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Accurately predicting phosphorylation sites in proteins is an important issue in postgenomics, for which
how to efficiently extract the most predictive features from amino acid sequences for modeling is still
challenging. Although both the distributed encoding method and the bio-basis function method work well,
they still have some limits in use. The distributed encoding method is unable to code the biological content
in sequences efficiently, whereas the bio-basis function method is a nonparametric method, which is often
computationally expensive. As hidden Markov models (HMMs) can be used to generate one model for one
cluster of aligned protein sequences, the aim in this study is to use HMMs to extract features from amino
acid sequences, where sequence clusters are determined using available biological knowledge. In this novel
method, HMMs are first constructed using functional sequences only. Both functional and nonfunctional
training sequences are then inputted into the trained HMMs to generate functional and nonfunctional feature
vectors. From this, a machine learning algorithm is used to construct a classifier based on these feature
vectors. It is found in this work that (1) this method provides much better prediction accuracy than the use
of HMMs only for prediction, and (2) the support vector machines (SVMs) algorithm outperforms decision
trees and neural network algorithms when they are constructed on the features extracted using the trained
HMMs.

INTRODUCTION sequences in this postgenomics era. However, the rate that
the annotation of protein functions through experiments
occurs is extremely slow. To speed up the annotation,
particularly for protein functional site predictions, many
computational algorithms have been developed with some
uccess.

Protein phosphorylation, performed by the protein kinases
or phosphotransferases (Enzyme Commission classification
2.7), is a post-translational modification that is important to
the good control of cellular processes. Those cellular
processes are cell signalihgmetabolisn® cellular prolifera-
tion,! and apoptosié.® Furthermore, the association has also ~ The h function method known as a frequency-based
been found with many diseases, including cahtemd method was one of the earliest methods for functional site
Alzheimer's diseaséHence, it is important to develop quick ~ prediction:* With theh function, the frequency of the amino
and competent computational tools to recognize potential acids at each residue of a sequence is counted from the
phosphorylation sites, which then result in an improved training functional sequences only. A novel sequence is
efficiency of characterizing novel protein sequent&bere classified in terms of the integration of the frequencies from
is, however, a problematic issue when identifying the site all the residues. Such a method is very simple and straight-
of phosphorylation because the substrate specificity andforward, but the accuracy is often biased toward the
phosphorylation mechanism of some protein kinases mightfunCtiona| sequences with high sensitivity and low specificity.
be both broad and compléx°It has been indicated that the  Subsequent studies employed neural networks. As neural
prediction of phosphorylation sites should not be carried out networks are not able to recognize non-numerical attributes
using solely a consensus sequence even when its structurgirectly, a feature extraction process must be conducted
was examined. Nevertheless, their work showed that pefore using neural networks for constructing a predictor.
conserved regions, where almost complete serine, threonineThe common method for extracting features is to use the
or tyrosine specificity exists, were identified between posi- distributed encoding methddWith this method, each amino
tions —4 and+4 around the phosphorylation site. acid is encoded using a 20-bit-long binary vector, in which

Similar to many other protein function predictions, infor- only one bit is assigned a unity, leaving the remaining 19
mation in the genome sequence databases has increasegits zeros. With this encoding method, various pattern
substantially with the completion of many eukaryotic genome recognition algorithms have been successfully applied to
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most important issue with this method is the difficulty of associated probability, which is the product of all prob-

coding biological content in sequencéd-or instance, the  abilities found in a path. We refer to a sequencé aimino

Hamming distance between two binary vectors encoded fromacids asx = (X1, %, ..., X.) and the path of states as= q;,

any two different amino acids is always 2, whereas the q,, ..., q.. The probability that the statg emits the symbol

sim_ilarity quantified as mutation or substitution probability . js denoted byP(x|q), which is given by a state probability

varies??22, profile. Each transition connecting a state has a probability
The bio-basis function was proposed recently as an denoted byT(qi|g-1). Thus, the probability of an alignment

alternative encoding’*3The concept of the bio-basis func-  of sequences with a family of sequences by a HMM model

tion is the merging of two important principles, that is, the can be represented as

principle of homology alignment used in biology scieriée3

and the principle of kernel methods used in pattern recogni-

tion algorithms?* The former provides a method to quantify P(x|9) =[] T(ailgi-y) P(xla) 1)

the similarity between two sequences, whereas the latter

provides a framework for learning with collected data. The

core of the bio-basis function is using a set of prototype

sequences to formulate a numerical feature vector for a

sequence, each element of which is the similarity (homology

alignment score) with one of the prototype sequences. This

method overcomes the difficulty of coding biology content — A A

in sequences when using the distributed encoding method. PX) Z I_l (@0 Piia) @

The bio-basis function neural networks developed on the

basis of this principle have been successfully applied to a Because our interest is to extract features from functional

number of applications including HIV protease cleavage site and nonfunction sequences for using a pattern recognition

prediction;*#trypsin cleavage site predictiéhthe predic-  algorithm to construct a predictor, HMMs are used to extract

tion of the O-linkage site in glycoproteif$the prediction  features by scoring the similarity between the trained

of phosphorylation sitekthe prediction of caspase cleavage fynctional HMMs and those of all sequences. To derive such

sites?® the prediction of disordered proteifsand signal HMMs, we have used the HMMER packatfe.
peptide cleavage site predictiéhHowever, the selection of

the best prototype sequences is not an easy task. This has Phosphorylation Clustersit has been experimentally
led to considering the use of mutual information for the determined that phosphorylation will not happen without the
selection of the best prototype sequeriethe genetic presence of three amino acids, serine, threonine, or tyrésine.
algorithm for the selection of motifs,or the orthogonal  On the basis of this biological knowledge, the sequences can
algorithm® However, the increase on the prediction accuracy pe grouped into three clusters with the presence of serine,
is not always as expectédand computational cost is  threonine, or tyrosine. We refer to these clusters as phos-
comparatively large. phorylation clusters.

In this paper, we have employed hidden Markov models
(HMMs) to extract features for the prediction of the Extract FeaturesTwo types of HMM scores are used for

phosphory|ation sites in proteins using various machine the investigation. FirSt, the total scores (See eq 2) (:.)bta.ined
learning algorithms. The simulation shows that the prediction from the trained HMMs are used as the features. For instance,

By summing up the probabilities of all paths corresponding
to the sequence given a model, we can determine how well
the model fits the sequendéés

accuracy has been significantly improved. there will be K features for each novel sequence if the
training sequences are clustered imdoclusters and one
METHODS HMM is constructed for each cluster. Second, each emission

_ . . score obtained from the match states in the trained HMMs
Hidden Marka Models.HMMs are kinds of mathematical  js ysed as a feature. For instance, there wilkihefeatures

models for modeling observation sequences that contaings, each novel sequence if each sequence Wihino acids
hidden proces® Because of its solid theoretic background, and sequences are partitioned italusters. One HMM is
HMM has been widely used in many applications. There constructed for each cluster. On the basis of these two types

are t.V\./O major C_o_mponents, that is, a set .Of states andof HMM scores, three feature extraction strategies are used
transition probabilities between them (including the prob- in our study

ability of being the starting state) and a signal with its
probability to emit from a certain state. In applications, there (1) A feature vector of three elements is generated for each
are three common issues when using HMMs for modeling a sequence. Each element is a total score (see eq 2) obtained

family of protein sequencés.First, the likelihood that a when a sequence is aligned with one of the trained HMMs
sequence belongs to a model is considered. Second, af,; three phosphorylation clusters.

alignment between one sequence and others with a family

of sequences is produced. Third, the trained model based (2) A feature vector of 12 elements is generated for each

on the known sequences is generated. A detailed descriptiorsequence. Each element is a total score obtained when a

of the topology of standard linear HMN¥fhas been givef?. sequence is aligned with four trained HMMs for each
When mapping a sequence through states in a HMM phosphorylation cluster. Up to four different HMMs for each

model, a number of paths will eventually generate an cluster can be built based on four kinds of alignments that
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Table 1. Four Different Styles of Alignments Allowed When (TPf), and true negative fraction (TNf) are used for assess-
HMMER ver.1
command  wrt sequence wrt model multidomain command ACC = TP+ TN
hmmbuild local global yes hmmis TP+ FP+ TN+ FN
hmmbu@ld—f local local yes hmmfs
hmmbuild-g local global no hmms where TP, FP, TN, and FN are the number of true positives,
hmmbuild-s local local no hmmsw

false positives, true negatives, and false negatives, respec-
tively. MC is given as follows:

hmmbuildprovides (Table 1). For example, in the first feature TP-TN — EPEN
extraction strategy, the default alignment style is used to MC =

perform alignments that are global with respect to the HMMs V(TN + FN)(TN + FP)(TP+ FN)(TP+ FP)
and local with respect to the sequence and allows multiple
domains to hit per sequence. Such HMMs will only find
complete domain¥'

The true positive and true negative fractions are defined as
All these assessment measurements are averaged, and a

(3) A feature vector of 27 [three clusterk)(and nine TPf= P ond TNf= N
residues|()] elements is generated for each sequence. Each TP+ FN TN+ FP
element is an emission score extracted when each amino acid

f nce is alianed with h match profile in on fstandard deviation is calculated for each of them.
ot a sequence Is aligne each maich profile in one ot addition, we use the receiver operating characteristic

the trf':unec_i HMMs for th_ree clusters. Each_traln.ed HMM (ROC) curve® for the comparison between SVM and BPNN
contains nine match profiles, and one HMM is built for one - o eis hecause we do not have quantitative output from a
cluster on the basis of the default alignment parameter.  gecision tree algorithm. For each ROC curve, the area under

Classification MethodsWe have two classification meth- ~ the ROC curve (AUR) is calculated as a quantitative indicator
ods: (1) use HMMs only for classification (referred to as for measuring the robustness of a trained model.

the basemodel) and (2) use machine learning algorithms _ Data The data are the same as that used in Berry &t al.
(referred to as thenhancednodel). The data are composed of 1840 sequences, 50% of which

) . contain serine, threonine, and tyrosine phosphorylation sites

For the base model, functional and nonfunctional features 5 are referred to as functional or positive sequences and
obtained from aligning functional and nonfunctional se- 509 of which are nonfunctional or negative sequences. Each
quences to trained HMMs are assumed to follow two sequence is Composed of nine amino acids.
multivariate Gaussians. In training a classifier, the functional  However, when inspected, there were 18 positive se-
training sequences are first used to construct HMMs. From quences with consistently incorrect predictions (data are not
this, the functional and nonfunctional sequences are alignedshown). These sequences have no serine, threonine, and
with the constructed HMMs to generate training feature tyrosine phosphorylation at the phosphorylation site. As it
vectors. Finally, a parametric method is used to estimate theis known that phosphorylation will not happen without the
density functions on the basis of all the training feature presence of one of these three amino atide,then removed
vectors. In testing, a novel sequence is aligned with the those 18 positive sequences from the dataset. Another two

constructed HMMs to generate a novel feature vector, which Positive sequences were also randomly selected and removed

is fed into the trained classifier. The Bayes rule is used for in order to allow us to partition the data into five equal
decision making. subsets for 5-fold cross validation. After removing the 20

) ) _ ~ positive sequences, 20 negative sequences were also ran-
For the enhanced model, a machine learning algorithm is yomly removed. Finally, the total data size for this study
used to train a classifier using the extracted features. Thewas 1800 sequences.
classifier is then used for prediction. In training a classifier,  Because the basic principle of this study is to use fea-
the functional training sequences are used to constructtures extracted from HMMs as inputs to pattern recog-
HMMs. From this, the functional and nonfunctional training nition algorithms, this approach requires four separate
sequences are then aligned with the constructed HMMs tosteps:
generate training feature vectors. These training feature eDetermining training and test sequence: Training se-
vectors are then used to train a classifier. In testing, a novelquences and test sequences are selected randomly. The
sequence is aligned with the trained HMMs to obtain a novel training dataset contains 80% (5-fold cross validation) of the
feature vector. The novel feature vector is fed to the trained total data, whereas 20% is contained by the test dataset.
classifier for prediction. The machine learning algorithms ~ *HMMs: Functional sequences in each training dataset
used in this study include support vector machines (S\Ais), are used to construct HMMs. Each HMM consists of nine
back-propagation neural networks (BPNR&and decision ma_ltch states with the emission score for the different amino
trees’ The SVMs package used is the SUA (http:/ ~ acids.

svmlight.joachims.org}® The decision tree algorithm used ;Exttr_actm? ftezat_urgs: tTrt“SI depends on d|ffergnt feature_
in this study is C4.5, a free software package (http:// extraction strategies, a fofal Score or an emission score 1S

extracted after aligning each sequence with each trained
www.mkp.com/c45).

HMM.
Model Assessmenthe prediction accuracy (ACC), Mat- «SVMs, BPNN, and C4.5: Alignment scores of both
thews correlation coefficient (MCF, true positive fraction functional and nonfunctional sequences in a training dataset
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100.00 Table 3. Prediction Results When Applying Different HMM
95.00 SV (3 features) Feature Extraction Strategies Using the Enhanced and Base
» 90.00 EEPNN (3 features) Method$
g 85.00 CICA4.5 (3 features) TNf(%) TPf(%) MC (%) ACC (%)
HVMER
g = L SVMs (3 features)  87(2.99) 93(1.08) 80(3.36) 90(1.74)
o 75.00 BPNN (3 features)  89(2.58) 92(1.62) 81(2.67) 90(1.35)
10.00 C4.5 (3 features) 89(2.24) 92(0.68) 81(1.72) 91(0.89)
65.00 = HMMER 79(1.91) 91(2.79) 70(4.28) 85(2.07)
TN L MC ACC SVMs (12 features)  87(2.38) 93(0.56) 81(2.75) 90(1.42)

Figure 1. Bar chart comparing the mean true negative fraction BPNN (12 features) 90(2.21) 92(2.52) 81(3.66) 91(1.82)
(TNf), mean true positive fraction (TPf), Matthews coefficient C4.5 (12 features) 89(2.44) 91(2.50) 80(1.27) 90(0.65)
(MC), and mean total accuracy (ACC) for the three-feature dataset SVMs (27 features) 83(2.57) 100(0) 85(2.25) 92(1.29)
for SVMs, BPNN, C4.5, and HMMER. The error bars stand for BPNN (27 features) 85(3.42) 95(4.59) 80(3.99) 90(1.97)
the standard deviation. C4.5 (27 features)  88(2.62) 90(3.28) 78(4.75) 89(2.37)

Table 2. Distribution of Types of Phosphorylated Sites among Five  aThe numbers outside the parentheses stand for the measurements
Datasets of the indicators, whereas the ones inside the parentheses stand for the

phosphorylated residues standard deviation. We have multiplied MC by 100 because it can be
easily visualized.

fold Straining Stesting T training T testing Y training Y testing

1 470 113 102 31 148 36 100.00

2 462 121 112 21 146 38 95.00

3 466 117 100 33 154 30 P ESVMs (12 features)
4 463 120 108 25 149 35 BEBPNN (12 features)
5 471 112 110 23 139 45 20 0C4.5 (12 features)

80.00
75.00
are used to construct predictors of SVMs, BPNN, and C4.5. 7.0
Alignment scores of both functional and nonfunctional 65.00

sequences in a test dataset are used to assess each predictor s ™ T e hce
performance Figure 2. Bar chart comparing TNf, TPf, MC, and ACC for the
: 12-feature dataset for SVMs, BPNN, and C4.5. The error bars stand
for the standard deviation.

Percentage

RESULTS AND DISCUSSION

100.00

A five-fold cross validation was applied to this dataset. $95.00

This generated five training datasets and five test datasets§ 2o
The distribution of the data is shown in Table 2. i

80.00

On the basis of each dataset, three HMMs are constructece 75.00

using the functional sequences for three phosphorylation Z;’EE
clusters. Because each sequence is nine amino acids long ' 2 o e o

the generated model contains nine match states with theFigure 3. Bar chart comparing TNf, TPf, MC, and ACC for the

emission score for each amino acid. 27-feature dataset for SVMs, BPNN, and C4.5. The errror bars stand
With the first feature extraction strategy, a total score for the standard deviation.
generated when aligning a sequence with one of three
constructed HMMs using thevmmsearchcommand is the comparison of the testing performances. It can be seen
regarded as one of three features. Three features are usetpat, although BPNN slightly outperformed other algorithms,
by the base and enhanced models. Figure 1 shows theC4.5 showed the most consistent prediction accuracy. The
comparison of the testing performances between the twoPprediction accuracy of BPNN is 90.6% 1.82%, and the
models. It can be seen that the enhanced model consistentlytandard deviation of C4.5 is 0.65% (see the fifth, sixth, and
outperformed the base model. Among three pattern recogni-Seventh rows in Table 3).
tion algorithms, the decision tree model performed the best.  With the third feature extraction strategy, 27 features are
In contrast, directly using HMMER for prediction yielded extracted from emission scores after aligning each sequence
both the lowest performance and the least consistency. Thewith nine match profiles of the trained HMMs for the three
first four rows in Table 3 give the details. protein clusters. Figure 3 presents the testing results. It can
Note that the results of using SVMs are based on the usebe seen that the performance of the SVMs is the best. In
of the linear kernel (our simulation shows that the total testing particular, SVMs achieved 100% for TPf. The standard
accuracy is maximized whed = 1) for all the models with deviation of the prediction accuracy has been reduced to
different numbers of features. Other nonlinear kernel func- 1.29%. However, it should be noted that the variation
tions did not work, with the total accuracy around 55%.  between TPf and TNf in the SVM models was the largest.
With the second feature extraction strategy, it is expected On the other hand, C4.5 has the least variation between TNf
that sensitivity can be improved by increasing the number and TPf. The last three rows in Table 3 give the detalils.
of features. Therefore, we applied different alignment styles  Shown in Figure 4 is a summary of the comparison
when training HMMs using the commariinmbuild We between different feature extraction strategies using SVMs.
then had four HMMs for each of the three protein clusters. It can be seen that the extracting features using the emission
This led to 12 features for every sequence. Figure 2 showsscore (27 features) gave a substantial improved performance

SWMe (27 features)
B BPNN (27 features)

T
g O C4.5 (27 features)
o

01.
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a0.00

75.00

70.00

.
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Figure 4. Bar chart comparing TNf, TPf, MC, and ACC for the
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It should be noted that some protein sequences could
contain nonexperimentally determined phosphorylation sites;
because of this, some of the sequences in the study might
be functional, but they are considered nonfunctional at the
moment. The exclusion of these sequences may bias the
constructed HMMs. The final development is to compare
current nonspecific protein classification (serine, threonine,
and tyrosine) with different protein kinase classification
schemed! This will result in more elements in the feature
vector that would increase the discrimination ability between
functional and nonfunctional sequences.

Shown in Figure 5 is the comparison using ROC curves.

3-, 12-, and 27-feature datasets with SVMs. The error bars stand|t can be seen that SVM performed better than the BPNN

for the standard deviation.

0.98
0.97
0.96
0.95
0.94
093
0.92
091
0.90

OBPNN
@ SVM

3 features 12 features
Figure 5. AUR for two groups of models.

27 features

Table 4. Comparison among Different Pattern Recognition
Algorithms with HMM Features, the Distributed Encoding Method,
and the Bio-Basis Functions (rBBFNN)

TNf (%) TPf(%) MC (%) ACC (%)
SVMs (HMM 27 features) 83(2.57) 100(0) 85(2.25) 92(1.29)
BPNN (HMM 12 features) 90(2.21) 92(2.52) 81(3.66) 91(1.82)
C4.5 (HMM 3 features) 89(2.24) 92(0.68) 81(1.72) 91(0.89)
BPNN (Berry et al§ 88(1.94) 92(2.80) Nodata 90(1.64)
C4.5 (Berry etald 83(3.83) 98(1.06) Nodata 90(2.03)
rBBFNN (Berry et al.§ 89(1.54) 86(2.61) Nodata 88(1.50)

model, and the 27-features model performed the best. Shown
in Figure 6 are the ROC curves for the BPNN and SVM
models using 27 features.

SUMMARY

In this paper, we have proposed a novel method that uses
the features extracted using HMMs for applying a machine
learning algorithm to generate a classifier for the prediction
of phosphorylation sites in proteins. It has been shown that
the enhanced models outperformed the base models. This is
as expected because only the functional sequences are used
in the base models, which has the problem of a large number
of false positives. Although the use of the machine learning
algorithms in the enhanced model has encouraged the use
of the nonfunctional sequences for discrimination rather than
the construction of HMMs, the improvement on prediction
accuracy indicates that the use of both functional and
nonfunctional sequences is critically important for a good
classifier that is able to discriminate between functional and
nonfunctional sequences well.

The main issue in modeling protein sequences is the testing
time complexity. When we use any nonparametric machine
learning algorithm, a serious concern is the calculation with
all the collected protein sequences. Suppose there are 10 000
sequences, we then need 10 000 calculations for obtaining

compared with that using the_total score (3 features and 1210 000 similarities. From this, an output can be made using
features). Not only were the highest ACC and MC achieved, 5 rained model. The principle proposed in this study is to
but also, the consistency of the prediction has been improved. ,ce hidden Markov models to extract features. When a

The results of the prediction presented in Table 4 show a feature model has been produced, all the collected training
comparison between pattern recognition algorithms with sequences are no longer necessary for use in the testing stage.
features extracted using HMMs, the BPNN with the distrib- We can then regard this proposed method as a parametric
uted encoding method (BPNNd), and bio-basis function model, and it is widely unknown that a parametric model is
neural networks (BBFNN). It can be seen that the use of computationally cheaper.

HMMs for extracting features provided better prediction In this work, we aimed to compare different feature
accuracy. extraction strategies using HMMs. Our future work will

BPNN, 27 features SVM, 27 features

10 1.0
0.8 0.8
06 . 06
o a
[
T 04 04
0.2 0.2
0.0 0.0
= N = © @ =] = o = © © =]
=} o S =} =] -~ =} o o o o =
1-TNf 1-TNf

Figure 6. ROC curves for the BPNN and SVM models using 27 features.
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