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ABSTRACT

Motivation: As the amount of biological sequence data continues to

grow exponentially we face the increasing challenge of assigning

function to this enormous molecular ‘parts list’. The most popular

approaches to this challenge make use of the simplifying assumption

that similar functional molecules, or proteins, sometimes have similar

composition, or sequence. However, these algorithms often fail to

identify remote homologs (proteins with similar function but dissimilar

sequence) which often are a significant fraction of the total homolog

collection for a given sequence. We introduce a Support Vector

Machine (SVM)-based tool to detect homology using semi-super-

vised iterative learning (SVM-HUSTLE) that identifies significantly

more remote homologs than current state-of-the-art sequence or

cluster-based methods. As opposed to building profiles or position

specific scoring matrices, SVM-HUSTLE builds an SVM classifier for

a query sequence by training on a collection of representative high-

confidence training sets, recruits additional sequences and assigns a

statistical measure of homology between a pair of sequences. SVM-

HUSTLE combines principles of semi-supervised learning theory with

statistical sampling to create many concurrent classifiers to iteratively

detect and refine, on-the-fly, patterns indicating homology.

Results: When compared against existing methods for identifying

protein homologs (BLAST, PSI-BLAST, COMPASS, PROF_SIM,

RANKPROP and their variants) on two different benchmark datasets

SVM-HUSTLE significantly outperforms each of the above methods

using the most stringent ROC1 statistic with P-values less than

1e-20. SVM-HUSTLE also yields results comparable to HHSearch

but at a substantially reduced computational cost since we do not

require the construction of HMMs.

Availability: The software executable to run SVM-HUSTLE can

be downloaded from http://www.sysbio.org/sysbio/networkbio/

svm_hustle

Contact: anuj.shah@pnl.gov

1 INTRODUCTION

During the past 30 years, numerous efforts have been focused
on computationally predicting the functions of novel proteins.
A well-established practice is to compare a query sequence
of unknown function with a well-characterized database

of sequences. If two similar sequences are derived from a
common ancestor, they often preserve a related function.
Inferring this common ancestry between similar sequences,
termed homology detection, provides a kind of boot-strapping
method by which newly sequenced genomes can be character-
ized based on existing annotations.
One method of quantifying the degree of homology is finding

an optimal alignment between two sequences. In practice, many
proteins can be thought of as comprising a series of functional
regions joined by natively disordered links (Dunker et al.,
2002). Mutations in the functional regions would tend to
degrade the behavior of a protein, whereas mutations in
disordered regions may not impact the function at all. As a
result, one would expect that homologous proteins can be more
rapidly detected by aligning these smaller pieces or ‘local’
regions. Alignment methods such as the Smith–Waterman
algorithm (Smith and Waterman, 1981), the fast approximation
to Smith–Waterman (FASTA) (Pearson, 1985) and Basic Local
Alignment Search Tool (BLAST) (Altschul et al., 1990) take
advantage of local sequence similarity in proteins. However,
these methods often fail to detect common ancestry when
proteins share low residue similarity, i.e. when proteins are
remote homologs, which occurs commonly (Rost, 1999).
The concept of protein families was introduced into the

problem of remote homology detection as an approach to
overcome the lack of sensitivity that arises with algorithms
comparing sequences based on residue similarity. A protein
family is a group of sequences that share a common
evolutionary origin. A statistical/computational model can be
built for each of these families or super-families. A protein of
unknown function can then be compared to each of the protein
families producing a measure of likelihood of the sequence
originating from this family. These family-based methods help
computational biologists identify nearly three times the number
of homology relationships as identified by simple pairwise
alignments (Park et al., 1998). PSI-BLAST (Altschul et al.,
1997) and hidden Markov models (HMM) (Baldi et al., 1994)
are two examples of such generative approaches. PSI-BLAST
builds an alignment-based statistical model from a set of
proteins by defining a position specific scoring matrix (PSSM).
It then adopts a semi-supervised algorithm to use this query-
specific PSSM model to search the space to identify additional
homologous sequences iteratively from the database, refining*To whom correspondence should be addressed.
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the model at each step. This comparison of profiles of a family
of proteins against a database still fails to detect a large number
of distant/weak homologs. Methods such as PROF_SIM
(Yona and Levitt, 2002), COMPASS (Sadreyev et al., 2003)
and HHSearch (Soeding, 2005) take the approach of PSI-
BLAST one step further. Instead of comparing a profile against
individual sequences within a database, these methods compare
two profiles in a pairwise setting, yielding significantly more
homologs than PSI-BLAST, HMM or profile-based methods.
However one major short-coming of these methods is the
computationally expensive multiple alignments that needs to be
generated in order to generate profiles for a set of sequences.
Discriminative approaches use a machine learning technique

such as Artificial Neural Networks, Genetic Algorithms and
Support vector machines (SVM) (Vapnik, 1995, 1998) to learn a
set of classification rules based on given training data. Protein
sequences are represented as fixed-length vectors in a machine
learning framework to classify positive and negative examples.
A number of family-based discriminative approaches have been
published in literature and the only difference is in the repre-
sentation of the protein vectors (Atalay and Cetin-Atalay, 2005;
Ben-Hur and Brutlag, 2003; Busuttil et al., 2004; Kuang et al.,
2005a; Jaakkola et al., 2000; Leslie et al., 2003; Liao and Noble,
2003; Lingner and Meinicke, 2006; Ogul and Mumcuoglu,
2006; Rangwala and Karypis, 2005; Shah et al., 2007;
Webb-Robertson et al., 2005; Hou et al., 2003, 2004). It has
successfully been demonstrated that these discriminative
approaches outperform the current generative approaches on
a limited benchmark dataset consisting of typically 54 families
(Zaki et al., 2003). Despite improved sensitivity for the task of
remote homology detection, there are caveats to this approach:
since the protein families used in family-based descriminative
models are pre-determined, only proteins that belong to a
known and trained family can be classified. Most discriminative
methods answer the question ‘Whether the given protein
belongs to an existing family?’ Thus new protein families or
homologous sequence pairs outside these defined families,
i.e. families for which models are pre-built, cannot be
discovered. However, these approaches illustrate the power of
applying machine learning methods to the problem of homology
detection. The goal of this work is to develop the first non-
family-based SVM method for sensitive homology detection.
Most biologists and informaticists to date use BLAST and

PSI-BLAST as their preferred method for homology detection.
Both of these algorithms use string matching to identify
sequences from a database which are similar to a query
sequence. The input query sequence is searched against a large
gene/protein database to determine closest matches and a
ranked list of sequences is produced as output. One of the
defining characteristics of such a problem is the large ratio of
negative examples (non-homologous sequences) to positive
examples (homologous sequences). Recent algorithms such as
RANKPROP (Weston et al., 2004) and MOTIFPROP (Kuang
et al., 2005b) produce a ranking of proteins that are homol-
ogous to the query protein by starting with an initial
similarity network produced by a base algorithm (BLAST/
PSI-BLAST) and identify additional relationships via network
propagation. The initial network has edges between similar
proteins labeled with E-values (or a function of E-values)

resulting from the base algorithm while the network propaga-
tion is achieved by means of a diffusion operation. These
methods have demonstrated increased sensitivity over BLAST
and PSI-BLAST.
We present an iterative semi-supervised approach to the

problem of pairwise remote homology detection. This approach
is analogous to PSI-BLAST, which iteratively builds a sequence
position specific scoring matrix on a set of homologs (positive
examples). But SVM-HUSTLE accounts for both positive and
negative examples, so it has a substantially improved perfor-
mance compared to PSI-BLAST. SVM-HUSTLE achieves this
by using concurrent SVMs to iteratively search for homologs
against a database with pre-computed sequence similarity
scores and provides the answer to the question ‘Which
sequences are homologous to a given query?’ Adopting a
semi-supervised approach, SVM-HUSTLE treats the database
as a source of both labeled and unlabeled data, progressively
growing the set of positive training examples. At each step, the
database is reclassified. SVM-Hustle does not need family or
super family classification knowledge for a given query
sequence and in this respect is similar to BLAST and PSI-
BLAST and different from existing state-of-the-art SVM
homology detection methods. Classification models within
SVM-HUSTLE are built on-the-fly for the given input query
using unlabeled data to refine the model. This semi-supervised
learning approach leads to a set of classifiers that have higher
sensitivity when detecting distant homologs compared to PSI-
BLAST. In addition, we use Bayesian statistics to build a
statistical measure of confidence related to a pair of sequences
that accounts for both the homologous and non-homologous
models.

2 METHODS

2.1 Representation of protein sequences in a support
vector machine

Vapnik developed the theory behind the SVM as the basis for statistical
binary classification for a wide range of application areas. (Vapnik,
1995, 1998). SVMs are machine learning algorithms designed with the
intention of ‘generalizing better’. The problem SVM algorithms address
relates to the efficient learning of a classification rule from a set of
exemplars. The goal is the classification of each candidate as being
either ‘member’ or ‘not a member’ of a given class. In our case, we train
the SVM to recognize patterns of sequence similarity which are
indicative of homologous proteins. The SVM requires that input data
be represented as a collection of fixed-length vectors.
Protein sequences by their very nature are variable length composi-

tions of amino acids. We achieve the conversion to fixed-length vectors
called protein vectorization as follows. The feature vector correspond-
ing to a protein X is given by

Fx ¼ fx1, fx2, fx3, . . . fxn½ # ð1Þ

where n is total number of proteins in the training set and fxi¼E-value
of the Smith–Waterman score between the sequence X and the i-th
training set sequence (Smith and Waterman, 1981; Liao and Noble,
2003). We use the E-values as they are a statistical measure of similarity
as opposed to raw Smith-Waterman scores between sequences which
may introduce a bias based on the lengths of the individual proteins.
The Smith–Waterman scores are attained using a scoring matrix of
BLOSUM62, gap opening penalty of 11 and gap extension penalty of 1.
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2.2 Semi-supervised learning
In supervised learning, the SVM ‘learns’ classification rules from both
positive and negative exemplars. In unsupervised learning, patterns are
formed based on clustering techniques. Semi-supervised learning is a
training strategy that combines information from labeled data
(i.e. data that is known to fall into one category or the other) and the
unlabeled data which often clusters around labeled data. Semi-
supervised learning functions are based on so-called cluster assumption:
classification rules remain unchanged in areas of dense exemplars.
Using clustering to associate unlabeled data with the labeled training
data often improves coverage of the vector space improving the
accuracy of classification.
Figure 1 illustrates the potential difference between learning using a

semi-supervised technique as opposed to a supervised technique. The
supervised algorithm may develop a classification rule that could cause
incorrect classification of incoming exemplars when labeled data
sparsely covers the vector space. Adding unlabeled data refines the
detail of the separating hyperplane placing the decision boundary in
areas of low density generating a more accurate classifier.
Semi-supervised learning is generally applied when unlabeled data is

abundant while labeled data is small e.g. web page classification. For a
detailed literature survey of semi-supervised learning interested readers
can refer to Zhu (2006). Weston et al. (2006), recently extended the
RANKPROP algorithm employing a semi-supervised learning tech-
nique to the problem of remote homology detection. RANKPROP
exploits the global structure of similarity relationships among proteins
in a database by performing a diffusion operation on a similarity
network with weighted edges.
The initial similarity network, which is given as input to the

algorithm, is formed by connecting proteins that are homologous
using an auxiliary approach such as PSI-BLAST and the edge labels are
based on a transfer function applied to the probabilistic E-values from
PSI-BLAST searches. Multiple strategies to incorporate knowledge
from unlabeled examples in the RANKPROP algorithm are suggested
by (Weston et al., 2006). In each case they achieve better rankings than
a supervised approach.

2.3 SVM-HUSTLE: combining semi-supervised
learning and SVM methodology

SVM-HUSTLE is a new algorithm that employs a semi-supervised SVM
model to iteratively identify homologs to a query sequence from a
database. The SVM-HUSTLE methodology can be described by six
steps detailed in the flow chart of the algorithm in Figure 2. A novel
component of this algorithm is the selection of the negative class
(i.e. non-homologs) by sampling, to better cover the vector space.
The number of non-homologs is much larger than the homologous class
and as such we employ a random sampling algorithm to attain a
representative negative class of proportionate size to the positive class.
For example, in the benchmark dataset used for demonstration purposes
there are 7329 protein sequences, for which we know the homologies.
This dataset contains more than 53 million protein pairs. Of these pairs
only 1%, (591 383), are homologous. To account for this imbalance in
positive and negative examples, we iteratively repeat the entire sampling
and classification step k number of times and use the average score for
the subsequent iteration.

(1) Identify Seed Positive Training Set. An initial set of n homologous
proteins are identified using an auxiliary method (BLAST in this
case) against the database D consisting of 7329 proteins. This
produces a basis set consisting of protein sequences that are
similar to the original sequence with high statistical confidence
(E-value50.1). These n protein sequences form the initial positive
training set (Pos) for SVM-HUSTLE. This is the only stage in the
algorithm where sequence alignment scores are used.

(2) Randomly sample k Negative Training Sets. Select k (number of
concurrent SVM classifiers) random sets of proteins from D of
size that is an integral multiple of n for k SVM constructions.
These negative training examples are represented as an array
Neg[k]. Proteins in the negative training sets must be (i) not in

Fig. 1. Example of supervised and semi-supervised learning in binary
classification problems. (A) Two class data is shown that needs to be
classified using labeled data. (B) The same data is now captured along
with unlabeled data represented in green dots. (C) A supervised learning
technique may choose an incorrect decision boundary. (D) Given the
extra unlabeled data points, the classification plane can be placed in
region of sparse population, leading to better classification.

Fig. 2. SVM-HUSTLE algorithm flowchart.
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the high- or medium-confidence BLAST output, and (ii) only in
one negative training set.

(3) Train SVM Classifiers. Train a set of SVM[k] classifiers where
each training set has the same positive training examples (Pos)
and a different set of negative training examples as defined by
Neg[k]. The train and test set protein sequences are now
vectorized using the approach discussed in Section 2.1.

(4) Vectorize the database. The databaseD is vectorized k times, once
for each trained SVM. For each classifier, the proteins in D are
converted to vector form using the positive train set and one of
the negative train sets (Neg[k]). There will be k different
vectorized databases—one for each of the classifiers. Each
instance of the vectorized database is different since they all
have different negative sequences.

(5) Classify protein pairs. Classify each protein in D and use the SVM
discriminant score as a measure of classification confidence,
select the top (best average score) a*n homologs for the given
query protein q. The parameter ‘a’ corresponds to the ratio of
protein sequences selected as positive training examples per
iteration.

(6) Iterate. Repeat steps 2–5 until no new samples are classified as
positive or for a maximum number of iterations (m).

SVM-HUSTLE uses semi-supervised learning to build multiple query-
specific models of homology for the incoming query sequence. These
models are then subjected to supervised learning using SVMs. The
database is re-created using these query-specific models and re-classified
using each distinct SVM. Finally, an averaging mechanism is used that
helps select the best possible matches for a protein sequence at each
step. This combination of semi-supervised learning and supervised
learning gives SVM-HUSTLE much of its classification power.

Figure 3 represents a schematic of the internal operation of SVM-
HUSTLE after kernel transformations. The labeled and unlabeled
examples can be laid out in two dimensions as shown. Constructing a
single hyperplane based on the initial set of positive examples and
randomly selected negative examples may not lead to correct classifica-
tion in all cases. However, constructing multiple hyperplanes (k) would
lead to an aggregate classification plane; one that will yield more
accurate and sensitive results. It is possible that a true homolog can be
recruited as a negative training example (as indicated by an underlined
triangle in Fig. 3B and C) in one instance of the classification runs,
however, the chances are slim since the ratio of positive to negative
examples is very small. Additionally, using the averaging approach will
also account for such discrepancies.

As its final output, SVM-HUSTLE produces a ranked listing of
protein sequences that are homologous to a given query sequence with
statistical scores signifying the similarity. SVM-HUSTLE does not
require prior knowledge of protein family memberships for classifica-
tion, so it can accurately and sensitively detect homologs which do not
fall into any known protein family.

3 RESULTS AND DISCUSSION

3.1 Performance comparison with supervised and
semi-supervised homology detection methods

We compare SVM-HUSTLE with PSI-BLAST, MotifProp,
RankProp and their variants (k-mer MotifProp, E-Motif
MotifProp etc). Comparisons between the pairwise approach
of SVM-HUSTLE and family-based classification methods
such as SVM-pairwise and its descendents cannot be performed
as these methods rely on a family-based classification that
identifies homologies within a set of pre-defined families.

The comparison is made on a set of 7329 sequences, which were
extracted from version 1.59 of the SCOP database, purged by
using the website http://astral.berkeley.edu so that no pair of
sequences shares more than 95% identity. This benchmark
dataset has been used in a number of previous studies (Kuang
et al., 2005b; Weston et al., 2004, 2005). Following a similar
procedure, the dataset was divided into 4246 training sequences
and 3083 test sequences. SVM-HUSTLE identifies remote
homologs on-the-fly and as such does not require a pre-defined
training set. The SCOP 1.59 training set of 4246 sequences has
no overlap in superfamily membership with the 3083 test
sequences and as such inclusion in the database D does not
provide more positive examples, only negative examples.
Similar to PSI-BLAST, the training data is included in the
database used to build the model, but homology metrics are
only generated for the test data to allow comparison with the
current state-of-the-art. No prior knowledge of family or
superfamily is used in the training of SVM-HUSTLE. Initially
all data is considered unlabeled and the initial positive training
set is constructed using BLAST results.
The performance of RANKPROP, MOTIFPROP and their

variants were assessed by their ROC scores which were directly
obtained from the authors of the algorithms. PSI-BLAST was
allowed to run for a maximum of six iterations, using a default
E-value threshold of 0.005 and the BLOSUM62 scoring matrix.

Fig. 3. Internal operation of the SVM-HUSTLE algorithm represented
in two dimensions. The triangles represent the homologs of a query
sequence while the dots are the unlabeled data samples. Depending on
the initial set of positive examples (dark green) and randomly selected
negative examples (triangles and dots underlined in red) a hyperplane
can be drawn in any of the three positions as illustrated in the figure.
Figure (A) represents the data that is considered linearly separable in
space after kernel transformations. Figures (B), (C) and (D) are
examples of a hyperplane in two-dimensional space that separates the
data based on separate random selection of the negative class. In each
of these figures, the black triangles represent incorrectly classified data,
the lime green triangles are correctly classified based on the hyperplane
selection and the red underlined black triangles are true homologs
recruited by chance as a negative training example. Figure (E) shows
the final classification (hyperplane in dark blue) after taking the average
of the other three hyperplanes illustrating the necessity of averaging the
classifiers.
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As suggested by (Schaffer et al., 2001) this results in the most
optimal performance of PSI-BLAST. Too few iterations results
in an incomplete position-specific scoring matrix. Too many
iterations result in the recruitment of large numbers of false
positives, skewing the scoring matrix in favor of false positives.
In order to compare the performance of SVM-HUSTLE

against the above methods, SVM-HUSTLE was run on each of
the 3083 test set protein sequences on a LINUX cluster using
four nodes with two processors per node with different values
of parameters defined in Section 2.3 namely:

(1) k—number of concurrent SVM classifiers,

(2) a—ratio of protein sequences selected as positive training
examples at each iteration and

(3) m—maximum number of iterations.

SVM-HUSTLE could not be run on three sequences out of the
total 3083 sequences in the test set as BLAST failed to produce
homolog hits with E-values better than 0.10. In its current form
SVM-HUSTLE cannot be run on sequences with no BLAST
hits, however an option would be to run an exhaustive sequence
similarity algorithm such as Smith–Waterman or Needleman–
Wunsch to extract a starting homologous set of protein
sequences. For the current experiments, these three sequences
were eliminated from all methods for comparison with SVM-
HUSTLE. The network propagation methods overcome this
issue by building a network despite the discovery of only a self-
homolog. However, a single positive example of a sequence
being homologous to itself is not adequate to train a SVM.
The primary statistic used for the statistical comparison

of homology detection methods is a Receiver Operating
Characteristic (ROC) (Hanley and McNeil, 1982) curve.
A ROC curve yields a measure of the rate of false positives
versus the true positives i.e. it is a plot of the true positive rate
against the false positive rate for the different possible cut-offs
of a diagnostic test. The area under a ROC plot is 1 for an ideal
classifier, indicating that one can infer all of the correct protein
homologies (identified from the SCOP classification) without
having to tolerate any false positives.
The ROCn score computes this score up to the n-th false

positive (Gribskov and Robinson, 1996). Figure 5 outlines the
pseudo code for an ROC score calculation. The ROC1 values
were calculated for each of the test set sequences to gage
the relative performance of homology detection methods in
the context of a database search where the vast majority of
sequences are not homologous. In this case, it is important to
get most of the correct homologs before a small number
(rather than a small percentage) of false positives are classified
as homologs. Essentially, the ROC1 value equates to less
than one error per query. Figure 4 shows the comparison of
SVM-HUSTLE with the other approaches using the ROC1

curve. The graph plots the total number of queries for which a
given method exceeds a ROC score threshold. As shown by
Figure 4, our results suggest that SVM-HUSTLE outperforms
each of the algorithms with P-values less than 1e-20 in a two-
tailed signed rank test (Salzberg, 1997).
Table 1 reports the average ROCn scores across all test set

queries for a given method. All results of SVM-HUSTLE are
reported for k¼ 100, a¼ 1, m¼ 10 and a BLAST cut-off of 0.10

for initial homolog set. The rationale behind selection of a
generous cut-off for the BLAST search is to allow more diverse
sequences to be recruited in the initial positive train set.

3.2 Performance comparison with
profile-profile methods

In this experiment, we compare SVM-HUSTLE against profile-
profile based remote homology detection methods such as

Fig. 4. Comparison of the ROC scores of SVM-HUSTLE, MotifProp,
RankProp, k-mer MotifProp, E-Motif MotifProp, Prosite-MotifProp
and PSI-BLAST for test queries. The graph plots the total number of
queries for which a given method exceeds an ROC1 score threshold
indicated on the horizontal axis. The higher the curve, the more queries
in the set having high ROC1 scores for a given method, and hence a
better classifier. SVM-HUSTLE outperforms each of the current-state-
of-the-art-methods at almost all ROC1 values.

Fig. 5. Psuedo code for ROC computation.

Table 1. ROCn (n¼ 1, 10, 50) scores for each method averaged over all
queries

Method SVM-HUSTLE MotifProp RankProp PSI-BLAST

ROC 1 0.7445 0.6405 0.5927 0.5978
ROC 10 0.7818 0.6629 0.6674 0.6172
ROC 50 0.8122 0.6876 0.7249 0.6411
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COMPASS (Sadreyev et al., 2003), PROF_SIM (Yona and
Levitt, 2002) and HHSearch (Soeding, 2005). These programs
are shown to be significantly more sensitive than PSI-BLAST
and have been applied to identify novel homologies.
To compare the results sequences were extracted from the

SCOP 1.63 database using the website http://astral.berke-
ley.edu so that no pair of sequences shares more than 20%
identity (SCOP-20). This results in a total of 3691 sequences,
the homologies for which are obtained from their SCOP
classifications. This benchmark dataset, previously used in
(Soeding, 2005), has only 41 505 true positive homolog pairs
while there are 1.08& 107 false positives. The results for the
above profile-profile comparison algorithms are extracted from
(Soeding, 2005) while SVM-HUSTLE was set up to run each of
the 3691 sequences with varying parameters. We report the
results of SVM-HUSTLE for k¼ 60, a¼ 1 and m¼ 10 for this
experiment. To include sufficient number of homologs in the
initial training set, the BLAST cut-off was increased to 1.0 since
this dataset has hardly any sequence similarity. In order to
recruit sequences in a semi-supervised technique, we augment
the 3691 protein sequences with sequences from the previous
7329 benchmark dataset. This results in a total of 8272 unique
sequences. However, the test statistics are calculated only on
the original 3691 SCOP-20 dataset.
As previously report in (Soeding, 2005) at a 10% error rate

(FP/(TPþFP)¼ 10%) BLAST detects only 908 homologous
pairs which is 2.2% of the total number of homologs. PSI-
BLAST performs slightly better and results in a correct identi-
fication of 17.7%while HMMER finds 18.7%. PROF_SIM and
COMPASS find 24.9 and 34%, respectively. HHSearch algo-
rithms perform much better than any of the existing methods
identifying 40–50% of the homologs, based on usage of addi-
tional knowledge such as the correlation score and predicted
secondary structure. SVM-HUSTLE achieves an identification
rate of 48.5%, correctly identifying 20 153 of the 41 505
homologs. Modification of the configuration parameters may
result in higher percentage of homologs being found,
e.g. increasing the BLAST cut-off from 1 to 10 and increasing
the number of concurrent SVM’s results in an additional 5%
increase in homolog detection. These results are comparable to
HHSearch while they outperform both PROF_SIM and
COMPASS yielding almost twice the number of homolog
detection.
Our results indicate the importance of using semi-supervised

learning in combination with a supervised approach. First,
Using the SCOP 7329 dataset as a source of unlabeled data
(in a semi-supervised setting) increases the homology detection
capability of SVM-HUSTLE. Second, SVM-HUSTLE can be
easily reproduced and does not require the complicated profile–
profile alignments or the alignments of a large number of
variable length sequences in order to generate HMM profiles.

3.3 Assessing statistical significance of
a SVM-HUSTLE score

Application of sequence homology algorithms traditionally
involves a statistical score that assesses how likely an alignment
with a score that good or better could have emerged by chance,
under a specified null distribution (commonly an E-value).

Unlike a P-value, which gives the level of significance for the
null hypothesis (the two sequence are not homologous), we
calculate the posterior odds. The posterior odds allows us to
account for both the non-homologous ð !HÞ and homolgous
(H) models. Specifically, by Bayes formula we can compute the
probability that the two sequences are not homologous
given the SVM-HUSTLE score, sjk, of a pair of sequences
R(j) and R(k):

P !HjRðjÞ,RðkÞ! "
¼ P !Hjsjk

! "
¼ Pðsjkj !HÞPð !HÞ

Pðsjkj !HÞPð !HÞ þ PðsjkjHÞPðHÞ
,

ð2Þ
which is the Bayesian analog to a P-value. This metric is
dependent upon the knowledge of the distributions of the SVM
scores associated with the !H and H models. We use the raw
SVM-HUSTLE values attained in the model evaluation to
estimate these distributions. Figure 6 gives the histogram of the
SVM-HUSTLE scores for the homologous pairs and an equal
number of randomly selected non-homologs. The two distribu-
tions are fairly well separated as expected by the ROC scores
shown in Figure 4 and Table 1.
In Figure 6, both distributions appear slightly skewed to the

right, however a normal probability plot shows that the
negative set ð !HÞ does follow a normal distribution quite well.
However, significant curvature in the normal probability plot
of the positive set (H) suggests an alternate distribution, such as
a Gamma. However, the Gamma distribution requires that
s2 [0;1]. This is easily solved by simply adding a constant to all
SVM-HUSTLE scores qjk¼ sjkþC, which doesn’t change the
distribution, only the mean. The scaled SVM values (q) for the
H model with C¼ 400 follows a Gamma distribution with a
scale parameter of (22.98 and a shape parameter of (17.70,
Figure 7A:

P sjkjH
! "

( " sjk, 22:98, 17:7
! "

:

For !H, the scaled SVM-HUSTLE scores follow a normal
distribution with a mean of (299.37 and a standard deviation
of (54.27, Figure 7B:

P sjkj !H
! "

( N sjk, 299:27, 54:27
! "

:

For our implementation of SVM-HUSTLE, we give the
statistical probability that the sequence pair belongs to the
null model, Equation (1).

Fig. 6. The histogram of the SVM-HUSTLE scores for the non-
homolgous pairs is shown in red and the SVM-HUSTLE scores for the
homologous pairs is overlaid with a blue outline.
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3.4 Computational costs and scalability

Our results clearly demonstrate the improved performance
characteristics of SVM-HUSTLE when detecting remote
homologs. This increased sensitivity in homology detection
does however come with increase in computational cost with
respect to PSI-BLAST. A query specific training set is
generated with similar positive exemplars and randomly
sampled multiple negative exemplars. Since a query specific
model is built for each incoming query, the target database D
has to be reconstructed (re-vectorized) using this model, for
each concurrent SVM classifier. The reconstruction cost of the
database is the biggest bottleneck for SVM-HUSTLE.
The database reconstruction cost is directly impacted by the

parameter k; the number of concurrent SVM classifiers, which
linearly increases the time-to-solution for a given query.
Increasing the number of concurrent classifiers introduces
greater variability in the negative set that is randomly selected.
As a result, we can better represent the space of negative
exemplars in the training space while a smaller value of k only
covers part of the database. We experimented with multiple
values of this parameter and report results for k¼ 60. Our
evaluation indicates a statistically significant increase in
accuracy values when moving from k¼ 4 to k¼ 100.
The transition from k¼ 40 to k¼ 80 is significant and as a
result we settle for the average case where k¼ 60. A formal
estimation of the best value of k would be part of future work
on SVM-HUSTLE.
Depending on configuration parameters for SVM-HUSTLE,

the database would be reconstructed in the worst case
(complete 10 iterations, 60 samples) for m (number of
iterations)& k (concurrent SVM classifiers) times, 600 in our
case. The best case scenario for SVM-HUSTLE would be when
m¼ 1 which would amount to k reconstructions. If a computing
facility is chosen such that there are multiple processors and the
processor to classifier ratio is unity, the computation can be
effectively expected to complete in time proportional to the size
of the database. As the database grows in size (number of
sequences), the database reconstruction cost can be prohibitive
in nature and can slow down classification. Currently, SVM-
Hustle requires specialized hardware to scale to large databases,
such as nr. An additional challenge with large datasets is that in
the case where a query has a large number of homologs, e.g.
over 10 000, the size of the SVM training set would be
prohibitive. However this is easily circumvented by setting a
maximum limit on the initial positive train set as well as the

BLAST cut-off for selection of training examples. We are
currently developing a web service that would allow searches
against various large sequence databases, public or user-
defined. This would offer access to the specialized hardware
required to run the algorithm on larger datasets. Additionally,
an executable that can be used on datasets of less than
10 000 proteins is available at http://www.sysbio.org/sysbio/
networkbio/svm_hustle.
The average time to solution for a single query in both

experiments using SVM-HUSTLE is in seconds once the initial
setup is completed. A large number of the queries from the test
set (85%) complete well within the average time however
queries that have a large number of training examples require
more SVM optimization cycles and take around 1–2min or
more for convergence. Depending on the size of the database,
users looking for a small set of homologs may be able to
retrieve their results in a very short time.
As mentioned, the primary computational bottleneck is in

creating the protein vectors on the fly using the Smith-
Waterman algorithm to reconstruct the database. An alter-
native and efficient way of building the SVM classifier would be
to use a protein representation that is independent of the
training set sequences. We are currently investigating the
potential of using fixed-length motif representation of protein
sequences based on motif content (Ben-Hur and Brutlag, 2003;
Hou et al., 2003). These motif-based representations would
allow SVM-HUSTLE to produce rank-lists of proteins within
seconds without requiring the reconstruction phase.

4 CONCLUSIONS

The accurate annotation of newly sequenced proteins precedes
much of the meaningful work that can be done in under-
standing molecular systems. For example, the analysis of
microarray data and co-regulation in general, is much more
meaningful when the genes are observed in a functional
context. This relies heavily on one’s ability to accurately and
sensitively identify homologous proteins which are of distant
evolutionary origin and hence, have a low degree of sequence
similarity.
Our approach to incorporate semi-supervised learning

coupled with concurrent training of SVM classifiers, though
computationally expensive compared to PSI-BLAST, improves
the sensitivity of remote homology detection by a significant
margin using stricter thresholds of the ROC measure. More
importantly, SVM-HUSTLE does not rely on knowing the
superfamily classifications of query sequences making it
possible to find homologs of proteins which do not fit into
any known family.
SVM-HUSTLE is a pairwise sequence homology detection

algorithm that builds models from representative high-con-
fidence training sequences on the fly in a semi-supervised
fashion. A typical setting for the use of SVM-HUSTLE would
be to search for homologous proteins from a database for a
given query. SVM-HUSTLE yields significantly better results
than network propagation algorithms such as the RANKPROP
and MOTIFPROP on our benchmark datasets. The perfor-
mance is also comparable to HHSearch which requires the

Fig. 7. The fitted distribution of the (A) positive H model is a Gamma
and the (B) negative !H model is a Gaussian.
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computation of multiple alignments and/or structural models
of the database.
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