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ABSTRACT

Motivation: Recurrent DNA copy number alterations (CNA) mea-

sured with array comparative genomic hybridization (aCGH) reveal

important molecular features of human genetics and disease.

Studying aCGH profiles from a phenotypic group of individuals

can determine important recurrent CNA patterns that suggest a

strong correlation to the phenotype. Computational approaches to

detecting recurrent CNAs from a set of aCGH experiments have

typically relied on discretizing the noisy log ratios and subsequently

inferring patterns. We demonstrate that this can have the effect

of filtering out important signals present in the raw data. In this

article we develop statistical models that jointly infer CNA patterns

and the discrete labels by borrowing statistical strength across

samples.

Results: We propose extending single sample aCGH HMMs to the

multiple sample case in order to infer shared CNAs. We model

recurrent CNAs as a profile encoded by a master sequence of states

that generates the samples. We show how to improve on two basic

models by performing joint inference of the discrete labels and

providing sparsity in the output. We demonstrate on synthetic

ground truth data and real data from lung cancer cell lines how these

two important features of our model improve results over baseline

models. We include standard quantitative metrics and a qualitative

assessment on which to base our conclusions.

Availability: http://www.cs.ubc.ca/!sshah/acgh

Contact: sshah@cs.ubc.ca

1 INTRODUCTION

Genetic alterations are a hallmark of numerous human diseases
such as cancer and mental retardation. Recent advances in the
genome-wide identification and localization of genetic altera-
tions by high resolution array comparative genomic hybridiza-
tion (aCGH) technologies (Ishkanian et al., 2004, Pinkel and
Albertson, 2005) have furthered our understanding of the effect
of genetic alterations on disease. Array CGH measures genetic
changes as DNA copy number alterations (CNAs) of an
individual’s DNA against a reference at a fixed set of locations
in the genome (Pinkel and Albertson, 2005). A recurrent CNA
in a cohort of patients is a CNA found at the same location in
multiple samples. Therefore, recurrent CNAs define a pattern
that provides a molecular characterization of the cohort’s
phenotype, potentially identifying disrupted molecular

processes, molecular targets for diagnosis, and development
of novel therapeutics. A recent example is the identification of
recurrent CNAs across different subtypes of lung cancer,
reported in Coe et al. (2006). This led to the elucidation
of molecular mechanisms that contribute to the distinct
phenotypes in small cell lung cancer (SCLC) and non-small
cell lung cancer (NSCLC), which we show in this article (see
Section 5).
In this study, we describe the development of statistical

models for the detection of recurrent CNAs across multiple
aCGH experiments from a cohort of individuals. Figure 1a–c
shows an example of five aCGH NSCLC samples over small
regions containing three different types of recurrent CNAs on
chromosomes 8, 9 and 1. For each of the !30 000 probes in an
aCGH experiment, a log ratio of the hybridization level of the
sample, relative to the reference, is produced. The log ratios
have a noisy correspondence to CNAs: deletions (losses) result
in negative log ratios, amplifications (gains) result in positive
log ratios and no change (neutral) regions in zero log ratios.
Figure 1a shows a recurrent CNA harboring the MYC

oncogene. One common strategy to identify such a recurrent
CNA is to first pre-process individual samples to make calls of
losses and gains, and then to infer recurrent CNAs using a
threshold frequency of occurrence (de Leeuw et al., 2004;
Garnis et al., 2006, Pollack et al., 2002). We call this process
AF for alteration frequency (see Section 3 for details). While
AF may detect signals as shown in Figure 1a, pre-processing or
discretizing the sequences separately may remove information
by smoothing over short or low-amplification CNAs. However,
by jointly considering all the data without pre-processing, we
can borrow statistical strength (Gelman et al., 2004) across the
samples and identify locations where the signal is shared in the
raw data. For example, in Figure 1b, we show data at the locus
containing an important NSCLC gene, carbonic anhydrase
IX (CA9) (Kim et al., 2004; Swinson et al., 2003). Log ratios of
probes overlapping the gene are shown as blue stars and are
indicated with arrows. This shared CNA may be hard to detect
using AF because when processing individual samples, single
probe CNAs are often indistinguishable from experimental
noise (Veltman and de Vries, 2006). With high-dimensional
arrays, many investigators require CNAs to span at least two
consecutive probes (Baldwin et al., 2005; Garnis et al., 2006;
Veltman and de Vries, 2006). However, if a single probe CNA is
shared across many samples, it may correspond to an
important biological feature.
Figure 1c shows a third type of signal that is a low-level or

subtle shared CNA. The region includes two known lung cancer*To whom correspondence should be addressed.
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related genes, TNFRSF4 (Kawamata et al., 1998) and TP73.
When compared to the MYC region in Figure 1a, the level of
amplification for TNFRSF4 is much lower and is more difficult
to distinguish from noise. However, cell lines H2122, HCC193
and HCC366 appear to share the low-level amplification.
Furthermore, the TP73 [a putative tumor suppressor involved
in cell death (Alarcon-Vargas et al., 2000)] loci exhibits
low-level negative signals in three of the samples. These signals
may be lost if each sample is pre-processed in isolation due to
premature thresholding.
Most of the genome will not exhibit shared CNA patterns.

Figure 1a (right end) shows a region from !135 to 140Mb
(bounded by blue vertical lines) that is heterogeneous across the
samples. One sample (HCC827) has an amplification while two
are neutral (HCC193, H2087) and two are deletions (HCC366,
H2122). This ambiguity in the signal across samples will be
important when we develop our model in Section 3.
In this article, we present statistical models to infer recurrent

CNAs from aCGH data. We extend the single sample hidden
Markov model (HMM) (Fridlyand et al., 2004; Shah et al.,
2006) to the multiple sample case. We consider three different
ways to do this. The first simply modifies the observation
model of the HMM so that at each location, a vector of
observations is generated, one per sample. We call the state
sequence of the HMM the ‘master’ sequence. It represents a
classification of each probe location into a loss, neutral or gain
state and hence it represents the canonical signal that encodes
recurrent CNAs.
The second model augments this by allowing each observa-

tion in each sample to either be generated from the master
sequence, or from its own private sequence. This allows for

sample-specific random effects to be superimposed on the
canonical signal. We demonstrate that this improves perfor-
mance significantly. Finally, the third model augments the state
space of the master sequence to allow undefined states, which
represent locations which are highly ambiguous (such as the
135–140MB region in Fig. 1a). This allows the master to focus
on the highly conserved regions, and to ignore heterogeneous
locations. We will show that the resulting output we infer is
comparatively sparse, making it easier to create a short list of
candidate locations for experimental follow up.
The remainder of the article is organized as follows. We

discuss related work in Section 2. We describe our models in
Section 3. In Section 4, we demonstrate our results on simulated
data, where we know the ground truth, and in Section 5, we
demonstrate results on well-studied lung cancer cell line data
(Coe et al., 2006). In Section 6, we conclude the article and
discuss future work.

2 RELATED WORK

There has been surprisingly little work on the automatic
discovery of shared patterns from aCGH data. Rouveirol et al.
(2006) propose an algorithm that takes as input a set of
discretized sequences, and which outputs a set of minimal
recurrent regions. This method works by converting the
sequences to a S " T binary matrix (focusing on losses and
gains separately), where S is the number of samples and T is the
number of probes on the array. It then tries to find short blocks
that are shared by some specified fraction of the samples.
The disadvantages of their approach are that it requires
discretized data, and that its running time is O(T2).

(a) (b) (c)

Fig. 1. aCGH profiles of three different types of recurrent CNAs for five NSCLC cell lines (labeled on the right). Horizontal red lines indicate the
0 log ratio level for each sample. Vertical black lines indicate the position of a known gene of interest in NSCLC. (a) a high level shared amplification
of a region spanning !3Mb containing the MYC oncogene on chromosome 8 (shown with vertical line). (b) a single clone shared aberration at the
CA9 locus on chromosome 9. (c) a low-level amplification on chromosome 1 including TNFRSF4 and TP73—both implicated in NSCLC.
Both (b) and (c) illustrate examples of recurrent CNAs that may be undetectable if each sample is pre-processed separately.
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(They also present an O(T) version, but this tended to not work
as well.) Diskin et al. (2006) also take a binary S " T matrix as
input, and use a greedy search procedure to find regions
(‘stacks’) that are shared across samples with statistically
significant frequency. Lipson et al. (2006) is the only previous
work we are aware of that tries to find shared patterns using the
raw data (to avoid problems with premature thresholding
discussed above). They present an O(T2) time algorithm for
finding intervals with maximal score, although they present two
other versions of the algorithm which they say in practice are
O(T1.5) and O(T) complexity. An important difference between
this approach and ours is that Lipson et al. assume the log
ratios are identically and independently distributed across the
chromosome, when in fact they are spatially correlated,
suggesting that Markovian dynamics, encoded by HMMs,
should be used. In addition, our approach is O(T) and model
based.

3 METHODS
We consider analyzing multiple aCGH samples from multiple
chromosomes, although to simplify notation, we will concentrate on
modeling a single chromosome. The data is D ¼ ðY1:S

1:TÞ, where Ys
t 2 IR is

the observed log ratio at location t in sample s, T is the number of
probes and S is the number of samples. The goal is to identify patterns
in the data which capture the pertinent CNAs that recur across the
samples. A pattern consists (roughly speaking) of a list of locations
which are highly conserved (either loss, neutral or gain). Thus, the
pattern can be represented as a ‘master’ sequence of states M1:T where
Mt 2 {L,N,G} (loss, neutral, gain) is a multinomial random variable and
t 2 (1,2,. . .,T). Since we will often be uncertain about what the pattern
should be at any given location, we will summarize our uncertainty
using the (marginal) posterior distributions !t ¼ pðMtjDÞ, which we call
a profile. When we have data from different groups (as in our lung
cancer data), we learn a different profile for each group, !g

t ¼ pðMg
t jDgÞ.

As shown in Section 5, we analyze four different phenotypic groups of
lung cancer (i.e. g¼1:4). However, we will drop the g superscript for
brevity.

Our task is related to learning profile HMMs for multiple sequence
alignment (Durbin et al., 1998), but it is harder because the raw data is
noisy and continuous-valued. Below, we describe four different
approaches to the problem. The first is the method most widely used
in current practice, and the remaining three are novel methods that
we propose.

3.1 Alteration frequency (AF) model
In the simplest approach, AF, we first process each sample Ys

1:T into a
discrete sequence Zs

1:T, where Zs
t 2 fL;G;Ng, using a standard method

for discretizing single-sample aCGH data. In this article, we use the
robust HMM approach described in Shah et al. (2006). We chose the
HMM-based single-sample method for this implementation of AF to
allow a more direct algorithmic comparison to the multiple sample
HMMs we describe below. Note that other algorithms could be used for
this step. For example, Coe et al. (2006) used aCGH-smooth
(Jong et al., 2004) to preprocess the lung cancer data presented in
Section 5. After preprocessing, we compute the empirical distribution
over each state in each location to yield the profile !t ¼ pðMtjDÞ, which
can be represented as a K"T stochastic matrix, where K¼3 is the
number of states, T is the length of the sequence and each column sums
to one. This can be further simplified to just compute the empirical
probability of a recurrent CNA at each location, to yield a 1 " T vector.
The disadvantage of this method is that the mapping from Ys to Zs is

done on each sample separately, so information cannot be shared across
samples. Thus the method may smooth over important signals, as
we will see.

3.2 Factored likelihood HMM (FL-HMM)
The second model, which we call ‘factored likelihood HMM’
(FL-HMM), is a standard HMM model for M1:T (modeling the fact
that CNAs tend to occur in runs), but where we modify the likelihood
function to generate multiple samples instead of a single sample.
Specifically, we assume the samples are conditionally independent given
Mt and use a Gaussian observation model, yielding

pðY1:S
t jMt ¼ jÞ ¼

YS

s¼1

N ðYs
t j"

s
j ; #

s
j Þ

The observation model is a product over the emission densities of the
samples, hence the term ‘factored likelihood’. We have one mean and
variance parameter for each of the three states of the HMM. The mean
and variance are sample specific, to model the fact that different
samples often have quite different noise characteristics, due to quality
of hybridization, different ploidy, tumor/normal admixture coefficients,
etc. Note that in a given chromosome some samples may not contain
any CNAs, in which case the estimates of "s

j and #s
j may be poor if j is

an aberrated state (L,G). Hence we share (pool) these parameters across
chromosomes for statistical strength, as described in Shah et al. (2006).
The variable Mt has Markovian dynamics with transition matrix AM,
representing the probability of switching between the L/N/G states.
The starting state distribution is denoted $M. The model is shown as a
directed graphical model in Figure 2a. Please see Bishop, (2006) for
details on directed graphical models and how they relate to state
transition diagrams for HMMs.
We add standard conjugate priors to all the parameters (Gelman

et al., 2004). Specifically, for the multinomial distributions we use
Dirichlet priors, AM ! Dir (%M) and $M ! Dir ð%$M Þ, where the matrix
of pseudocounts %M encourages self-transitions, and %$M encourages the
neutral state. For the observation variance, we use &sj ! Gað'sj ; (sj Þ,
where &sj ¼ 1=#s

j is the precision, and Ga is a gamma density. We set the
hyper-parameters in a data driven way as follows. We set 'sj ¼ 1þ #s to
encode the expected variance, where #s is the empirical variance of
sample s, and (sj ¼ 1 to reflect that this is a weak prior.
For the observation mean, we use a Gaussian prior, "s

j ! N ðms
j ; )

s
j Þ.

We set the hyper-parameters as follows: ms
1 ¼ '#s, ms

2 ¼ 0, and
ms

3 ¼ #s. We set the mean of state 2 to 0 based on the assumption the
data has been normalized so that the neutral state usually corresponds
to a log ratio of 0. We set the mean of the aberrated states to reflect
the typical deviations expected in this sample. This allows the model to
adapt to automatically different noise levels coming from different
samples or even different platforms. We set the prior variance on the
mean to )sj ¼ 10'3. This was chosen to reflect that our method for
choosing ms

j was appropriate in the majority of the data we have
observed.
To maintain identifiability of the hidden states (i.e. to maintain

state 1 means loss, 2 means neutral and 3 means gain), we use a
truncated Gaussian on "s

j , to ensure "s
1 < "s

2 < "s
3. The truncation

bounds are set in a similar way to the hyper-parameters.
Let * ¼ ð"1:S

1:K; #
1:S
1:K;AM;$MÞ be all the parameters of the model. We

can estimate the parameters of this model, pð*jDÞ, using a Markov
chain Monte Carlo (MCMC) algorithm called blocked Gibbs sampling
(Scott, 2002). This entails alternating between sampling M1:T as a block
using the forwards-filtering backwards-sampling (FFBS) algorithm,
and sampling the parameters individually conditioned on M1:T and the
data: see Algorithm 1 for details. Alternatively, we can compute a point
estimate, *MAP ¼ argmax* pðDj*Þpð*Þ, using the EM (expectation-
maximization) algorithm.
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Parameter initialization is done by setting "s
j , #

s
j using a heuristic

method analogous to one iteration of K-means clustering. Using the
prior means ms

1:K as initial values for the centroids, the data in each
sample are assigned to the nearest centroid based on the Gaussian
probability density function. Based on these label assignments, "s

k, #
s
k

are inferred using maximum likelihood estimation. We initialize AM

with 0.9 on the diagonals and 0.1 spread over the remaining entries.
We initialize $M to favor neutral states. We can then run EM/MCMC.

3.3 Buffered factored likelihood HMM (BFL-HMM)

The problem with the FL-HMM model is that Mt is summarizing the
raw data Y1:S

t . If any single sample at a given position has a large
deviation from neutral, the master is likely to think that location is
aberrated (because the neutral state cannot generate large aberrations).
Thus large but rare deviations will be added to the profile. [This
problem was also noticed by Lipson et al. (2006).] A simple fix to this
is to add a ‘buffer’ to each observation, Zs

t 2 fL;N;Gg, which is
responsible for generating the observation Ys

t . Now the master will
summarize these discrete states rather than the raw data. A key point is
that in contrast to the AF model, we estimate Z and M simultaneously.
See Figure 2b.

In more detail, the BFL-HMM can be defined as follows. The ‘slave’
Zs

t processes are modeled as noisy versions of the master process:
pðZs

t ¼ jjMt ¼ kÞ ¼ A+ðj; kÞ, where

A+ ¼
+ 1'+

2
1'+
2

1'+
2 + 1'+

2
1'+
2

1'+
2 +

0

@

1

A

Here + is the probability that the slave copies the master state. If we set
+¼0, the slaves never copy the master, so the posterior profile will equal
the prior profile, i.e. we will not have learned anything, since Mt will be
disconnected from the data Ys

t . As we increase +, each slave is influenced
by the master with increased strength. Thus more of the samples will get
reflected in the profile. If we set +¼1, we are requiring that the slaves
perfectly copy the master. This reduces to the FL-HMM model.
In practice, we find it best to set +!0.8. See Section 5 for further
discussion on the effect of +. We can estimate the parameters in this
model using MCMC or EM. We simply modify the algorithm to handle
the fact that the observation model is now (a product of) a mixture of

(a) (b) (c)

Fig. 2. The three models (a) FL-HMM, (b) BFL-HMM and (c) H-HMM shown as directed graphical models (Bayesian networks). Circles represent
random variables and rounded squares represent parameters. We only show the models for 3 probes, but in reality, the number of random variables is
proportional to the number of probes on the chromosome, Tc. Unknown quantities are unshaded and observed quantities are shaded. Ys

c;t represents
the observed log ratio of sample s in chromosome c at location t,Mc,t is the hidden master state and Zs

c;t is the hidden ‘slave’ state. The shaded square
nodes represent fixed hyper-parameters. Arrows between nodes indicate probabilistic dependencies. Boxes around variables are called ‘plates’ and
represent repetition of the contents inside. Thus we see that the observation parameters "s and #s are shared (tied) across chromosomes (since they
are outside the c plate) but are specific to each sample (since they are inside the s plate), while the HMM parameters AM, $M are shared across
chromosomes and samples. The differences between BFL-HMM and H-HMM are that Mct 2 {L,G,N,U} in H-HMM whereas Mct 2 {L,G,N} in
BFL-HMM and FL-HMM. Also, H-HMM has Markovian dynamics on the Zs

ct process (see the horizontal links and the new AZ, $Z parameters).

Algorithm 1. Blocked Gibbs sampling algorithm for H-HMM.We omit
the $M and $Z terms for brevity. FFBS stands for forwards-filtering
backwards sampling

1: for iter¼1,2,. . . do
2: /* Sample states (E step) */
3: for t¼1:T do

4: Bðj; tÞ ¼
Q

s A+ðj;Zs
t Þ ifj 2 fL;G;NgQ

s AZðZs
t'1;Z

s
tÞ ifj ¼ U

!

5: end for
6: M1:T!FFBS(AM, B1:T)
7: for s¼1:S do
8: for t¼1:T do
9: Bðj; tÞ ¼ N ðyst j"s

j ; #
s
j Þ

10: At
Zði; jÞ ¼

A+ðMt; jÞ ifMt 2 fL;G;Ng
AZði; jÞ ifMt ¼ U

!

11: end for
12: Zs

1:T ! FFBSðA1:T
Z ;B1:TÞ

13: end for
14: /* Sample parameters (M step) */
15: AM ! Dirð%M þ

P
c;t IðMct ¼ i;Mc;tþ1 ¼ jÞÞ

16: CZ ¼
P

c;s;t IðZs
ct ¼ i;Zs

c;tþ1 ¼ jÞIðMt ¼ UÞÞ
17: AZ ! Dir(%Z þ CZ)
18: for s¼1:S do
19: for j¼1:K do
20: nsj ¼

P
c;t IðZs

ct ¼ jÞ
21: !ysj ¼ 1

nsj

P
c;t IðZs

ct ¼ jÞysct

22: !&sj ¼ 1
nsj ð)

s
j Þ
2þð#s

j Þ
2

23: ð !#s
j Þ
'2 ¼ 1

ð)sj Þ
2 þ

nsj
ð#sj Þ

2

24: "s
j ! N ð !&sj ðð#s

j Þ
2ms

j þ nsj ð)sj Þ
2 !ysj Þ; !ð#s

j Þ
2Þ

25: !(sj ¼ 1
2

Pnsj
n¼1ðIðZs

ct ¼ jÞðysct ' !ysj ÞÞ
2

26: &sj ! Gað'sj þ nsj =2;(
s
j þ !(sj Þ

27: end for
28: end for
29: end for

DNA copy number alterations in array CGH data

i453

 by guest on June 10, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


Gaussians, with mixing weights pðZs
t ¼ jjMt ¼ kÞ. We omit details due

to lack of space.

3.4 Hierarchical HMM (H-HMM)

The problem with the BFL-HMM is that the slaves have to copy the
master with probability + at every location, even if this location is highly
variable. We extend the model by adding an undefined (do not-care)
state U to the master. Now if Mt¼U, the slaves follow their own private
Markovian dynamics, modeling local runs which are not shared,
as shown in Figure 2c. IfMt 6¼ U, they copy the master with probability
+ as before:

pðZs
t jZ

s
t'1;Mt;AZ;A+Þ ¼

AZðZs
t'1;Z

s
tÞ if Mt ¼ U

A+ðMt;Zs
t Þ if Mt 2 fL;N;Gg

!

The effect of this is that only highly conserved regions are stored in
the profile; in the highly variable regions, the profile says ‘undefined’.
This makes the profile sparser, and easier to interpret. This is
shown in Section 5. The degree of sparsity is controlled by +: as we
increase +, the sparsity decreases, since more of the slaves influence
the master.

Estimating the parameters in this model is harder, since all the Zs

chains become coupled due to explaining away [cf. factorial HMMs
(Ghahramani and Jordan, 1997)]. However, conditioned on M1:T, the
Zs

1:T are independent and can be sampled in parallel using FFBS, so
blocked Gibbs sampling is still easy. See Algorithm 1 for details.
An interesting feature of this model is that there are competing
processes to explain the slaves. If the slave copies the master, its
conditional probability distribution (CPD) is determined by A+,
otherwise the CPD is determined by AZ. Since AZ is potentially
estimated from a large subset of the data, it tends to converge to have
diagonal values near 1. In contrast, A+ is fixed and therefore can be
overwhelmed by the slave process. To avoid this, we use a strong prior
on AZ to discourage it from reaching near 1 on the diagonals, but still
allowing it to be estimated from the data. This results in a ‘fairer’
competition between the AZ process and the A+ process.

We initialize the parameters as in the FL-HMM model. To initialize
the states, we first sample each Zs

1:T using FFBS, with the master
process turned off. We then initialize Mt to be the consensus majority
state across Z1:S

t . The EM algorithm for the H-HMM is similar to
the MCMC algorithm except we maximize the parameters instead
of sampling them. Preliminary comparisons indicate that EM tends to
converge faster but gives poorer results, perhaps because it is more
prone to getting stuck in local optima.

3.5 Running time
Parameter estimation in all four models takes O(T) time. This makes
the technique scalable for use in high density oligonucleotide arrays or
SNP arrays, frequently used for DNA copy number analysis, that may
contain 500 000 or more probes per experiment. In practice, the running
time depends on the number of EM/MCMC iterations. For EM on the
H-HMM model, we find the system converges within about 10 steps
and takes !90 min to learn a model from 20 samples with 32 000 probes
each. [All experiments were performed in Matlab 7.2.0.294 (R2006a) on
a Intel Xeon CPU !2.4GHz.] EM for the BFL-HMM and FL-HMM
is much faster, since the E step can be performed exactly using
the forwards–backwards algorithm, avoiding a Monte Carlo
approximation.

4 QUANTITATIVE RESULTS ON
SYNTHETIC DATA

Real data sets rarely have fully verified ground truth locations
of recurrent CNAs. Thus, applying standard metrics to assess

accuracy on real data is difficult. To overcome this, we created
a synthetic data set derived from real data. We used eight
mantle cell lymphoma samples originally published in de
Leeuw et al. (2004) and used for a qualitative assessment in
Rouveirol et al. (2006) and modified it to give us ground truth
CNAs. We used the data for chromosome 20 (672 probes)
which was reported to be relatively free of CNAs. We permuted
the order of the data for each sample so as to remove any
undetected shared signals that may be present across samples.
We then inserted a recurrent CNA gain and a recurrent CNA
loss at fixed positions of width w, in a fraction f of the samples.
The clones within the region were shifted up/down (for gain/
loss) by #s , where s is one of the chosen samples, #s is the
empirical variance of that sample and , is the signal to noise
ratio (SNR). Thus, #s , preserves the sample-specific hetero-
geneity of the noise. In order to ‘soften’ the borders of the
aberrations, we extended the borders by - probes, where - !
Gam (',1) (' proportional to w—see text below). Here, - was
sampled independently for each sample to ensure the exact
borders of the aberrations were not shared. Finally, for each
sample, we randomly sampled a location outside of the ground
truth recurrent CNA and inserted a gain or loss (randomly
chosen) of width w0. Figure 3a shows an example of the
synthetic data for w¼50, f¼0.75, ,¼0.9, w0¼100 (!15% of the
chromosome). The recurrent loss is at position 100-149 and the
recurrent gain is at position 450-499. Comparing this figure to
the real data in Figure 1, we see that the synthetic data is quite
realistic and challenging.
We evaluated AF, FL-HMM, BFL-HMM and H-HMM on

synthetic data for w¼ (1,10,50), f¼ (1/2, 3/4, 1), '¼ (1,5,10)
and ,¼ (0.3,0.6,0.9,1.2). For the BFL-HMM and the H-HMM,
we set +¼ (0.8). Note for this large scale experiment we used
(Monte Carlo) EM instead of MCMC for inference, to save
time. However, preliminary results suggest that MCMC does
work better, despite its increased cost.
We computed receiver operator characteristic (ROC) curves

based on p(Mt¼A)¼ p(Mt¼L)þ p(Mt¼G) where p(Mt¼A)
is the probability that a recurrent CNA is predicted at position
t. Using the ground truth labeling of the data, the false positive
rate (FPR) is defined as FP

N the number of probes incorrectly
predicted as a CNA (FP) over the total number of non-CNA
probes. The true positive rate is defined as TP

P , the number
of correctly predicted CNA probes (TP) over the true number
of CNA probes. We plotted TPR versus FPR curves
and calculated area under this curve (AUC) as a measure of
accuracy to test the effect over w,f,, and + across the various
models.
Figure 3b shows a single summary ROC plot combining

results for all values of w,f,, and depicts the overall accuracy
performance of the models. H-HMM had the highest accuracy
(AUC¼ 0.87) followed by BFL-HMM (AUC¼ 0.82),
AF (AUC¼ 0.77) and FL (0.55). Figure 3c shows the mean
AUC over for every setting of w,f,, (repeated three times). The
mean and standard error AUC for the models was 0.84( 0.01
for H-HMM, 0.82( 0.01 for BFL-HMM, 0.76( 0.01 for AF
and 0.59( 0.01 for FL-HMM. H-HMM and BFL-HMM were
significantly more accurate than AF and FL-HMM (one way
ANOVA, p)0.01). Although H-HMM had slightly higher
mean of AUC than BFL-HMM, the result was not statistically
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significant. However, we show in the next section on lung
cancer data that in practice, the H-HMM is considerably more
useful to the investigator as it returns sparser, yet accurate
predictions.

5 QUALITATIVE RESULTS ON LUNG
CANCER DATA

Ultimately, we are interested in applying a model to aCGH
data from clinically relevant samples. To compare the output
characteristics of the various models, we ran the algorithms on
aCGH samples from 39 well-studied lung cancer cell lines,
originally published in (Coe et al., 2006; Garnis et al., 2006).
This data is particularly relevant since phenotype-specific
patterns of recurrent CNAs have been experimentally
validated. The samples can be subdivided into four groups:
NSCLC adenocarcinoma (NA), NSCLC squamous cell
carcinoma (NS), SCLC classical (SC) and SCLC variant (SV).
Eighteen samples are NA, seven are NS, nine are SC and five
are SV. This data has been rigorously studied and discordant
shared patterns validated using PCR and gene expression have
been identified across the major and minor groups (Coe et al.,
2006; Garnis et al. 2006). We fit separate profiles !g

1:T, one per
group, using each of the four models and we qualitatively
assess the characteristics and biological relevance of the output,
using results reported in Coe et al. (2006) as a guide.
The experiments on synthetic data showed H-HMM and

BFL-HMM are the best models. In this section, we show how
the explicit modeling of the ambiguity in the data by H-HMM
displays a clear advantage over the other models. Recall that
in Figure 1 we showed parts of chromosomes 8, 9, and 1 to
illustrate different types of recurrent CNAs at important
locations. Figures 4 and 5 show the output of H-HMM
(+¼ 0.8), BFL-HMM, FL-HMM and AF on the full chromo-
some 8 and the p-arm of chromosome 9. p(Mt¼ gain) is plotted

in green and p(Mt¼ loss) is plotted in red. The clear trend is
that H-HMM has sparser output and clearly predicts important
regions in isolation. Note arrows at MYC and CA9
for comparison to Figure 1. A similar result was seen for
chromosome 1 at the TPFRSF4 and TP73 loci (see Fig. 6 for
results of H-HMM). Notice that BFL-HMM and FL-HMM
also predict CNAs at these important genes. However it is quite
evident that they both overpredict, making it hard for an
investigator to discern biologically relevant CNAs from
spurious predictions. From Figure 4, we also see that AF has
a peak at the MYC locus, but is unable to detect the recurrent

(a) (b) (c)

Fig. 3. (a) Example of the simulated data for w¼ 50, ,¼ 0.9 and f¼ 0.75. Green lines (on the right) bound an inserted CNA gain, and red lines
(on the left) bound an inserted CNA deletion. (b) ROC plot for the synthetic data for H-HMM (green stars), BFL-HMM (blue crosses),
FL (red triangles) and AF (purple circles). TPR and FPR were calculated using results for all data, and therefore represent a summary of how the
models compare over w, ,, f and +. AUC for each model is indicated in brackets in the legend. H-HMM had the best performance overall
(AUC¼ 0.87), followed by BFL-HMM (AUC¼ 0.82), AF (AUC¼ 0.77) and FL (0.55). (c) Distributions of AUC for H-HMM, BFL-HMM,
FL-HMM and AF over all values of w, ,, f and +. H-HMM and BFL-HMM had statistically significantly better performance than AF and
FL-HMM (one way ANOVA (p)0.01). Whiskers indicate standard error bars. The mean and standard error AUC for the models was 0.84(0.01 for
H-HMM, 0.82(0.01 for BFL-HMM, 0.76(0.01 for AF and 0.59(0.01 for FL-HMM.

Fig. 4. Output from top to bottom of H-HMM, BFL-HMM,
FL-HMM and AF for the NA group, chromosome 8. The x-axis is
the chromosomal position and the y-axis is predicted probability. Red
plots indicate p(Mt¼L) and green plots indicate p(Mt¼G). Note the
sparse, yet accurate predictions for the H-HMM at the MYC locus
(recall Fig. 1 c) and the p-arm loss prediction which recapitulates
known results (Garnis et al., 2006). The other models either overpredict
(BFL-HMM, FL-HMM) or underpredict (AF) the shared aberrations.
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CNA at CA9 (Fig. 5) with high frequency. In all three
generative models, the signal is clearly predicted.
Considering Figure 4 in more detail, the p-arm (left) has a

relatively high frequency of deletion and this is cleanly
predicted by all models. In contrast, the centromeric half of
the q-arm shows ambiguity in the AF plot. Both BFL-HMM
and FL-HMM are unable to resolve the ambiguity as they are
forced into a {L,N,G} state, while the H-HMM can ‘opt-out’ of
making a consensus prediction at these locations, choosing only
to predict a CNA when the data cleanly support one (e.g. MYC
locus). This illustrates the sparsity of the H-HMM compared
to the other models.
The combination of sparsity due to modeling ambiguity and

the ability to tune + allows the user to effectively set the FPR of
the H-HMM. An example of the value of this is shown in
Figure 6, displaying the results for group SC for various values

of +. The sparse output for +¼0.8 reveals isolated peaks of high
probability at locations of genes (TNFRSF4, TP73, TNFRSF9,
ZNF151, E2F2, FGR, EIF3S2, DMAP1, FUBP1, RAB13,
HDGF, PPCC, NTRK1, TRAF5), whose expression is known
to be altered in lung or other cancers. For example, ZNF151
and E2F2 were found to have copy number induced gene
expression changes in Coe et al. (2006). Interestingly, the
H-HMM predicts the TP73 region as a narrow loss embedded
within the gain region harboring TNFRSF4 shown in Figure 1c.
TP73 was detected at only 22% frequency in AF and was not
detected at all in BFL-HMM. Additional relatively narrow
but high probability peaks correspond to the EIF3S2 locus,
which mediates the TGF-( pathway, FUBP1 a transcriptional
activator of MYC and the coamplification of TNFRSF4
and TRAF5, which are known interactors and activators in
the NF-.B pathway (Kawamata et al., 1998). These results are
computational predictions, yet many provide compelling
evidence that they merit experimental follow up.
To investigate whether H-HMM recapitulates the results in

(Coe et al., 2006), we examined a subset of genes reported to be
differentially disrupted in the two major groups, NSCLC
and SCLC. These 22 genes are involved in key lung cancer
pathways and therefore represent a highly relevant set of
markers as a reference to assess our output. The H-HMM
predicted shared aberrations in regions harboring 14 of the 22
genes in at least 1 of the subgroups of NSCLC and SCLC. We
counted a prediction if p(Mt¼L)>0.5, or p(Mt¼G)>0.5 for
losses and gains, respectively. The predicted genes included
STMN1, E2F2, SC, ZNF151, ID2, MAPK9, EGFR, CDK2NA,
KNTC1, HMGB1, HSPH1, JJAZ1, NLK, JUNB, TIAM1,
DSCAM. Five of the regions were detected at +*0.7, eleven at
+*0.9 and the remaining regions at +¼0.95. This gives us a
reasonable estimate for how to calibrate + in order to predict
relevant CNAs. The H-HMM did not predict recurrent CNAs
harboring the remaining genes PRDM2, SOX11, MAP3K4,
ING1, SMAD4, CCDC5, TCF4.
We assessed if the H-HMM could determine differences in

the profiles of the phenotypic groups (NA, NS, SC, SV), as this
was part of the focus of the study of Coe et al. (2006) and
Garnis et al. (2006). Figure 7 shows that the H-HMM produces

Fig. 5. Output from top to bottom of H-HMM, BFL-HMM,
FL-HMM and AF for the NA group for the p-arm of chromosome
9. (see Fig. 4 for axes description). Similar to Fig. 4, notice the sparse,
yet accurate predictions for the H-HMM especially at the single probe
CA9 locus (recall Fig. 1b). The AF method does not predict CA9. BFL-
HMM and FL-HMM both predict CA9, however, they are over--
predicting many other regions not likely to be shared CNAs.

Fig. 6. Output from H-HMM on chromosome 1 for different values of
+ for SC group. For ++0.8, gain probability ‘peaks’ correspond to
locations of several genes (annotated with arrow) implicated in lung
or other cancers.

Fig. 7. H-HMM output for chromosome 9 showing discordant patterns
among the lung cancer groups (NA, NS, SC, SV).
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very different profiles for chromosomes 9 across the different
subgroups. This example chromosome was chosen as it was
previously shown to have different patterns of CNA (Coe et al.,
2006; Garnis et al., 2006). Although anecdotal, our qualitative
results give us confidence that the H-HMM is predicting
biologically relevant recurrent CNAs. Combined with the result
that the H-HMM is sparser in its output, we believe the
H-HMM has the right characteristics of presenting biologically
meaningful results to the investigator while maintaining a
low FPR.

6 DISCUSSION AND FUTURE WORK

We developed three novel methods that extend the single
sample HMM for aCGH to the multiple sample case in order to
infer recurrent CNAs. Our results indicate that the H-HMM,
which simultaneously infers discrete labels for the samples
and promotes sparsity by modeling ambiguity in the data
is quantitatively and qualitatively better than simpler models
and standard methods. In an informal qualitative assessment,
we showed that the H-HMM produces meaningful
biological output when compared to a list of experimentally
validated genes. The H-HMM was able to detect previously
reported discordant patterns among the lung cancer groups—a
key requirement to determine phenotype specific CNA
patterns.

6.1 Subgroup discovery

A natural extension to the H-HMM model is to consider
the case where the samples in the data come from two or
more groups. This suggests unsupervised clustering of the data,
a problem recently examined by Liu et al. (2006),
who compared distance metrics in a hierarchical clustering
framework. We will investigate this problem by considering
a mixture of master sequences that determine subgroups
and simultaneously infer recurrent CNAs specific to each
subgroup.

6.2 Copy number variations

A fraction of the recurring CNAs identified by our algorithm
can be attributed to segmental copy number variations (CNV)
in the human population (Redon et al. 2006). These variations
are not the consequence of somatic alteration in tumor DNA
but are naturally occurring copy number states. This suggests
they should be filtered out of the output, but it is important to
consider the potential contribution of CNVs to disease
susceptibility, as such segmental variations overlap with genes
associated with phenotypes in humans (Wong et al., 2007).
The frequent occurrence of a given CNV in a cohort of
cancer patients relative to healthy individuals would raise the
possibility of an association between the copy number state and
cancer susceptibility. The H-HMM will facilitate the detection
of such occurrences, and the identification of susceptibility
genes through CNV status will become feasible as databases
of aCGH profiles of tumors expand.

6.3 Epigenomic arrays

In addition to gene dosage alterations in CNAs, epigenetic
alterations such as changes in DNA methylation status of gene
may result in aberrant silencing or inappropriate activation
of genes in cancer. Recent development of microarray-based
methods for whole genome analysis of methylation status
(or methylome profiling) has enabled a new approach to cancer
gene discovery (Weber et al., 2005). Future adaptation of the
statistical strategy described in this article will expedite the
detection of recurring epigenetic alterations, and facilitate the
integration of genetic and epigenetic data.
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