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Abstract 

Background: Protein-protein interactions play a critical role in protein function. 

Completion of many genomes is being followed rapidly by major efforts to identify 

interacting protein pairs experimentally in order to decipher the networks of interacting, 

coordinated-in-action proteins. Identification of protein-protein interaction sites and 

detection of specific amino acids that contribute to the specificity and the strength of 

protein interactions is an important problem with broad applications ranging from 

rational drug design to the analysis of metabolic and signal transduction networks. 

Results:  In order to increase the power of predictive methods for protein-protein 

interaction sites, we have developed a consensus methodology for combining four 

different methods.  These approaches include: data mining using Support Vector 

Machines, threading through protein structures, prediction of conserved residues on the 

protein surface by analysis of phylogenetic trees, and the Conservatism of Conservatism 

method of Mirny and Shakhnovich.  Results obtained on a dataset of hydrolase-inhibitor 

complexes demonstrate that the combination of all four methods yield improved 

predictions over the individual methods. 

Conclusions: We developed a consensus method for predicting protein-protein interface 

residues by combining sequence and structure-based methods.  The success of our 

consensus approach suggests that similar methodologies can be developed to improve 

prediction accuracies for other bioinformatic problems. 
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Background 

Protein-protein interactions play a critical role in protein function. Completion of many 

genomes is being followed rapidly by major efforts to identify experimentally interacting 

protein pairs in order to decipher the networks of interacting, coordinated-in-action 

proteins. Identification of protein-protein interaction sites and detection of specific 

residues that contribute to the specificity and strength of protein interactions is an 

important problem[1-3]  with broad applications ranging from rational drug design to the 

analysis of metabolic and signal transduction networks. Experimental detection of 

residues on protein-protein interaction surfaces can come either from determination of the 

structure of protein-protein complexes or from various functional assays.  The ability to 

predict interface residues at protein binding sites using computational methods can be 

used to guide the design of such functional experiments and to enhance gene annotations 

by identifying specific protein interaction domains within genes at a finer level of detail 

than is currently possible. 

 

Computational efforts to identify protein interaction surfaces[4-6] have been limited to 

date, and are needed because experimental determinations of protein structures and 

protein-protein complexes, lag behind the numbers of protein sequences. In particular, 

computational methods for identifying residues that participate in protein-protein 

interactions can be expected to assume an increasingly important role[4,5].  Based on the 

different characteristics of known protein-protein interaction sites[7], several methods 

have been proposed for predicting interface residues using a combination of sequence and 

structural information. These include methods based on the presence of “proline 
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brackets’’[8], patch analysis using a 6-parameter scoring function[9,10], analysis of the 

hydrophobicity distribution around a target residue[7,11], multiple sequence 

alignments[12-14], structure-based multimeric threading[15], and analysis of amino acid 

characteristics of spatial neighbors to a target residue using neural networks[16,17]. Our 

recent work has focused on prediction of interface residues by utilizing analyses of 

sequence neighbors to a target residue using SVM and Bayesian classifiers[2,3].  

 

There is an acute need for multi-faceted approaches that utilize available databases of 

protein sequences, structures, protein complexes, phylogenies, as well as other sources of 

information for the data-driven discovery of sequence and structural correlates of protein-

protein interactions[4,5]. By exploiting available databases of protein complexes, the 

data-driven discovery of sequence and structural correlates for protein-protein 

interactions offers a potentially powerful approach.  
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Results and Discussion 

Here we are using a dataset of 7 hydrolase complexes from the PDB, together with their 

sequence homologs. The application of our consensus method to other types of 

complexes, e.g. antibody-antigen complexes is currently under study and will be 

published later. It should be noted, however, that prediction of binding sites for other 

types of protein complexes, especially those involved in cell signaling, is likely to be 

more difficult than for the hydrolase-inhibitor complexes.  

 
Figure 1 shows an example of the consensus method prediction mapped on the structure 

of proteinase B from S. griseus in a complex with turkey ovomucoid inhibitor (PDB 

3sgb[18]). The inhibitor (3sgb_I) is shown at the top in wire frame and the proteinase B 

chain (3sgb_E), is shown at bottom. Actual interface residues in the proteinase B chain, 

i.e., amino acids that form the binding site between proteinase B and the inhibitor, were 

extracted from the PDB structure (see Materials and Methods). Predicted interface and 

non-interface residues, identified by the consensus method, are shown as color coded 

atoms as follows:  Red spheres = true positives (TP), actual interface residues that are 

predicted as such; Gray strands = true negatives (TN), non-interface residues that are 

predicted as such; Yellow spheres = false negatives (FN), interface residues that are 

misclassified as non-interface residues; Blue spheres = false positives (FP), non-interface 

residues that are misclassified as interface residues. Note that the binding site in 

proteinase B is strongly indicated, with 14 out of 15 interface residues correctly 

classified, along with 2 false positives. 
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The primary amino acid sequence for proteinase B chain and the interface residue 

prediction results for the four individual methods and the consensus method are shown in 

Figure 2. Actual interface residues are identified highlighted in red. The five lines below 

the amino acid sequence show the locations of interface residues predicted by the 

different methods (described in detail below):  P = Phylogeny; C = Conservatism of 

Conservatism (CoC); S = Data mining by SVM; T = Threading; E = Consensus.  Similar 

Figures for each protein studied in this work are provided in Supplementary Materials 

[see Additional files 1, 2, 3, 4, 5, and 6].  

 

The prediction results for all methods are shown in Table 1 and Table 2. Table 1 shows a 

complete summary of the classification performance on the proteinase B chain for all 5 

methods including the overall Sensitivity (Sen) and Specificity (Spec); Sensitivity (Sen+) 

and Specificity (Spec+) for interface residues (the "positive" class); and Correlation 

Coefficient (see Materials and Methods for definitions of these performance parameters). 

Table 2 shows the overall average performance results for all seven protein complexes 

studied in this work. Two kinds of averages are considered: the numerical average over 

each of 7 proteins in the dataset, i.e., the average on a "per protein" basis (<…>p); and the 

average over the total number of residues, i.e., the average on a "per residue" basis 

(<…>r). 

 

Sequence and structure conservation  

Amino acid sequences are conserved for many different reasons related to the structure 

and function of proteins:  for stability[19,20], enzyme active sites, subunit interfaces, 
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facilitation of an essential motion (hinges), and binding sites. Developing methods to 

identify the reason for conservation of individual highly conserved residues is a difficult 

problem. This is one of the reasons that a combination of approaches may be more likely 

to permit identification of residues that participate in protein-protein interactions. Even 

identifying the conserved residues themselves is not completely straightforward, and as 

will be seen, different approaches will indicate the same residue being conserved to 

different extents. In this study, we take advantage of this by using several methods to 

identify sequence and structure conservation. Here we use two principal methods for this 

purpose, one based on phylogeny to identify sequence conservation and one based on 

Conservatism of Conservatism[21] to identify structure conservation. These two methods 

often identify different residues as being conserved. 

 

Phylogeny  

To identify protein residues that are conserved – perhaps due to their functional role in 

forming specific protein-protein interactions -  we use ClustalX[22] multiple sequence 

alignments of protein sequences to generate phylogenetic trees (see Materials and 

Methods). Conserved residues are defined as those that are identical at a given position in 

more than 85% alignments, i.e., only 15% substitutions or gaps were allowed. This 85% 

cutoff value is found to give optimal results (data not shown). Because phylogenetic trees 

of closely related sequences result in many residues that satisfy this condition (due to the 

high conservation of sequences, apparently important for protein folding, located in the 

protein core) we filter the results to focus on surface residues by removing conserved 
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residues residing inside the protein core, i.e., having low solvent accessibility (see 

Materials and Methods).  

 

As shown in Figure 2, the phylogenetic method does not classify any of the amino acids 

in proteinase B chain (3sgb_E) as interface residues, i.e., TP = 0 and FP = 0.  Thus, for 

the phylogenetic method prediction, the correlation coefficient (CC), which can range 

from –1 to +1, converges to zero, whereas overall specificity converges to 0.905. The 

latter misleading statistic is due to the large number of negative examples (non-interface 

residues), which are correctly classified. In cases such as this (with unbalanced numbers 

of positive and negative examples), sensitivity+ and specificity+ measures are especially 

useful because they more clearly reflect the ability of a method to detect "positive" 

interface residues. (See the Methods section for definition and further discussion of 

performance measures). Note that even though Figure 2 shows that the phylogenetic 

method does not identify any interface residues in this particular example, the results 

summarized in Table 1 for all seven proteins demonstrate that the ability of the 

phylogenetic method to correctly predict non-interface residues (reflected in the high 

overall sensitivity and specificity values), and in combination with other methods, to lead 

to significantly improved predictions. 

 

Conservatism of Conservatism 

To detect structurally conserved residues that are possible binding sites we have used the 

Conservatism of Conservatism method (CoC) developed by Mirny and Shakhnovich.[21] 

We use structural alignments generated by FSSP (fold classification based on structure-
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structure alignment of proteins) developed by Holm and Sander[23]) to identify protein 

families with folds similar to that of the each of the 7 proteins. For each family, 

HSSP[24] (homology-derived secondary structure of proteins) alignments are used to 

calculate the sequence entropy at each position of the alignment. The HSSP profile is 

based on the multiple alignment of a sequence and its potential structural 

homologues[25]. The structural alignment generated by FSSP is used to calculate the 

value of CoC (see Materials and Methods). Each residue in the protein chain was ranked 

according to its CoC value at a given position in the sequence. The top 75% of total 

residues ranked according to their CoC values are defined as conserved. We filter the 

results of the CoC ranking by removing all structurally conserved residues located inside 

the protein core by only choosing the residues that have a relative accessibility of at least 

25 as calculated by DSSP[26] (dictionary of protein secondary structure). Interface 

residues in proteinase B predicted by this method are indicated by a "C" in Figure 2.  The 

overall performance of the CoC method is summarized in the second row of Tables 1 and 

2. Although the correlation coefficient of the COC method is in the same range of those 

obtained by phylogeny and support vector machines, 0.37, the sensitivity+ value, 0.71, is 

surpassed only by the consensus value. Therefore, a larger fraction of interface residues is 

predicted by CoC than the other three methods.  However, the CoC method alone is not 

sufficient to successfully predict binding sites, and combining this method with other 

prediction techniques in the consensus method gives improved results (Tables 1 and 2).   

 

 

Data mining for binding residues 
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We have generated a support vector machine (SVM) classifier to determine whether or 

not a surface residue is located in the interaction site using information about the 

sequence neighbors of a target residue. An 11-residue window consisting of the residue 

and its 10 sequence neighbors (5 on each side) is chosen empirically. Each amino acid in 

the 11 residue window is represented using 20 values obtained from the HSSP profile of 

the sequence. Each target residue is therefore associated with a 220 (11×20) element 

vector. The SVM learning algorithm is given a set of labeled examples of the form (X, Y) 

where X is the 220 element vector representing a target residue and Y is its 

corresponding class label, either interface or non-interface residue. The SVM algorithm 

generates a classifier which takes as input a 220 element vector that encodes a target 

residue to be classified and outputs a class label. Our previous study[2] reported results 

for classifiers constructed using a combined set of 115 proteins belonging to six different 

categories of complexes: antibody-antigen, protease-inhibitor, enzyme complexes, large 

protease complexes, G-proteins, cell cycle signaling proteins, signal transduction, and 

miscellaneous. In another study[3], we trained separate classifiers for each major 

category of complexes (e.g., protease-inhibitor complexes). In the case of protease-

inhibitor complexes, leave-one-out experiments were performed on a set of 19 proteins. 

In each experiment, an SVM classifier was trained using a set of surface residues, labeled 

as interface or non-interface, from 18 of the 19 proteins. The resulting classifier was used 

to classify the surface residues of the remaining target protein into interface residue and 

non-interface residue categories. The interface residues obtained for 3sgb_E are 

reproduced in Figure 2 and marked by "S". The performance of the SVM classifier for 
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the current test set of complexes is summarized in Tables 1 and 2.  The results show that 

SVM yields relatively high sensitivity+ (0.51) and specificity+ (0.41). 

 

Threading of sequences through structures of interface surfaces 

Structural threading was performed for the set of 7 protein complexes using a recently 

developed threading algorithm[27], which was first used in the CASP5[28] competition. 

For each complex structure, we first extract the interfacial region, essentially as described 

earlier. Residue-residue contacts in the interfacial region are described with contact 

matrices. The total energy in this threading method is the sum of all pair-wise contact 

energies for the conformation. Detailed residue–level contact potentials were obtained 

from the Li, Tang and Wingreen[29] parameterization of the Miyazawa and Jernigan[30] 

matrix. We represent a protein sequence vector s by the hydrophobicity values of its 

amino acids hi obtained in this factorization and protein structure by the contact matrix ΓΓΓΓ. 

The problem of finding the best alignment of a query sequence s with a structure having 

contact matrix ΓΓΓΓ is to find the transformation from s to s' that optimizes the energy 

function. The optimum s' is the dominant eigenvector v0 of the contact matrix ΓΓΓΓ. There is 

a strong correlation between a protein sequence and the dominant eigenvector of its 

native structure’s contact matrix. Here the transformation we seek is obtained by 

maximizing the correlation between s' and v0.  This is an alignment problem, and a 

dynamic programming method from sequence alignment has been adapted to solve this 

problem[27].  
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For each sequence, threading is performed against structures in our template database and 

alignment results used only when the score exceeds a length-dependent threshold. From 

the alignments, residues involved in contacts at the interface are identified using a scale 

based on the number of times a particular residue is indicated and the strength of the 

threading score. The predicted binding sites for 3sgb_E by the threading method are 

marked in Figure 1 by "T" and the prediction results are summarized in Tables 1 and 2. 

The threading-based approach is somewhat more successful than other methods based on 

its sensitivity+, selectivity+, and correlation coefficient values, but still not as good as the 

performance obtained by combining it with methods in the consensus approach.   

 

Consensus method for predicting protein binding sites 

Based on the results from the predictions with the four independent methods, we have 

developed a simple consensus method to obtain a better prediction. In the consensus 

method results presented here, an amino acid is considered to be an interface residue if 

any of the following conditions are met:  

i) at least three independent methods classify it as an "interface residue" 

ii) any two methods (except the Phylogeny-Threading pair) predict it 

For this set of proteins, the parameters for combining results in the consensus method 

have been empirically determined without a systematic comparison of the strengths and 

weaknesses of each method. We employ this simple approach because it provides 

demonstrable improvement in prediction performance over the individual methods.  The 

consensus interface residue predictions are indicated by an "E" in Figure 1, and 

performance results are summarized in the last rows of Tables 1 and 2. The consensus 
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method generally results in an enhanced correlation coefficient and sensitivity+, 

demonstrating the superior performance of the consensus method for identifying interface 

residues in this protein set. Predictions for each protein, provided in Supplementary 

Materials [see Additional files 1, 2, 3, 4, 5, and 6], illustrate that the improvements can be 

even more pronounced when the individual predictions of all four methods are relatively 

weak. This suggests that combining diverse prediction methods may be an excellent 

approach for the prediction of the binding sites in protein complexes. 

 

Conclusions 

Each of the four prediction methods presented in this paper sheds a different light on the 

conservation and prediction of protein interaction sites, but none of the methods taken 

separately is as powerful as the combination of all four methods. The simple consensus 

approach presented here could perhaps be improved by generating an ensemble predictor 

with more detailed probabilities. Our current work is directed at this approach. It is clear 

that the present subject is an active field of research[31-38]. 
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Methods  

Dataset of hydrolase-inhibitor complexes 

The dataset of 7 hydrolase-inhibitor complexes used in this work has been derived from a 

larger dataset of 70 protein heterocomplexes extracted from PDB by Chakrabarti and 

Janin[39] and used in our previous studies[2,3]. All are proteins from hydrolase-inhibitor 

complexes, with six being proteinases: 1acb_E[40] (chain E of PDB structure 1acb), 

1fle_E[41], 1hia_A[42], 1avw_A[43], 2sic_E[44], 3sgb_E[18]; and one being a 

carboxypeptidase: 4cpa[45]. 

 

Definition of surface and interface residues 

Surface and interface residues for the proteins were identified based on information in the 

PDB coordinate files as previously described[2,3]. Briefly, solvent accessible surface 

areas (ASA) for each residue in the unbound protein and in the complex are calculated 

using DSSP[26]. A surface residue is defined as an interface residue if its calculated ASA 

in the complex is less than that in the monomer by at least 1 Å2 [46].  In the extraction of 

interfacial region for threading, however, a distance-based definition of surface is used: a 

surface residue is defined as an interface residue if its side-chain center is within 6.5Å of 

the side-chain center of a residue belonging to another chain in the complex.   

Based on the ASA definitions, 41% of the residues in the set of 7 proteins were surface 

residues, corresponding to a total of 631 surface residues. Among these surface residues, 

166 were defined as interface residues and 465 as non-interface residues (i.e. surface 

residues that are not in the interaction sites). Thus, on average, interface residues 

represent 26% of surface residues, or 11% of total residues for proteins in our dataset.    



 15

 

Using phylogeny to identify conserved residues 

Many computational tools have been developed for identifying amino acids that are 

important for protein function/structure, but there is no consensus regarding the best 

measure for evolutionary conservation[47]. Evolutionary conservation can be 

decomposed into three components: i) the overall selective constraints -- the number of 

changes observed at a site; ii) the pattern of amino acid substitutions – the number of 

amino acid types observed at a site; and iii) the effect of amino acid usage. We have 

established a reliable relationship between each measure and various aspects of structure. 

To explore the connection between sequence conservation and functional-structural 

importance, we proposed a new measure that can decompose the conservation into these 

three components[47]. This measure is based on phylogenetic analysis. The evolutionary 

rate at site k during lineage l from amino acids i to j (i,j=1,…20) can be expressed as λkl 

(i,j)  = ck × alk × Q(i,j|k),  where ck accounts for the rate variation among sites, alk for site-

specific lineage (or subtree) effect caused by functional divergence[48], and the 20×20 

matrix Q(i,j|k) is  the (site-specific) model for amino acid substitutions. The likelihood 

function for a given tree can be determined according to a Markov chain model[49]. We 

have developed an integrated computer program (DIVERGE [50] ) that can map these 

predicted sites onto the protein surface to examine these relationships. We use the solvent 

accessibility data from DSSP[26] to restrict predicted conserved residues to those located 

on the protein surface.   
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Conservatism of Conservatism  

The phylogeny-based conservation of residues relies on sequence homology. It is well 

known, however, that many non-homologous proteins share similar folds[51]. It is 

therefore highly desirable to study the conservation of residues in proteins based on the 

structural superimposition of non-homologous proteins. In order to obtain insight into the 

evolutionary conservation of residues in proteins, we use the Conservatism of 

Conservatism method (CoC). The CoC method was developed by Mirny and 

Shakhnovich[21] for studying evolutionary conservation of residues in proteins with 

specific folds from the FSSP database[23]. With the FSSP database, Mirny and 

Shakhnovich performed an analysis of conserved residues in several common folds. The 

20 naturally occurring amino acids were subdivided into 6 different classes, based on 

their physicochemical characteristics and frequencies of occurrence at different positions 

in multiple sequence alignments.  The evolutionary conservatism within families of 

homologous proteins was measured through sequence entropy. Structural 

superimposition of different families of proteins with similar folds was used to calculate 

CoC for all positions of residues within a fold. Here we have applied a similar approach 

to identify structurally conserved residues involved in protein interactions.  

 

For each protein, we first calculate the sequence entropy at each position within a family 

of related sequences from the HSSP database[25]  

6

1

( ) ( ) log ( )
i i

i

s l p l p l
=

= −∑
 

where ( )l

i
p  is the frequency of the class i of residues (for each of the six classes) at 

position l in sequence in the multiple sequence alignment. Then we use the FSSP 
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database to obtain the structural alignment. The structural superimposition of different 

families was used to calculate the conservatism of conservatism (CoC)   

1

1
( ) ( )

M

m

m

S l s l
M =

= ∑
 

 where sm
(l) is the intrafamily conservatism within the family m at position l, and M is the 

number of families. The CoC is the measure of the evolutionary conservation of the 

specific sites within the protein fold. Because the CoC method does not distinguish 

between residues at the protein surface evolutionarily conserved for functional reasons 

and residues inside the protein core that are conserved because of their importance to the 

folding process, we use solvent accessibility data for the unbound molecules to eliminate 

those conserved residues located inside the protein core.  

 

Data mining approaches to binding site identification 

Recent advances in machine learning[52] or data mining[53]  offer a valuable approach 

to the data-driven discovery of complex relationships in computational biology[54,55]. In 

essence, a data mining approach uses a representative data training set to extract 

complex a priori unknown relationships, e.g., sequence correlates of protein-protein 

interactions. Examination of the resulting classifiers can help generate specific 

hypotheses that can be pursued using molecular and biophysical methods. For example, a 

classifier that is able to identify protein-protein interface residues on the basis of 

sequence or structural features can provide insights about sequence characteristics that 

contribute to important differences in function. The data mining approach for binding site 

identification consists of the following steps: 

• Identify the surface residues in each protein. 
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• Label each residue in each protein as either an interface residue or a non-interface 

residue based on appropriate criteria for defining residues in interaction sites. 

• Use a machine learning algorithm to train and evaluate a classifier to categorize a 

target amino acid as either an interface or a non-interface residue. Different types 

of information about the target residue (e.g., the identity and physicochemical 

properties of its sequence neighbors, whether or not the target residue is a surface 

residue) can be supplied as input to the classifier. A variety of machine learning 

algorithms[52,54] can be used for this purpose. 

• Evaluate the classifier (typically using cross-validation or leave-one-out 

experiments) on independent test data (not used to train the classifier). 

• Apply the classifier to identify putative interface residues in a protein, given its 

sequence (and possibly its structure), but not the sequence or structure of its 

interaction partner.  

 

Here we have used a support vector machine (SVM) learning algorithm because SVMs 

are well-suited for the data-driven construction of high-dimensional patterns and are 

especially useful when the input is a real-valued pattern[56]. In addition, algorithms for 

constructing SVM classifiers effectively incorporate methods to avoid over-fitting the 

training data, thereby improving its generality, i.e., the performance of the resulting 

classifiers on test data. Support vector machine algorithms have proven effective in many 

applications, including text classification[57], gene expression analysis using microarray 

data[58], and predicting whether or not a pair of proteins is likely to interact[59].  
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Threading of sequences through structures of protein-protein interface surfaces 

In phylogenetic and data mining approaches, the properties of the protein-protein 

interface are deduced by concentrating on the sequence information contained in the 

protein pair under investigation. However, it is well accepted that the physical origin of 

the specificity of protein-protein interactions comes predominantly from their structures. 

Thus, in any thorough investigation of protein-protein interactions, it is essential to 

include information from structural studies. Here we have adapted methods employed in 

protein structure recognition[60-63] to the problem of predicting protein-protein interface 

residues. In the first stage, structural models for identifying protein-protein interfaces are 

generated from existing protein databank (PDB) structures by extracting portions of 

contacts between different protein chains. We found that if we define the interaction 

region by the criterion that backbone Cα atoms on the two interacting chains are less than 

15 Å apart, reasonably well connected fragments suitable for threading studies are 

obtained. In the second stage, after identifying a set of candidate template structures, 

threading is performed to examine the probability that a given model resembles the real 

interface. The threading algorithm is described in Cao et al.[27]. The threading 

alignments and scores obtained allowed us to predict which parts of each protein are in 

the interfacial region in the hydrolase-inhibitor complexes and to predict the most 

probable residue-residue contacts between the two proteins. 

 

Ensemble predictions for combining results from multiple methods 

Different approaches for identifying binding sites from amino acid sequence information 

yield different (sometimes contradictory, sometimes complementary) results. In such 
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cases, approaches for combining results from multiple predictors have a potential 

importance. The key idea is that results obtained by using different approaches, which we 

will call classifiers henceforth, may be correlated (or, more generally, statistically 

dependent) due to a variety of reasons including the use of a common dataset for 

constructing or tuning classifiers, use of intermediate variables for encoding input to the 

classifiers, and similarities between methods (e.g., SVM, neural networks). Regardless of 

the source of statistical dependency, the goal is to develop methods for weighting the 

output of each classifier appropriately for the purpose of producing more accurate 

predictions. Our method takes as input the binary (True/False) output of each classifier 

(e.g., SVM, CoC) and produces as output a probability that the residue under 

consideration is an interface residue, using the outputs produced by each of the 

classifiers. Algorithms for learning Bayesian (or Markov networks) can be then used to 

learn the network of dependences and the relevant conditional probabilities. 

 

General evaluation measures for assessing the performance of classifiers  

Let TP denote the number of true positives - residues predicted to be interface residues 

that are actually interface residues; TN the number of true negatives - residues predicted 

not to be interface residues that are in fact not interface residues; FP the number false 

positives - residues predicted to be interface residues that are not interface residues; FN 

the number of false negatives - residues predicted not to be interface residues that 

actually are interface residues. Let N = TP+TN+FP+FN. Sensitivity (recall) and 

Specificity (precision) are defined for the positive (+) class as well as the negative (-) 

class. Sensitivity+ = TP/(TP+FN), Sensitivity- = TN/(TN+FP), Specificity+ = 
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TP/(TP+FP), Specificity-  =TN/(TN+FN). Overall sensitivity and overall specificity 

correspond to expected values of the corresponding measures averaged over both classes. 

The performance of the classifier is summarized by the correlation coefficient, which is 

given by 

( )( )( ) ( )

TP TN FP FN

TP FN TP FP TN FP TN FN

× − ×

+ + + +
 

 

The correlation coefficient ranges from -1 to 1 and is a measure of how predictions 

correlate with the actual data[64]. It is important to note, that when the number of 

negative instances is much larger than the number of positive instances – as is the case 

for prediction of interface residues - the Sensitivity+ and Specificity+ measures are more 

appropriate for assessing prediction performance than the overall Sensitivity and 

Specificity measures[64]. In the extreme case when a classifier predicts every example to 

be negative (due to a preponderance of negative training instances) these overall 

performance measures would still show a high success rate despite the obvious failure of 

the prediction method. In such cases, the Correlation Coefficient, as well as the 

Sensitivity+, which is a measure of the fraction of positive instances that are correctly 

predicted, and Specificity+, which is a measure of the fraction of the positive predictions 

that are actually positive instances, may provide better performance assessment. Of 

course, a meaningful comparison of the performance of different classification methods 

depends critically on the specific application and goal.  
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FIGURE CAPTIONS 

Figure 1. Interface residues predictions mapped on the three dimensional structure of 

Proteinase B from Streptomyces griseus (3sgb). The target protein is shown in ribbons 

and atomic spheres; the inhibitor partner is shown at the top in faint wire frame. The 

residues are color coded as: red = true positives (TP), gray = true negatives (TN), yellow 

= false negatives (FN), and blue = false positives (FP). Red, yellow, and blue residues are 

shown in spacefill representation. Note that the actual interface residues extracted from 

the PDB structure include the red (TP) and yellow (FN) residues. Red and gray residues 

represent correct predictions of interface and non-interface residues (14 TP+ 210 TN = 

224 correct predictions); yellow and blue residues represent incorrect predictions (1 FN + 

2 FP= 3 ) 

 
 

Figure 2 Comparison of individual methods for interface residue prediction with the 

consensus method. Results are shown for Proteinase B from Streptomyces Griseus 

(3sgb_E), the same protein shown in Figure 1. Actual interfaces are highlighted in red. 

Interface residues predicted by each of five different methods are indicated as follows: P 

= Phylogeny (none predicted for this protein), C = Conservatism of Conservatism; S = 

Support Vector Machine; T = Threading; and E = Consensus. Amino acid residues 

present in the protein sequence, but not included in the PDB structure file, are indicated 

by “X”s in the sequence.  
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Table 1 Classification results for Proteinase B from S. griseus (3sgb_E). TP is the 

number of true positive; TN is the number of true negatives; FP is the number of false 

positives, and FN is the number of false negatives. Overall sensitivity, overall specificity, 

sensitivity+, specificity+, and correlation coefficient are defined in the text.  

 

3SGBE 
 

TP 
# 

TN 
# 

FP 
# 

FN 
# 

Overall 
Sen 

Overall 
Spe Sen+ Spe+ CC 

Phylog. 0 212 0 15 0.94 0.91* 0 - 0* 

COC 15 194 18 0 0.92 0.96 1 0.45 0.64 

SVM 3 205 7 12 0.92 0.90 0.20 0.30 0.20 

Thread. 14 201 11 1 0.95 0.97 0.93 0.56 0.70 

Cons. 14 210 2 1 0.99 0.99 0.94 0.88 0.90 
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Table 2.  Overall Classification Performance Results Averaged over 7 Proteins. 

Average results for Sensitivity+, Specificity+, overall Sensitivity, overall Specificity, and 

Correlation Coefficient averaged over the 7 proteins in the dataset.  < >p denotes 

averaging over the total number of proteins, < >r denotes averaging over the total number 

of residues. 

 

Method <Sen+>p <Spe+>p <Spe>p <Spe>r <Sen>p <Sen>r <Cor>p <Cor>r 

Phylog. 0.39 0.71 0.90 0.89 0.91 0.89 0.43 0.37 

COC 0.71 0.31 0.89 0.88 0.81 0.80 0.38 0.37 

SVM 0.51 0.41 0.89 0.88 0.88 0.88 0.39 0.37 

Thread. 0.59 0.57 0.91 0.89 0.92 0.91 0.53 0.48 

Cons. 0.70 0.56 0.92 0.91 0.90 0.89 0.56 0.55 
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ADDITIONAL SUPPLEMENTARY FILES 

1) 1acb_e.pdf, Adobe Portable Document Format: Comparison of individual methods for 

interface residue prediction for bovine α-chymotrypsin (1acbe).   

2) 1avw_a.pdf, Adobe Portable Document Format: Comparison of individual methods 

for interface residue prediction for porcine pancreatic trypsin (1avwa). 

3) 1fle_e.pdf, Adobe Portable Document Format: Comparison of individual methods for 

interface residue prediction for porcine pancreatic elastase (1flee). 

4) 1hia_a.pdf, Adobe Portable Document Format: Comparison of individual methods for 

interface residue prediction for kallikrein (1hiaa). 

5) 2sic_e.pdf, Adobe Portable Document Format: Comparison of individual methods for 

interface residue prediction for subtilisin BPN' (2sice). 

6) 4cpa.pdf, Adobe Portable Document Format: Comparison of individual methods for 

interface residue prediction for carboxypeptidase A (4cpa). 
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