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any signals in biological sequences are based
e or absence of base signals and their spatial
One of the best known examples of this is the
1g a core promoter —the site at which the basal
achinery starts the transcription of a gene. Our
utomatic pattern recognition system for a family
which simultaneously discovers the base sig-
tial relationships and a classifier based upon

is paper we present a general method for
a set of sequences by their recurrent motifs.
relies on novel probabilistic models for DNA
nd modules of binding sites, on algorithms to
m the data and on a support vector machine
nodels studied to classify a set of sequences.
te the applicability of our approach to diverse
ging from families of promoter sequences to
tronic sequences flanking alternatively spliced
re promoter dataset our results are comparable
of-the-art McPromoter. On a dataset of altern-
exons we outperform a previous approach.
ve high success rates in recognizing cell cycle
s. These results demonstrate that a fully auto-
-ecognition algorithm can meet or exceed the
f hand-crafted approaches.
he software and datasets are available from the
equest.
J@tau.ac.il

find, harder even than the now trendy cis-regulatory signals,
also known as distal and proximal promoters, which serve as
the binding sites of complexes that interact with and modulate
the activity of core promoters. Solving the problem of finding
core promoters is very important as most gene prediction pro-
grams routinely miss the 5’ exon because they are geared to
recognize coding sequence. Among other implications, this
has great impact on the accuracy of the upstream region in
which one looks for cis-regulatory control.

We wished to study a classifier of the signal by the exam-
ination of a collection of positive and negative examples. The
basic idea is to first recognize potentially distinguishing attrib-
utes or patterns and then study which combinations of these
attributes discriminate positive from negative examples. The
idea is quite natural and there have been several other attempts
along these lines (Pavlidis et al., 2001; Ben-Hur and Brutlag,
2003), mainly focusing on the classification task. The specific
problem of recognizing eukaryotic core promoters has been
studied by several authors and various approaches have been
reported for it, including neural networks (Reese, 2001), lin-
ear discriminant analysis (Hannenhalli and Levy, 2001) and
hidden Markov models (Ohler et al., 2002). The last method,
called McPromoter, is the best in-class and hand-crafted clas-
sifier for Drosophila core promoters based on a great deal of
human analysis and insight.

Here, we present a unified framework for the task of recog-
nizing sequence families. The framework consists of two
components: (1) algorithms that recognize unusual patterns or
attributes of a number of types within the training dataset and
(2) a support vector machine (SVM) that uses the attributes
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f NNPP (Reese, 2001). Moreover, we came
the method extends well beyond our original
ustrate this we apply it here to the problems of
ernatively spliced exons, in human, and recog-
that are under cell-cycle control in yeast. In
ith a previous approach for detecting alternat-
xons, we are able to show increased sensitivity
ons.

DS

> following classification problem: the input
training set of sequences with positive and
ples, and a test set; the goal is to devise a
the positive examples that will best discrim-
| positives and negatives on the test set. We
phase scheme for this problem: in the first
the training data to study attributes (features)
lent in the positive sequences compared with
negative) sequences. The attribute vector of
> consists of three types of attributes: (1) dis-
otifs, (2) discriminative modules of motifs
nal attributes that are unique to the specific
 the second phase we train a SVM for the clas-
lem using the attributes studied as sequence
- two phases are described in detail in the
ions.

ng discriminative motifs

h motif using the standard position weight mat-
resentation (Bailey and Elkan, 1994; Roth ez al.,
assumes independence between positions in a
"his model assigns a weight to each position in
each nucleotide n € {A, C, G, T}, representing
vhich the nucleotide’s presence in this position
vith the motif.

g PWMs we adapt the discriminative motif
al et al. (2002). This model is specified using a
on with p position-specific weights w;[r], one
on i and each nucleotide n € {A,C,G, T}, and
). For a sequence example s, denote its nucle-
by s.S = 5.51,...,5.5.. For amotif m, denote
ation of occurrence of 71 in ¢ with the conven-

a motif occurrence given the sequence is:

P(sm>0]s.51,...,5.50,0)

L—p+1 D
=logit |wo + log Z Pm(j)exp{ wi[S-Si+j—1]}
= im1

where 6, is the set of parameters for the motif, p,,(j) =
1/(L — p+ 1) and logit(x) = 1/(1 + ™) is the logistic
function. [The reader is referred to Segal er al. (2002) for
more details on the model and the likelihood derivation. ]

We extend the above model to take into account the pos-
sible bias in the location of certain motifs along the input
sequences. Such bias was observed previously for promoter
regions [see e.g. Tanay and Shamir (2003) and Beer and
Tavazoie (2004)]. We use a simple model for the location
preference, in which the sequence is equally partitioned to &
parts (k = 10), each having a certain probability of containing
the motif, and within each part the probability of occurrence
is assumed to be uniform. For a given motif, we empirically
estimate the distribution of the locations of its occurrences
along the positive sequences (see below). We redefine p,, ()
based on the estimated distribution.

A complicating factor in applying this model to study the
motif parameters from the data is that we do not expect the
motif m to occur in every core promoter sequence, but only in
a fraction of the sequences. Thus, we treat the positive training
data as noisy. Precisely, let T be a set of labels for the train-
ing sequences, specifying for each sequence s whether it is a
positive or a negative example. We further denote, T as the
set of positive examples, 7~ as the set of negative examples
and S as the set of all nucleotide sequences {s.S|s € T}.
Define ¢,, = P(s € TT|s.m = —1) to be the probability that
a sequence is a core promoter given that motif m does not
occur in it. This probability reflects the fraction r,, of posit-

-1
ive sequences containing the motif m: g, = (l + 3 fr ) s
where a is the ratio of negative to positive examples. The
likelihood of the data under this extended model is:

P(T|S.0n.qm) = [ ] (P(s.m = 0]5.5.6,)
seT+
+ (1l — P(s.m = 0]s.5,0,))}
o 1_[ f71 N1 ™7
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d similar to Barash et al. (2001), which we

zation of the motif model

on of PWMs that correspond to putative bind-
1e using a three-stage process: First, discrim-
1sus’ sequence patterns are identified; second,
s sequences are scored to quantify their enrich-
itive sequences versus the negative ones; third,
( these patterns along the positive sequences
mpute an initial PWM for the corresponding

earch is done in an exhaustive manner, scoring
of length 6-8 bp, which are called seeds. To
> count the number of its occurrences up to one
he positive and negative examples. We com-
rometric P-value for these counts, and retain
it have an adjusted P-value <0.01 (we use
orrection to adjust the P-values for multiple
[so compute an enrichment P-value against a
kov model of the positive sequences, and filter
ot pass the 0.01 significance level. The surviv-
irther filtered in a greedy fashion to ensure that
re similar in sequence or significantly overlap
>nces.

aining seed, the initial position specific weights
by averaging over all occurrences (up to one
his seed. We use the seed occurrences also to
d the PWM at each end by positions whose
ontent exceeds a threshold. Once the initial
termined, the parameters of the location dis-
estimated by considering, for each positive
y the highest-scoring match of the pattern to

1g discriminative modules

the motif-based features, we also study more
ns, namely, spatial combinations of motifs, or
eek modules that are abundant in the positive
tive to the negative ones. Studying modules
lentify signals that are too weak at the motif
to associate motifs whose co-occurrence has a
ificance.

we oeneralized the above motif model to

therefore:
P(s.M =i|s.S)
1 i+dy
- mP(s.ml =is.S) Z P(s.my = j|s.5)
j=i+d,
where

14
P(s.my = 1]s.S) = logit (wg’”” +y w,('"")[s.Sz+11])

t=1

One can study this model using the same gradient ascent
approach used for the single motif model. The initialization
of the model is done by enumerating pairs of seeds (consensus
sequences) that occur up to one mismatch within a window
of size w(w = 50). These putative modules are scored by
computing their enrichment in the positive set, using a hyper-
geometric test. Significant pairs are then initialized in a way
similar to the initialization of seeds for the motif model.

2.4 Adding external attributes

Up till now we have described a general framework for study-
ing discriminative attributes from sequence data. However,
depending on the specific problem, there may be properties
that are important for the classification task and cannot be
expressed as sequence motifs. For instance, Sorek et al. (2004)
show that exons whose length is divisible by three are less
likely to be constitutive. Thus, in each of the applications
described below we also add to our attribute vectors those
attributes that were found to be discriminative for that specific
classification problem.

In addition, we add one more features to the attribute vec-
tors, representing the fit of a sequence to a probabilistic
model of the positive sequences versus the negative sequences.
Specifically, we compute a first-order Markov model for the
positive and negative sequences and define this feature to
be the log odds of being a positive versus being a negative
example.

2.5 Training the SVM

SVM is a classification method based on finding a sep-
arating hyperplane between positive and negative samples
that maximizes the distance (margin) between the samples
and the hvnernlane (in cas<e the <ambles are not senarable
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ind modules in Drosophila core promoters

Name Consensus Length P-value MEME-short MEME-long
DRE ATCGATAG 8 1E-33 + +
— GGTCACACT 9 3E-23 + +
DPE CGGTCG 6 2E—-19 + -
— CAGCACTG 8 4E—14 + -
— CAGCTGGT 8 4E—-13 + -
— CCGATAAC 8 8E—13 - -
— CGACGACG 8 1E-12 - —
— TCGCCGCG 8 4E—-11 - -
TATA CTATAAAA 8 6E—9 + -
— CGAGCGGC 8 7E-9 + -
INR CTCAGTCG 8 3E-7 + -
— GGTATTTT 8 SE-5 + -
— TCGGCAGC 8 6E—5 - -
1242 GGTATTTT:GGTCACAC <50 9E—16 - -
DRE + 6 ATCGATAG:CCGATAAC <50 6E—11 - -
INR+DPE CTCAGTCG:CGGTCG <50 TE—4 - -

»-scoring motifs. For each motif, indicated are its common name (if such is known), its consensus sequence, its P-value (Bonferroni corrected) and whether it
EME, as reported in Ohler ez al. (2002). MEME was applied both to the original 300 bp sequences (long) and to shorter segments from —60 to 440 bp (short).
“to match a MEME motif if their consensus sequences are identical up to one mismatch. Bottom: the three significant modules. The name of each module refers

mprise it.

/ sequences. In order to measure our confidence
tion, we compute a confidence score based on
yy Platt (1999). This is done by fitting a logistic
> output of the SVM.

tion measures

set, denote by TP, FP, TN and FN the num-
ositive, false positive, true negative and false
ctions. The sensitivity of a set of predictions
the percentage of positives that are correctly
- sens = TP/(TP + FN). The specificity is
percentage of negatives that are correctly pre-
rec = TN/(TN + FP). The FP rate equals
P /(TN + FP). For some applications (e.g. core
tification —see below) the number of TN in the
ceeds the number of TPs. In such cases, we
ecificity measure with an adjusted specificity,
ec = TP/(TP + FP).

ent to visualize a range of sensitivities and spe-
ned bv an aleorithm using a receiver operating

that serves as a recognition site for the basal transcription
apparatus. Common core promoter elements include the TATA
box at —31 to —26 bp, its extension, BRE, at —37 to —32 bp,
the initiator, INR, at —2 to +4 bp and a downstream element,
DPE, at +28 to +32 bp. A fifth element, DRE, was implicated
to be abundant in core promoters in Ohler et al. (2002).

The training dataset that we used was prepared by Ohler
et al. (2002) and includes a set of 1842 core promoters,
1799 intronic sequences and 2859 coding sequences. These
sequences are 300 bp long, where for core promoters they
extend from —250 to +50 bp. In order to take advantage of this
partition of the sequences, we trained our model twice: first, to
discriminate between core promoters and intronic sequences;
and second, to discriminate between core promoters and cod-
ing sequences. Since coding sequences are very different from
core promoter sequences in their nucleotide content, we used
only external attributes for the second classification task. We
restricted the program to identify the 15 top-scoring motifs
or modules, and retained only significant motifs and modules
whose frequency in the positive set was estimated to be >10%.
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p. While the first application failed to recover
ywn core promoter elements, the 10 top-scoring
econd application included nine of the motifs
thm identified. We note that both our method
I not recover the BRE motif, which could imply
represented in the data.
we studied three significant modules on this
are shown in Table 1. The first module con-
12 and 2. These two motifs were reported
frequency of co-occurrence in core promoter
ler et al., 2002). The second module consists
>ment and motif 6. The third module consists
I DPE motifs. This module structure is one of
non core promoter structures reported in the
er and Kadonaga, 2002).
hler et al. (2002) we also used 14 external attrib-
re the physical properties of DNA sequences,
wn to discriminate between core promoters
lences. Specifically, the computation of these
s experimentally derived tables on physical
di- or tri-nucleotides, such as bendability,
onformation, etc. Full details on these prop-
r computation can be found in Ohler er al.
ed the average value of each property along
oter segment from —60 to +40 bp as a fea-
more complex features can be computed based
1 attributes, but this was not the focus of our

rformance of our algorithm we applied it after
1tify core promoters in the well annotated Adh
tal.,2002). This region is 2.9 Mb long and con-
ated open reading frames (not included in our
The core promoter predictions were computed
ndow across each of the strands, calculating its
re, and choosing local maxima of these confid-
the predictions. To evaluate the results we used
ty measures employed in Ohler et al. (2002):
“adjusted specificity. ROC-like curves of the
sented in Figure 1; a comparison with exist-
, given in Table 2. These results (Fig. 1) also
e utility of using both discriminative motifs and
e classification task. We further examined the
ling the location preference of motifs by com-
1t with a variant of the aleorithm that assumes

08

06
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0.4}

0.2}

1 - Adjusted Specificity

Fig. 1. Performance on the Adh region, shown as ROC-like curves,
where the x-axis is (1 — aspec) and the y-axis is the sensitivity of
the predictions. The solid, dotted and dashed curves describe the
performance of the algorithm when using both discriminative motifs
and modules, motifs only and no motifs or modules (i.e. using only
external attributes), respectively.

Table 2. Comparison of classification results on the Adh region

Sensitivity (%) Adjusted specificity

MotifBased (%) McPromoter (%) NNPP (%)
20 79 69 14
35 53 51 10
50 33 40 6
65 20 29 —

For each sensitivity level, the adjusted specificity of each method is indicated. The results
of McPromoter are adapted from Ohler et al. (2002). The results of NNPP are adapted
from Reese (2001), and were based on a smaller training set.

data. Specifically, they have shown that alternative exons tend
to have length divisible by three and tend to be conserved along
with their flanking sequence between human and mouse.

We tested our method on the training data reported by Sorek
et al. (2004), which consists of flanking sequences for 243
alternative exons and 1753 constitutive ones. Following Sorek
et al. (2004), we evaluated our results using 5-fold cross-
validation. The algorithm studied two to three significant
motifs in each cross-validation iteration with two motifs con-
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urve for the classification of alternatively spliced

cation results on the exon dataset of Sorek ef al. (2004)

Sensitivity (%) Specificity (%)
40.3 99.4
1) 32.3 99.7

ensitivity percentages represent averages over five cross-validation

sensitivity rate of 50%. However, the results
ek et al. (2004) are not directly comparable with
ot al. (2005), since the latter study used a differ-
method (the data was partitioned into a training
and took advantage of additional external attrib-
> not part of the original data of Sorek et al.

cle regulation in yeast

st of our method, we applied it to recognize
ulated genes in yeast according to their pro-
es. The assumption underlying this experiment
cycle regulated genes carry in their promoter
que signals, corresponding to the binding sites
regulators. To compile a training dataset we
00 bp nromoter seauences for all veast cenes

0.8

0.6}
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Fig. 3. ROC curve for the classification of cell cycle regulated genes.

consensus sequences matched those of the known cell cycle
regulators MBP1, SWI4 and SWI6.

4 CONCLUSIONS

We have presented a general framework for the character-
ization and classification of a family of related sequences
based on recurrent sequence motifs and modules of motifs.
We demonstrated several applications of our framework to
identifying core promoters, alternatively spliced exons and
cell cycle regulated genes. There are many possible exten-
sions to our work, including (1) more refined modeling of
the position preference of a motif; (2) modeling the distance
distribution among motifs in a module; (3) design of kernel
functions for the classification task based on the approach
by Lanckriet et al. (2004) to provide explicit treatment of
the problem of combining features of different types; and
(4) application of our method to classify other sequence famil-
ies, such as core promoters in other species, promoter regions
of tissue-specific genes and promoter regions of genes with
specific expression patterns.
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