .
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Suppose also that each class Fk has finite VC-

dimension Vk, so that for each Fk we have a uni-

form confidence bound of the form (5) for �n(Fk, δ) =

3
�

Vk log(n+1)−log δ/2
n . Define

�π−(δ) = sup
k

�π−
�
Fk, δk

−2
�

.

If δ = (mn)−2, then �π− converges to π almost surely

as m,n→∞.

The lower confidence bound on π can also be used as
a test for π = 0, i.e., a test if there are any novelties
in the test data:
Corollary 1. Let F be a set of classifiers. If

�π−(F , δ) > 0, then we may conclude, with confidence

1− δ, that the unlabeled sample contains novelties.

It is worth noting that testing this hypothesis is equiv-
alent to testing if P0 and PX are the same distri-
bution, which is the classical two-sample problem in
an arbitrary input space. This problem has recently
generated attention in the machine learning commu-
nity (Gretton et al., 2007), and the approach proposed
here, using arbitrary classifiers, seems to be new. Our
confidence bound could of course also be used to test
the more general hypothesis π ≤ π0 for a prescribed
π0, 0 ≤ π0 < 1 .

7 Experiments

Despite previous work on LPUE, as discussed in Sec-
tion 2, the efficacy of our proposed learning reduction
has not been empirically demonstrated. To illustrate
the impact of unlabeled data on novelty detection,
we applied our framework to some datasets which are
common benchmarks for binary classification1. Each
dataset consists of both positive and negative exam-
ples. The negative examples were taken to be nominal.
Each dataset is also divided into training and test ex-
amples. The positive training examples were not em-
ployed in the experiments. The test data were divided
into two halves. The first half was used as the unla-
beled data. The second half was used to estimate the
area under the ROC (AUC) of each method. Here, the
ROC is the one which views P0 as the null distribution
and P1 as the alternative.

We implemented the inductive novelty detector using a
thresholded kernel density estimate (KDE) with Gaus-
sian kernel, and SSND using a plug-in KDE classi-
fier. For each class, a single kernel bandwidth param-
eter was employed, and optimized by maximizing a
cross-validation estimate of the area under the ROC
(AUC). We emphasize that this ROC is different from

1http://ida.first.fhg.de/projects/bench/

the one used to evaluate the methods (see previous
paragraph). In particular, it still views P0 as the null
distribution, but now the alternative distribution is
taken to be PX for SSND, and an artificial uniform
distribution for the inductive detector. The label in-
formation is thus not used at any stage by SSND.

Figure 1 depicts some typical results. The top graph
shows ROCs for a dataset where the two classes are
fairly well separated, meaning the novelties lie in the
tails of the nominal class. Thus the inductive method
is close to the semi-supervised method. The middle
graph represents the splice dataset, where the induc-
tive method does worse than random guessing. To
illustrate the method on different values of π, we re-
duced the proportion of novelties in the unlabeled data
by various amounts. The bottom graph in Figure 1
shows the results for the waveform data, where the two
classes also have a significant amount of overlap, when
π = 0.1. We will report extensive numerical results
elsewhere, including results for the hybrid approach
and in the transductive setting.

8 Conclusions

We have shown that semi-supervised novelty detection
reduces to Neyman-Pearson classification, thereby in-
heriting the properties of NP classification algorithms.
We have applied techniques from statistical learning
theory, such as uniform deviation inequalities, to es-
tablish distribution free performance guarantees for
SSND, as well as a lower bound and consistent esti-
mator for π, and test for π = 0. Our approach op-
timally adapts to the unknown novelty distribution,
unlike inductive approaches, which operate as if nov-
elties are uniformly distributed. Indeed, our analysis
strongly suggests that in novelty detection, unlike tra-
ditional binary classification, unlabeled data are essen-
tial for attaining optimal performance in terms of tight
bounds, consistency, and rates of convergence.
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