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Adult soft tissue sarcomas are a heterogeneous group
of tumors, including well-described subtypes by his-
tological and genotypic criteria, and pleomorphic tu-
mors typically characterized by non-recurrent genetic
aberrations and karyotypic heterogeneity. The latter
pose a diagnostic challenge, even to experienced pa-
thologists. We proposed that gene expression profil-
ing in soft tissue sarcoma would identify a genomic-
based classification scheme that is useful in diagnosis.
RNA samples from 51 pathologically confirmed cases,
representing nine different histological subtypes of
adult soft tissue sarcoma, were examined using the
Affymetrix U95A GeneChip. Statistical tests were per-
formed on experimental groups identified by cluster
analysis, to find discriminating genes that could sub-
sequently be applied in a support vector machine
algorithm. Synovial sarcomas, round-cell/myxoid li-
posarcomas, clear-cell sarcomas and gastrointestinal
stromal tumors displayed remarkably distinct and
homogenous gene expression profiles. Pleomor-
phic tumors were heterogeneous. Notably , a subset
of malignant fibrous histiocytomas, a controversial
histological subtype, was identified as a distinct
genomic group. The support vector machine algo-
rithm supported a genomic basis for diagnosis, with
both high sensitivity and specificity. In conclusion,
we showed gene expression profiling to be useful in
classification and diagnosis, providing insights into
pathogenesis and pointing to potential new therapeu-
tic targets of soft tissue sarcoma. (Am J Pathol 2003,
163:691–700)

Soft tissue sarcomas (STS) define a group of histologi-
cally and genetically diverse cancers that account for
approximately 1% of all adult malignancies with an an-
nual incidence in the United States of approximately 8000

cases.1 There are over 50 subtypes of this disease, which
are currently diagnosed by genetic and morphological
criteria.2,3 Those most frequently seen include liposar-
coma, leiomyosarcoma, malignant fibrous histiocytoma
(MFH), fibrosarcoma, and synovial sarcoma.4 The molec-
ular classification of STS includes two major categories
on the basis of 1) a single recurrent genetic alteration,
such as chromosomal translocations (synovial sarcoma,
myxoid/round-cell liposarcoma, clear-cell sarcoma) or
activating mutation (KIT), or 2) non-recurrent genetic ab-
errations, which form part of a complex abnormal karyo-
type.5

It is possible to classify some STS by their recurrent
chromosomal translocations or somatic mutation,6 such
as the presence of SYT-SSX fusion transcript in synovial
sarcoma,7,8 EWS-ATF1 in clear-cell sarcoma,9,10 TLS-
CHOP in myxoid/round-cell liposarcoma11,12 and ASPL-
TFE3 in alveolar soft-part sarcoma.13 Most of these trans-
locations produce chimeric transcription factors, which
presumably deregulate the expression of several target
genes.14 In the case of gastrointestinal stromal tumors
(GIST), a distinct somatic mutation has been described in
KIT,15–17 which leads to ligand-independent constitutive
activation of its encoded receptor tyrosine kinase. This in
turn results in altered cell proliferation and tumorigenesis.

The group of tumors characterized by numerous, non-
recurrent chromosomal alterations includes MFH, con-
ventional fibrosarcoma, leiomyosarcoma, de-differenti-
ated liposarcoma and pleomorphic liposarcoma. In
particular, the diagnosis of MFH has been long contro-
versial. Originally described in the 1960s as a fibrous
xanthoma,18–20 MFH was considered a true histiocytic
tumor displaying facultative fibroblastic properties. Sub-
sequent ultrastructural evaluation found the predominant
cell type to be in fact a fibroblast or one of its variants,
leading to the conclusion that MFH should be reclassified
as pleomorphic fibrosarcoma.21,22 Others consider MFH to
be a final common pathway for certain types of STS and
represent tumor progression or de-differentiation.23–25

The molecular classification of cancer has recently
been prompted by the sequencing and annotation of the
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human genome and technical advancement in gene tran-
scription profiling.26–28 These profound scientific ad-
vancements have permitted high-throughput analysis
and molecular correlation between tumors that provides
insight into molecular pathways and mechanisms. The
support vector machine (SVM) model has, in particular,
been shown to be useful in classification tasks using
gene expression data.29–31

In this study, we investigated the gene expression
profiles of 51 high-grade STS, representing nine different
histological subtypes. We focused on high-grade lesions,
as these often pose a diagnostic challenge and would
potentially benefit from molecular-based classification
and a diagnostic algorithm. Using hierarchical cluster
analysis, multidimensional scaling and SVM analysis, we
determined the molecular relationship of STS and com-
pared this to the current histological classification, for the
purpose of a novel biology-based model of STS.

Materials and Methods

Tumor Specimens

Tumor specimens, obtained from 51 patients undergoing
surgery at Memorial Sloan-Kettering Cancer Center, in-
cluded MFH (n � 11), conventional fibrosarcoma (n � 8),
leiomyosarcoma (n � 6), round-cell liposarcoma (n � 4),
pleomorphic liposarcoma (n � 3), de-differentiated lipo-
sarcoma (n � 5), clear-cell sarcoma (n � 4), synovial
sarcoma (n � 5), and GIST (n � 5). Specimens were
collected under an IRB-approved tissue procurement
protocol. Representative tumor tissue was embedded in
OCT compound and frozen as tissue blocks using liquid
nitrogen. Tumor specimens were selected for analysis
according to validation of histological diagnosis. Round-
cell liposarcoma, de-differentiated liposarcoma and ple-
omorphic liposarcoma were dissected from microscopi-
cally identified regions within the frozen tumor block, to
ensure selection of high-grade areas only. Prior therapy
was not considered an exclusion criterion, as we showed
in a pilot study that tumors did not cluster differently by
prior treatment. For additional details on genotype, sub-
type, prior therapy, site and stage, see Supplemental
Data at http://www.amjpathol.org, or http://www.mskcc.org/
genomic.sts.32 Tumor specimens have been used in a sim-
ilar study in the classification of clear-cell sarcoma.33

Histological and Molecular Diagnosis

In all cases histological slides were available from the
primary resection specimen and were reviewed indepen-
dently by two soft-tissue pathologists (C.R.A., J.M.W.).
Histological diagnosis was supported in every case by an
appropriate immunohistochemical panel and/or molecu-
lar genetic evaluation. RT-PCR using total RNA extracted
from frozen tissue was performed for detection of specific
fusion transcripts such as SYT-SSX, TLS-CHOP, and
EWS-ATF1, used in the molecular diagnosis of synovial
sarcoma,34 myxoid/round-cell liposarcoma,12 and clear-

cell sarcoma,10 respectively. All GIST tumors were tested
for the presence of KIT mutations, using PCR amplifica-
tion of genomic DNA, followed by direct sequencing.35

These studies were performed in the laboratories of the
Division of Molecular Pathology, Memorial Sloan-Ketter-
ing Cancer Center.

RNA Isolation and Gene Expression Profiling

Cryopreserved tumor sections were homogenized under
liquid nitrogen by mortar and pestle. Total RNA was
extracted in Trizol reagent and purified using the Qiagen
Rneasy kit. RNA quality was assessed on ethidium bro-
mide agarose gel electrophoresis. cDNA was then syn-
thesized in the presence of oligo(dT)24-T7 from Genset
Corp. (La Jolla, CA). cRNA was prepared using biotinylated
UTP and CTP and hybridized to HG U95A oligonucleotide
arrays (Affymetrix Inc., Santa Clara, CA). Fluorescence was
measured by laser confocal scanner (Agilent, Palo Alto, CA)
and converted to signal intensity by means of Affymetrix
Microarray Suite v4.0 software. For complete expression
data, see Supplemental Data at http://www.amjpathol.org,
or http://www.mskcc.org/genomic.sts.32

Hierarchical Cluster Analysis

Hierarchical cluster analysis was performed using XClus-
ter (http://genome-www.stanford.edu/�sherlock/cluster.
html), using a centered Pearson correlation coefficient
distance metric and average linkage to measure cluster
distances during partitioning.36 A nonparametric boot-
strap was used to estimate confidence of the cluster
structure.37 For each bootstrap sample, the clustering
obtained was compared to the clustering obtained with
the original data set. Two clusters (branches of the hier-
archy) were considered identical if they contained the
same members.

Multidimensional Scaling Analysis

As an alternative and independent way of visualizing the
cluster structure of the data a multidimensional scaling
analysis was done. To deal with both the large range and
the negative values of the expression data we took as the
distance function 1⁄2(1 – r), where r is the Spearman
rank-order correlation coefficient. The multidimensional
scaling was done using S-PLUS38 projecting the data into
three dimensions.

Support Vector Machine Analysis

The ability of a machine-learning algorithm to correctly
classify each tumor type was measured using SVM anal-
ysis with hold-one-out cross-validation.29,30 In brief, dur-
ing the training phase the SVM takes as input a microar-
ray data matrix, and labels each sample as either
belonging to a given class (positive) or not (negative).
The SVM treats each sample in the matrix as a point in a
high-dimensional feature space, where the number of
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genes on the microarray determines the dimensionality of
the space. The SVM learning algorithm then identifies a
hyperplane in this space that best separates the positive
and negative training examples. The trained SVM can
then be used to make predictions about a test sample’s
membership in the class. This approach allows us to
collect unbiased measurements of the ability of the SVM
to classify each sample. We used a standard “hold-one-
out” training/testing scheme, in which the SVM is trained
separately on training sets made up of all but one of the
samples, and then tested on the single “held out” sample.
Because a classifier’s performance can be hindered by
the inclusion of irrelevant data, we used feature selection
to identify genes that are most important for classification.
The genes in the training data set were ranked in order of
their proposed importance in distinguishing the positives
from the negatives, as described in more detail in the
next section, and the top N genes were taken for each
trial. The value N was varied in 12 powers of 2, ranging
from 4 to 8192. Thus, the SVM was run 51 times on each
of 12 different numbers of features (genes), for each of
the tumor classes. Each held-out test sample was
counted as either a false positive, false negative, true
positive, or true negative.

Gene Ranking for Feature Selection

To select genes that were the most informative for the
SVM, we tested a variety of methods including the Fisher
score method30 and parametric and nonparametric sta-
tistics. Data reported here were derived from Student’s
t-test, because it yielded the best SVM performance over-
all. Each gene in each training data set was subjected to
the following procedure. A standard Student’s t-test was
used to compare the expression in one tumor type to that
in the remaining samples. The resulting P values were
then used to rank the genes, and the desired number of
genes was then selected for use. The corresponding
data from the training set was used to train the SVM, and
the same genes were used for the test data. It is impor-
tant to note that the genes were selected solely on the
basis of the training data. Finally, a t-test statistic as
determined for all samples was used to provide an overall
ranking of the genes in order of relevance for each tumor
classification. This ranking was used to provide an over-
view of the most important genes for distinguishing the
class.

Results

Cluster Analysis

We determined the gene expression profile of 51 adult
soft tissue sarcomas using 12,559 oligonucleotide probe
sets on the U95A GeneChip from Affymetrix. Tumor spec-
imens included nine different histological subtypes,
which taken together cover more than 75% of STS cases
diagnosed in the United States.

We explored three approaches to data analysis. In the
first, we used unsupervised cluster analysis to identify
groups of tumors related by similarity in overall gene
expression profile using all genes represented on the
U95A GeneChip (Figure 1). We identified two principal
clusters that discriminate specimens by karyotypic and
morphological features. STS characterized by non-recur-
rent genetic aberrations and karyotypic complexity show
poor overall similarity in both gene expression profile and
bootstrap analyses. In contrast, STS characterized by
single recurrent genetic events clustered distinctly in
strong groups. This was shown for all cases of GIST,
synovial sarcoma, clear-cell sarcoma and round-cell li-
posarcoma. Similarly, visualized using multidimensional
scaling analysis once again using all genes represented
on the U95A GeneChip (MDS) (Figure 2).

Five of 8 conventional fibrosarcomas were observed to
cluster in close proximity to the synovial sarcoma cluster.
These 5 specimens were retrospectively tested for the
presence of SYT-SSX fusion transcript by RT-PCR, and
were found to be negative. Similarly, a single case of
pleomorphic liposarcoma was observed to cluster in
proximity to the round-cell liposarcoma group and was
shown to be negative for the TLS-CHOP fusion transcript
(data not shown).

Although the pleomorphic STS were not strongly re-
lated overall by gene expression profile, predominant
groups were observed on hierarchical cluster analysis in
concordance with histological classification. In particular,
5 of 6 leiomyosarcoma specimens (S20-S24) co-clus-
tered with a de-differentiated liposarcoma (S29). This
de-differentiated liposarcoma was noted previously to
contain divergent leiomyosarcomatous differentiation on
routine histological and immunohistochemical assess-
ment. These 6 specimens were designated as “genomic
leiomyosarcoma group #1” for further discussion. Simi-
larly, 9 of 11 MFH specimens (S36-S40, S43-S46), includ-
ing 5 of 6 lesions with myxoid features, clustered together
with a single fibrosarcoma (S5). This was designated as
“genomic MFH group” for further discussion. The remain-
ing specimens appeared heterogeneous.

Support Vector Machine Analysis

Our second approach incorporated the use of SVM anal-
ysis to explore the outcome of genomic diagnosis in both
previously-defined histological subtypes and potential
novel genomic groups. Specimens were divided into two
groups to establish training classes for each diagnostic
category. The positive class contained all specimens that
belong to a specific category. The negative class con-
tained the remaining specimens. We performed hold-
one-out cross-validation, in which one specimen was
hidden from the SVM during training and was subse-
quently given to the “machine” as a test specimen. This
was performed over a range of gene numbers to identify
the range in which the “machine” operates optimally in
diagnosing an unknown specimen. The outcome of the
analysis was compared to the predicted subtype of the
test specimen and indicated as true/false positive or
true/false negative.

Classification of Soft Tissue Sarcoma 693
AJP August 2003, Vol. 163, No. 2



SVM analysis achieved both high sensitivity and high
specificity in GIST, synovial sarcoma, round-cell liposar-
coma, and clear-cell sarcoma. In the case of MFH,
leiomyosarcoma, and de-differentiated liposarcoma,
genomic reclassification of these tumors by cluster anal-
ysis improved SVM performance (Figure 3). Interestingly,
de-differentiated liposarcomas were diagnosed accu-
rately using as few as four genes, but only up to 64
genes. This limited range of sensitivity is consistent with a
genomic-based relationship over few genes that is suffi-
cient for SVM diagnosis yet insufficient to generate clus-
ters using global gene expression. In the case of leiomy-
osarcoma, the designated “genomic leiomyosarcoma
group #1” behaved poorly in SVM analysis, as observed
by consistent misclassifications as false positive and
false negative. We explored this further by hypothesizing
an alternative “genomic leiomyosarcoma group #2”
which included the outlier leiomyosarcoma specimens
S26. This hypothetical cluster gained support by demon-
strating consistently perfect SVM performance over a

large range in the number of genes used. These results,
taken together, demonstrate the efficacy of a diagnostic
algorithm in validating and, in particular, exploring the
outcome of cluster analysis techniques.

Gene with Potential Biological and Therapeutic
Relevance

Our third approach to data analysis was the identification
of genes, consistent with each tumor subtype for the
purpose of useful biological discovery (Figure 4). In the
case of MFH, leiomyosarcoma, and de-differentiated li-
posarcoma, genomic classification was used. This was
performed using Student’s t-test analysis and cross-ref-
erencing the top scoring 500 genes against both the
published literature and the gene ontology consortium
database (http://www.geneontology.org/) using NetAffx
(http://www.affymetrix.com). We further limited this anal-
ysis to the top 50 genes for any particular STS subtype.

Figure 1. Hierarchical cluster analysis of 51 soft tissue sarcoma specimens
using global gene expression profiles revealed distinct clusters for GIST,
synovial sarcoma, clear cell sarcoma and round cell liposarcoma. Several
conventional fibrosarcoma were observed in close proximity to synovial
sarcoma, albeit with weaker correlation. Pleomorphic specimens exhibited
weak overall correlation and consistency by bootstrap analysis. Predominant
clusters were similarly observed for MFH and leiomyosarcoma. Numbers
represent consistency obtained in 100 bootstrap iterations. Cases are shown
on the x axis.
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We identified the known genetic markers for distinct sub-
types of STS, including KIT (GIST), SYT-SSX (synovial
sarcoma), PPAR� (round-cell liposarcoma) and MITF
(clear-cell sarcoma). In addition, we discovered several
genes that are implicated in diverse biological pro-
cesses, pathways, and states of differentiation.

GISTs were characterized by genes involved in recep-
tor tyrosine kinase signal pathways, including KIT, puta-
tive G protein-coupled receptor, and activin type II A recep-
tor. We similarly observed genes encoding ion channels,
as well as the neuropeptide precursor preproenkephalin.
Enkephalin has been implicated in gastrointestinal motil-
ity,39 consistent with GISTs deriving from the interstitial
cell of Cajal (ICC). We next searched for genes that were
selectively expressed in the KIT pathway and identified
phosphatidylinositol 3 (PI-3) kinase �40 in 5 of 5 specimens
and the KIT ligand, stem cell factor (SCF), in 2 of 5 spec-
imens (S15, S17). This finding was not related to any
particular mutation in KIT (Table 1).

Synovial sarcomas were characterized by genes ex-
pressed in early developmental pathways involving WNT
and notch signaling, including TLE1, FZD1, WNT5A, and
JAG2. Several developmentally related homeobox genes,
such as SIX1, MEOX2, and SALL2 were also identified.
Other genes of interest in synovial sarcoma included the

retinoic acid receptor � and MYC oncogene. Clear-cell sar-
comas demonstrated several genes associated with their
melanocytic lineage,33 including SOX10, gp100, and MITF.

De-differentiated liposarcoma were characterized by
genes located on 12q, including CDK4 and MDM2. Round-
cell liposarcomas were characterized by lipid metabolism
and adipogenic profiles and included several homeobox
genes. Leiomyosarcomas were characterized by genes im-
plicated in the smooth-muscle phenotype. For complete
gene list data, see Supplemental Data at http://www.
amjpathol.org, or http://www.mskcc.org/genomic.sts.32

Discussion

We report here the genomic profiling of adult STS using
oligonucleotide array analysis. This study attempts to
provide an overall molecular perspective on the similari-
ties and differences as well as unique characteristics of
STS. We have sought to clarify relationships across the
spectrum of histological distinctness from that of the well-
defined GIST to the more controversial MFH lesions.

Data from this analysis demonstrates that STS charac-
terized by specific translocations display remarkably ho-

Figure 2. Multidimensional scaling analysis of 51 soft tissue sarcoma speci-
mens. The plot displays the position of each tumor specimen in three-
dimensional space, where the distance between cases reflects their approx-
imate degree of correlation. Two views of this three-dimensional figure
demonstrated separate groups of clear-cell sarcoma (blue), round-cell lipo-
sarcoma (yellow), GIST (green) and synovial sarcoma (brown). Several
fibrosarcomas (purple) were seen in close proximity to the synovial sarcoma
cluster. Pleomorphic specimens were poorly distinguished using this data
visualization technique.

Classification of Soft Tissue Sarcoma 695
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mogenous and distinct global gene expression profiles,
as evident in the case of synovial sarcomas, round-cell
liposarcomas and clear-cell sarcomas. This phenomenon
was similarly observed in GISTs, characterized by recur-
rent genetic mutations in KIT. The observation of distinct
gene expression profiles in these tumors is striking, in
particular their consistent ability to cluster using different
algorithms. This finding in GIST is consistent with a pre-
vious study that showed 13 GISTs to display a distinct
gene expression profile relative to 6 spindle-cell sarco-
mas.41 Furthermore, the GIST separated from leiomyo-
sarcoma, including intraabdominal tumors, in support of
their different histogenesis. Our findings are supported in
a recent study by Nielsen et al.42 Using cDNA microarray
technology to profile 41 soft tissue tumors, their study
identified GIST, synovial sarcoma and a subset of
leiomyosarcoma as distinct groups on hierarchical
cluster analysis.

Synovial sarcomas were furthermore shown to be dis-
tinct subtypes of STS in recent studies by Allander et al43

and Nagayama et al.44 Interestingly, the latter study sug-
gests synovial sarcoma to be related to MPNST. We
identified close proximity of several fibrosarcoma speci-
mens to synovial sarcoma. These three tumor types are
often indistinguishable on routine light microscopy and

may indeed represent a common class of primitive mes-
enchymal tumors.

The present study also describes the use of a su-
pervised learning algorithm, SVM analysis, in the diag-
nosis of STS. The diagnosis of tumors characterized by
specific genetic events was highly accurate using as
few as between 4 and 32 genes. Errors were predom-
inantly confined to reduced specificity at low gene
numbers and an eventual drop-off in sensitivity be-
tween 1000 and 8000 genes. These findings suggest
that, aside from pathognomonic genetic changes that
have been reported for these tumors, collective infor-
mation from an extremely diverse number of genes
may be considered in their diagnosis and underlying
biology.

Data from this report also reveal that STS character-
ized by pleomorphic phenotypes and complex karyo-
types display relatively inconsistent gene expression pro-
files, in keeping with their cytogenetic heterogeneity.
However, within this group of pleomorphic STS, leiomyo-
sarcoma and a subset of MFH were distinguished by their
ability to cluster. This particular finding prompted us to
explore the possibility of diagnosing these tumors using a
genomic platform. SVM analysis attained perfect perfor-
mance over a limited range in gene number when diag-

Figure 3. Diagnostic performance of support vector machine analysis for
histological and genomic subtypes of soft tissue sarcoma is shown as true
positive outcome versus true negative as indicators of the sensitivity and
specificity respectively. Perfect performance was achieved over a large range
of genes in GIST, round cell liposarcoma (RCL), clear cell sarcoma (CSS), and
synovial sarcoma (SS). Poor sensitivity and specificity were observed for
fibrosarcoma (Fib) and the histological group of MFH (MFH-H). The latter
improved using a genomic-based classification scheme (MFH-G). A similar
improvement in SVM performance was shown for de-differentiated liposar-
coma (D.Lipo-H versus D.Lipo-G) that demonstrated sensitivity using up to
64 genes. In the case of leiomyosarcoma (Leio-H), the introduction of
genomic classification by cluster analysis (Leio-G#1) further improved SVM
outcome by reintroducing a histological specimen that did not group to-
gether with remaining leiomyosarcoma specimens on hierarchical cluster
analysis (Leio-#2). P.Lipo, pleomorphic liposarcoma. Blue circle, predicted
true positive; orange circle, predicted false positive; vertical line, actual
true positive.
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Figure 4. Identification of genes for biological discovery. The thumbnail panels represent the top 500 genes for each tumor type scored by Student’s t-test analysis and
sorted by increasing P value (shown as negative log P value). The second column shows rank according to P value where a higher value corresponds to a lower P value;
the first value indicates rank within genes that discriminate the particular tumor subtype; the second value indicates rank within all genes that discriminate any tumor
subtype. Light to dark color variation in the left panel represents high to low levels of expression. Annotated genes were selected according to biological interest from
the top 500 genes that discriminate any STS subtype. All genes for fibrosarcoma failed to satisfy this criterion. See Supplemental Data at http://www.amjpathol.org for
detailed gene lists.
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nosing genomic MFH compared to histological MFH. This
observation supports our claim that the genomic group
MFH is distinct and amenable to objective diagnosis.
Since MFH is diagnosed at different rates by different
pathologists we do not have a good sense nationwide or
worldwide if specific drugs are better for this subtype
or not, beyond just using doxorubicin, ifosfamide, DTIC,
or combinations thereof. The identification of a subset of
MFH with a particular characteristic expression profile
could potentially facilitate an objective diagnosis of this
tumor type and assist in subsequent therapeutic studies.

Unlike genomic MFH, improved SVM performance with
specimens selected by genomic classification was not
initially shown for leiomyosarcoma. The above findings
were intriguing for two reasons. First, it provided further
support that the ability to diagnose the genomic MFH
group by SVM analysis was not only a consequence of
their ability to cluster, but in fact demonstrated that the
other tumors in this study were sufficiently different so as
not to be misdiagnosed as MFH by SVM analysis. Sec-
ond, the observation of a consistent misclassification of
genomically defined leiomyosarcoma prompted us to re-
peat this SVM analysis including the specimen that was
excluded on cluster analysis. This removed the false
positive occurrence in SVM analysis and also improved
overall performance.

These observations that SVM performance improved
when diagnosing genomic groups versus histological
groups was not surprising as these tumors were selected
largely on the basis of genomic correlation. However, this
finding was significant and demonstrated an important
and logical extension of genomic profiling. It illustrated
that genomic correlation between tumors may be ex-
ploited to recognize novel classifications, against which
meaningful biological/clinical correlates may be consid-
ered. We concluded that the genomic classification by
cluster analysis of adult STS and SVM support is feasible
and presents a user-independent reproducible mecha-
nism by which to establish biology-based classification of
soft tissue sarcoma.

Further inspection of the gene lists that discriminate
subtypes of STS was particularly informative for biologi-
cal discovery. In particular we identified features consis-
tent with autocrine growth loops in a subset of GIST,
involving SCF and KIT, and in synovial sarcoma, involving
WNT5a and components of the downstream signaling
pathway, including FRIZZLED-1.

Mutations in the KIT occur somatically in many spo-
radic GISTs. These mutations activate the tyrosine kinase
activity of KIT and induce constitutive signaling. Inhibition
of the tyrosine kinase activity of KIT by imatinib mesylate
induces tumor regression in GISTs.45 The finding of SCF,
also known as KIT ligand, in subset of GISTs is a novel
and noteworthy finding that may have implications in
understanding potential autocrine growth effects in GIST
involving the KIT pathway.

The recent study by Nagayama et al44 similarly iden-
tified several genes related to the WNT signaling pathway
in synovial sarcoma, including WNT inhibitory factor 1 and
Frizzled homolog 10. The finding of PRAME as a discrim-
inating gene in several independent studies42–44 in sy-
novial sarcoma suggests a particularly robust association
of the tumor antigen and this STS subtype.

Results of this analysis point to current treatment strat-
egies for patients with STS, including imatinib (STI-571)
for GIST and PPAR� agonists for myxoid/round-cell lipo-
sarcomas and suggest additional therapeutic consider-
ations. These include blockade of PI-3 kinase with wort-
mannin or similar compounds in GIST, and the use of
retinoid agonists/antagonists or blockade of WNT signal-
ing in synovial sarcoma.

Whereas Allander et al43 identified a strong associa-
tion between ERBB2 expression and synovial sarcoma,
we did not identify a similar association. This discrepant
finding is likely based on tumor subtype selection as we
included only monophasic synovial sarcoma in our study
and their group identified ERBB2 to be predominantly
expressed in biphasic synovial sarcoma.

We have approached the challenge of sarcoma clas-
sification using a combination of clustering techniques to
propose novel groups and supervised diagnostic tech-
niques to test the proposed grouping. This combined
approach allows us to consider the distinction between
groups of tumors in terms of diagnostic sensitivity and
specificity rather than by similarity in gene expression
profile alone. The classification of STS will continue to
evolve as additional subtypes of this disease are intro-
duced into the molecular classification scheme. More
detailed analysis of the gene expression profiles of each
of the more than 50 subtypes of STS will clarify the
biological differences within STS and will hopefully pro-
pose therapies specific for each subclass of STS, if not
therapy specific for an individual patient’s tumor. The
present study proposes multiple molecular pathways that
may become potential targets for therapeutic interven-
tion, and represents one step toward a comprehensive
molecular understanding of this rare and heterogeneous
group of diseases.
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