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Accurately predicting phosphorylation sites in proteins is an important issue in postgenomics, for which
how to efficiently extract the most predictive features from amino acid sequences for modeling is still
challenging. Although both the distributed encoding method and the bio-basis function method work well,
they still have some limits in use. The distributed encoding method is unable to code the biological content
in sequences efficiently, whereas the bio-basis function method is a nonparametric method, which is often
computationally expensive. As hidden Markov models (HMMs) can be used to generate one model for one
cluster of aligned protein sequences, the aim in this study is to use HMMs to extract features from amino
acid sequences, where sequence clusters are determined using available biological knowledge. In this novel
method, HMMs are first constructed using functional sequences only. Both functional and nonfunctional
training sequences are then inputted into the trained HMMs to generate functional and nonfunctional feature
vectors. From this, a machine learning algorithm is used to construct a classifier based on these feature
vectors. It is found in this work that (1) this method provides much better prediction accuracy than the use
of HMMs only for prediction, and (2) the support vector machines (SVMs) algorithm outperforms decision
trees and neural network algorithms when they are constructed on the features extracted using the trained
HMMs.

INTRODUCTION

Protein phosphorylation, performed by the protein kinases
or phosphotransferases (Enzyme Commission classification
2.7), is a post-translational modification that is important to
the good control of cellular processes. Those cellular
processes are cell signaling,1,2 metabolism,3 cellular prolifera-
tion,1 and apoptosis.4-6 Furthermore, the association has also
been found with many diseases, including cancer1,7 and
Alzheimer’s disease.6 Hence, it is important to develop quick
and competent computational tools to recognize potential
phosphorylation sites, which then result in an improved
efficiency of characterizing novel protein sequences.8 There
is, however, a problematic issue when identifying the site
of phosphorylation because the substrate specificity and
phosphorylation mechanism of some protein kinases might
be both broad and complex.9,10 It has been indicated that the
prediction of phosphorylation sites should not be carried out
using solely a consensus sequence even when its structure
was examined.9 Nevertheless, their work showed that
conserved regions, where almost complete serine, threonine,
or tyrosine specificity exists, were identified between posi-
tions -4 and+4 around the phosphorylation site.

Similar to many other protein function predictions, infor-
mation in the genome sequence databases has increased
substantially with the completion of many eukaryotic genome

sequences in this postgenomics era. However, the rate that
the annotation of protein functions through experiments
occurs is extremely slow. To speed up the annotation,
particularly for protein functional site predictions, many
computational algorithms have been developed with some
success.

The h function method known as a frequency-based
method was one of the earliest methods for functional site
prediction.11 With theh function, the frequency of the amino
acids at each residue of a sequence is counted from the
training functional sequences only. A novel sequence is
classified in terms of the integration of the frequencies from
all the residues. Such a method is very simple and straight-
forward, but the accuracy is often biased toward the
functional sequences with high sensitivity and low specificity.

Subsequent studies employed neural networks. As neural
networks are not able to recognize non-numerical attributes
directly, a feature extraction process must be conducted
before using neural networks for constructing a predictor.
The common method for extracting features is to use the
distributed encoding method.12 With this method, each amino
acid is encoded using a 20-bit-long binary vector, in which
only one bit is assigned a unity, leaving the remaining 19
bits zeros. With this encoding method, various pattern
recognition algorithms have been successfully applied to
functional site prediction subjects, for instance, HIV protease
cleavage site prediction,13-15 signal peptide cleavage site
prediction,16-18 and phosphorylation site prediction.8 The
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most important issue with this method is the difficulty of
coding biological content in sequences.19 For instance, the
Hamming distance between two binary vectors encoded from
any two different amino acids is always 2, whereas the
similarity quantified as mutation or substitution probability
varies.20-22.

The bio-basis function was proposed recently as an
alternative encoding.19,23 The concept of the bio-basis func-
tion is the merging of two important principles, that is, the
principle of homology alignment used in biology sciences20-22

and the principle of kernel methods used in pattern recogni-
tion algorithms.24 The former provides a method to quantify
the similarity between two sequences, whereas the latter
provides a framework for learning with collected data. The
core of the bio-basis function is using a set of prototype
sequences to formulate a numerical feature vector for a
sequence, each element of which is the similarity (homology
alignment score) with one of the prototype sequences. This
method overcomes the difficulty of coding biology content
in sequences when using the distributed encoding method.
The bio-basis function neural networks developed on the
basis of this principle have been successfully applied to a
number of applications including HIV protease cleavage site
prediction,19,23 trypsin cleavage site prediction,19 the predic-
tion of the O-linkage site in glycoproteins,25 the prediction
of phosphorylation sites,8 the prediction of caspase cleavage
sites,26 the prediction of disordered proteins,27 and signal
peptide cleavage site prediction.28 However, the selection of
the best prototype sequences is not an easy task. This has
led to considering the use of mutual information for the
selection of the best prototype sequences,29 the genetic
algorithm for the selection of motifs,8 or the orthogonal
algorithm.19 However, the increase on the prediction accuracy
is not always as expected,8 and computational cost is
comparatively large.

In this paper, we have employed hidden Markov models
(HMMs) to extract features for the prediction of the
phosphorylation sites in proteins using various machine
learning algorithms. The simulation shows that the prediction
accuracy has been significantly improved.

METHODS

Hidden MarkoV Models.HMMs are kinds of mathematical
models for modeling observation sequences that contain
hidden process.30 Because of its solid theoretic background,
HMM has been widely used in many applications. There
are two major components, that is, a set of states and
transition probabilities between them (including the prob-
ability of being the starting state) and a signal with its
probability to emit from a certain state. In applications, there
are three common issues when using HMMs for modeling a
family of protein sequences.31 First, the likelihood that a
sequence belongs to a model is considered. Second, an
alignment between one sequence and others with a family
of sequences is produced. Third, the trained model based
on the known sequences is generated. A detailed description
of the topology of standard linear HMMs32 has been given.33

When mapping a sequence through states in a HMM
model, a number of paths will eventually generate an

associated probability, which is the product of all prob-
abilities found in a path. We refer to a sequence ofL amino
acids asx ) (x1, x2, ..., xL) and the path of states asq ) q1,
q2, ..., qL. The probability that the stateqi emits the symbol
xi is denoted byP(xi|qi), which is given by a state probability
profile. Each transition connecting a state has a probability
denoted byT(qi|qi-1). Thus, the probability of an alignment
of sequences with a family of sequences by a HMM model
can be represented as

By summing up the probabilities of all paths corresponding
to the sequence given a model, we can determine how well
the model fits the sequences30

Because our interest is to extract features from functional
and nonfunction sequences for using a pattern recognition
algorithm to construct a predictor, HMMs are used to extract
features by scoring the similarity between the trained
functional HMMs and those of all sequences. To derive such
HMMs, we have used the HMMER package.34

Phosphorylation Clusters. It has been experimentally
determined that phosphorylation will not happen without the
presence of three amino acids, serine, threonine, or tyrosine.8

On the basis of this biological knowledge, the sequences can
be grouped into three clusters with the presence of serine,
threonine, or tyrosine. We refer to these clusters as phos-
phorylation clusters.

Extract Features. Two types of HMM scores are used for
the investigation. First, the total scores (see eq 2) obtained
from the trained HMMs are used as the features. For instance,
there will be K features for each novel sequence if the
training sequences are clustered intoK clusters and one
HMM is constructed for each cluster. Second, each emission
score obtained from the match states in the trained HMMs
is used as a feature. For instance, there will beKL features
for each novel sequence if each sequence withL amino acids
and sequences are partitioned intoK clusters. One HMM is
constructed for each cluster. On the basis of these two types
of HMM scores, three feature extraction strategies are used
in our study.

(1) A feature vector of three elements is generated for each
sequence. Each element is a total score (see eq 2) obtained
when a sequence is aligned with one of the trained HMMs
for three phosphorylation clusters.

(2) A feature vector of 12 elements is generated for each
sequence. Each element is a total score obtained when a
sequence is aligned with four trained HMMs for each
phosphorylation cluster. Up to four different HMMs for each
cluster can be built based on four kinds of alignments that

P(x|q) ) ∏ T(qi|qi-1) P(xi|qi) (1)

P(x) ) ∑ ∏ T(qi|qi-1) P(xi|qi) (2)
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hmmbuildprovides (Table 1). For example, in the first feature
extraction strategy, the default alignment style is used to
perform alignments that are global with respect to the HMMs
and local with respect to the sequence and allows multiple
domains to hit per sequence. Such HMMs will only find
complete domains.34

(3) A feature vector of 27 [three clusters (K) and nine
residues (L)] elements is generated for each sequence. Each
element is an emission score extracted when each amino acid
of a sequence is aligned with each match profile in one of
the trained HMMs for three clusters. Each trained HMM
contains nine match profiles, and one HMM is built for one
cluster on the basis of the default alignment parameter.

Classification Methods. We have two classification meth-
ods: (1) use HMMs only for classification (referred to as
the basemodel) and (2) use machine learning algorithms
(referred to as theenhancedmodel).

For the base model, functional and nonfunctional features
obtained from aligning functional and nonfunctional se-
quences to trained HMMs are assumed to follow two
multivariate Gaussians. In training a classifier, the functional
training sequences are first used to construct HMMs. From
this, the functional and nonfunctional sequences are aligned
with the constructed HMMs to generate training feature
vectors. Finally, a parametric method is used to estimate the
density functions on the basis of all the training feature
vectors. In testing, a novel sequence is aligned with the
constructed HMMs to generate a novel feature vector, which
is fed into the trained classifier. The Bayes rule is used for
decision making.

For the enhanced model, a machine learning algorithm is
used to train a classifier using the extracted features. The
classifier is then used for prediction. In training a classifier,
the functional training sequences are used to construct
HMMs. From this, the functional and nonfunctional training
sequences are then aligned with the constructed HMMs to
generate training feature vectors. These training feature
vectors are then used to train a classifier. In testing, a novel
sequence is aligned with the trained HMMs to obtain a novel
feature vector. The novel feature vector is fed to the trained
classifier for prediction. The machine learning algorithms
used in this study include support vector machines (SVMs),35

back-propagation neural networks (BPNNs),36 and decision
trees.37 The SVMs package used is the SVMlight (http://
svmlight.joachims.org).38 The decision tree algorithm used
in this study is C4.5, a free software package (http://
www.mkp.com/c45).

Model Assessment. The prediction accuracy (ACC), Mat-
thews correlation coefficient (MC),39 true positive fraction

(TPf), and true negative fraction (TNf) are used for assess-
ment. The prediction accuracy is given by

where TP, FP, TN, and FN are the number of true positives,
false positives, true negatives, and false negatives, respec-
tively. MC is given as follows:

The true positive and true negative fractions are defined as
All these assessment measurements are averaged, and a

standard deviation is calculated for each of them.
In addition, we use the receiver operating characteristic

(ROC) curves40 for the comparison between SVM and BPNN
models because we do not have quantitative output from a
decision tree algorithm. For each ROC curve, the area under
the ROC curve (AUR) is calculated as a quantitative indicator
for measuring the robustness of a trained model.

Data. The data are the same as that used in Berry et al.8

The data are composed of 1840 sequences, 50% of which
contain serine, threonine, and tyrosine phosphorylation sites
and are referred to as functional or positive sequences and
50% of which are nonfunctional or negative sequences. Each
sequence is composed of nine amino acids.

However, when inspected, there were 18 positive se-
quences with consistently incorrect predictions (data are not
shown). These sequences have no serine, threonine, and
tyrosine phosphorylation at the phosphorylation site. As it
is known that phosphorylation will not happen without the
presence of one of these three amino acids,8 we then removed
those 18 positive sequences from the dataset. Another two
positive sequences were also randomly selected and removed
in order to allow us to partition the data into five equal
subsets for 5-fold cross validation. After removing the 20
positive sequences, 20 negative sequences were also ran-
domly removed. Finally, the total data size for this study
was 1800 sequences.

Because the basic principle of this study is to use fea-
tures extracted from HMMs as inputs to pattern recog-
nition algorithms, this approach requires four separate
steps:

•Determining training and test sequence: Training se-
quences and test sequences are selected randomly. The
training dataset contains 80% (5-fold cross validation) of the
total data, whereas 20% is contained by the test dataset.

•HMMs: Functional sequences in each training dataset
are used to construct HMMs. Each HMM consists of nine
match states with the emission score for the different amino
acids.

•Extracting features: This depends on different feature
extraction strategies; a total score or an emission score is
extracted after aligning each sequence with each trained
HMM.

•SVMs, BPNN, and C4.5: Alignment scores of both
functional and nonfunctional sequences in a training dataset

Table 1. Four Different Styles of Alignments Allowed When
Generating HMMs with thehmmbuildCommand

command wrt sequence wrt model multidomain
HMMER ver.1

command

hmmbuild local global yes hmmls
hmmbuild-f local local yes hmmfs
hmmbuild-g local global no hmms
hmmbuild-s local local no hmmsw

ACC ) TP + TN
TP + FP+ TN + FN

MC ) TP‚TN - FP‚FN

x(TN + FN)(TN + FP)(TP+ FN)(TP+ FP)

TPf ) TP
TP + FN

and TNf) TN
TN + FP
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are used to construct predictors of SVMs, BPNN, and C4.5.
Alignment scores of both functional and nonfunctional
sequences in a test dataset are used to assess each predictor’s
performance.

RESULTS AND DISCUSSION

A five-fold cross validation was applied to this dataset.
This generated five training datasets and five test datasets.
The distribution of the data is shown in Table 2.

On the basis of each dataset, three HMMs are constructed
using the functional sequences for three phosphorylation
clusters. Because each sequence is nine amino acids long,
the generated model contains nine match states with the
emission score for each amino acid.

With the first feature extraction strategy, a total score
generated when aligning a sequence with one of three
constructed HMMs using thehmmsearchcommand is
regarded as one of three features. Three features are used
by the base and enhanced models. Figure 1 shows the
comparison of the testing performances between the two
models. It can be seen that the enhanced model consistently
outperformed the base model. Among three pattern recogni-
tion algorithms, the decision tree model performed the best.
In contrast, directly using HMMER for prediction yielded
both the lowest performance and the least consistency. The
first four rows in Table 3 give the details.

Note that the results of using SVMs are based on the use
of the linear kernel (our simulation shows that the total testing
accuracy is maximized whenC ) 1) for all the models with
different numbers of features. Other nonlinear kernel func-
tions did not work, with the total accuracy around 55%.

With the second feature extraction strategy, it is expected
that sensitivity can be improved by increasing the number
of features. Therefore, we applied different alignment styles
when training HMMs using the commandhmmbuild. We
then had four HMMs for each of the three protein clusters.
This led to 12 features for every sequence. Figure 2 shows

the comparison of the testing performances. It can be seen
that, although BPNN slightly outperformed other algorithms,
C4.5 showed the most consistent prediction accuracy. The
prediction accuracy of BPNN is 90.67( 1.82%, and the
standard deviation of C4.5 is 0.65% (see the fifth, sixth, and
seventh rows in Table 3).

With the third feature extraction strategy, 27 features are
extracted from emission scores after aligning each sequence
with nine match profiles of the trained HMMs for the three
protein clusters. Figure 3 presents the testing results. It can
be seen that the performance of the SVMs is the best. In
particular, SVMs achieved 100% for TPf. The standard
deviation of the prediction accuracy has been reduced to
1.29%. However, it should be noted that the variation
between TPf and TNf in the SVM models was the largest.
On the other hand, C4.5 has the least variation between TNf
and TPf. The last three rows in Table 3 give the details.

Shown in Figure 4 is a summary of the comparison
between different feature extraction strategies using SVMs.
It can be seen that the extracting features using the emission
score (27 features) gave a substantial improved performance

Figure 1. Bar chart comparing the mean true negative fraction
(TNf), mean true positive fraction (TPf), Matthews coefficient
(MC), and mean total accuracy (ACC) for the three-feature dataset
for SVMs, BPNN, C4.5, and HMMER. The error bars stand for
the standard deviation.

Table 2. Distribution of Types of Phosphorylated Sites among Five
Datasets

phosphorylated residues

fold S training S testing T training T testing Y training Y testing

1 470 113 102 31 148 36
2 462 121 112 21 146 38
3 466 117 100 33 154 30
4 463 120 108 25 149 35
5 471 112 110 23 139 45

Table 3. Prediction Results When Applying Different HMM
Feature Extraction Strategies Using the Enhanced and Base
Methodsa

TNf (%) TPf (%) MC (%) ACC (%)

SVMs (3 features) 87(2.99) 93(1.08) 80(3.36) 90(1.74)
BPNN (3 features) 89(2.58) 92(1.62) 81(2.67) 90(1.35)
C4.5 (3 features) 89(2.24) 92(0.68) 81(1.72) 91(0.89)
HMMER 79(1.91) 91(2.79) 70(4.28) 85(2.07)
SVMs (12 features) 87(2.38) 93(0.56) 81(2.75) 90(1.42)
BPNN (12 features) 90(2.21) 92(2.52) 81(3.66) 91(1.82)
C4.5 (12 features) 89(2.44) 91(2.50) 80(1.27) 90(0.65)
SVMs (27 features) 83(2.57) 100(0) 85(2.25) 92(1.29)
BPNN (27 features) 85(3.42) 95(4.59) 80(3.99) 90(1.97)
C4.5 (27 features) 88(2.62) 90(3.28) 78(4.75) 89(2.37)

a The numbers outside the parentheses stand for the measurements
of the indicators, whereas the ones inside the parentheses stand for the
standard deviation. We have multiplied MC by 100 because it can be
easily visualized.

Figure 2. Bar chart comparing TNf, TPf, MC, and ACC for the
12-feature dataset for SVMs, BPNN, and C4.5. The error bars stand
for the standard deviation.

Figure 3. Bar chart comparing TNf, TPf, MC, and ACC for the
27-feature dataset for SVMs, BPNN, and C4.5. The errror bars stand
for the standard deviation.
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compared with that using the total score (3 features and 12
features). Not only were the highest ACC and MC achieved,
but also, the consistency of the prediction has been improved.

The results of the prediction presented in Table 4 show a
comparison between pattern recognition algorithms with
features extracted using HMMs, the BPNN with the distrib-
uted encoding method (BPNNd), and bio-basis function
neural networks (BBFNN). It can be seen that the use of
HMMs for extracting features provided better prediction
accuracy.

It should be noted that some protein sequences could
contain nonexperimentally determined phosphorylation sites;
because of this, some of the sequences in the study might
be functional, but they are considered nonfunctional at the
moment. The exclusion of these sequences may bias the
constructed HMMs. The final development is to compare
current nonspecific protein classification (serine, threonine,
and tyrosine) with different protein kinase classification
schemes.41 This will result in more elements in the feature
vector that would increase the discrimination ability between
functional and nonfunctional sequences.

Shown in Figure 5 is the comparison using ROC curves.
It can be seen that SVM performed better than the BPNN
model, and the 27-features model performed the best. Shown
in Figure 6 are the ROC curves for the BPNN and SVM
models using 27 features.

SUMMARY

In this paper, we have proposed a novel method that uses
the features extracted using HMMs for applying a machine
learning algorithm to generate a classifier for the prediction
of phosphorylation sites in proteins. It has been shown that
the enhanced models outperformed the base models. This is
as expected because only the functional sequences are used
in the base models, which has the problem of a large number
of false positives. Although the use of the machine learning
algorithms in the enhanced model has encouraged the use
of the nonfunctional sequences for discrimination rather than
the construction of HMMs, the improvement on prediction
accuracy indicates that the use of both functional and
nonfunctional sequences is critically important for a good
classifier that is able to discriminate between functional and
nonfunctional sequences well.

The main issue in modeling protein sequences is the testing
time complexity. When we use any nonparametric machine
learning algorithm, a serious concern is the calculation with
all the collected protein sequences. Suppose there are 10 000
sequences, we then need 10 000 calculations for obtaining
10 000 similarities. From this, an output can be made using
a trained model. The principle proposed in this study is to
use hidden Markov models to extract features. When a
feature model has been produced, all the collected training
sequences are no longer necessary for use in the testing stage.
We can then regard this proposed method as a parametric
model, and it is widely unknown that a parametric model is
computationally cheaper.

In this work, we aimed to compare different feature
extraction strategies using HMMs. Our future work will

Figure 4. Bar chart comparing TNf, TPf, MC, and ACC for the
3-, 12-, and 27-feature datasets with SVMs. The error bars stand
for the standard deviation.

Figure 5. AUR for two groups of models.

Table 4. Comparison among Different Pattern Recognition
Algorithms with HMM Features, the Distributed Encoding Method,
and the Bio-Basis Functions (rBBFNN)

TNf (%) TPf (%) MC (%) ACC (%)

SVMs (HMM 27 features) 83(2.57) 100(0) 85(2.25) 92(1.29)
BPNN (HMM 12 features) 90(2.21) 92(2.52) 81(3.66) 91(1.82)
C4.5 (HMM 3 features) 89(2.24) 92(0.68) 81(1.72) 91(0.89)
BPNN (Berry et al.)8 88(1.94) 92(2.80) No data 90(1.64)
C4.5 (Berry et al.)8 83(3.83) 98(1.06) No data 90(2.03)
rBBFNN (Berry et al.)8 89(1.54) 86(2.61) No data 88(1.50)

Figure 6. ROC curves for the BPNN and SVM models using 27 features.
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investigate the introduction of feature selection methods to
reduce the number of features and, hence, reduce the testing
time further.
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