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On the Generalization of Soft Margin Algorithms
John Shawe-Taylor, Member, IEEE,and Nello Cristianini

Abstract—Generalization bounds depending on the margin of a
classifier are a relatively recent development. They provide an ex-
planation of the performance of state-of-the-art learning systems
such as support vector machines (SVMs) [1] and Adaboost [2]. The
difficulty with these bounds has been either their lack of robustness
or their looseness. The question of whether the generalization of a
classifier can be more tightly bounded in terms of a robust mea-
sure of the distribution of margin values has remained open for
some time. The paper answers this open question in the affirma-
tive and, furthermore, the analysis leads to bounds that motivate
the previously heuristic soft margin SVM algorithms as well as jus-
tifying the use of the quadratic loss in neural network training algo-
rithms. The results are extended to give bounds for the probability
of failing to achieve a target accuracy in regression prediction, with
a statistical analysis of ridge regression and Gaussian processes as
a special case. The analysis presented in the paper has also lead to
new boosting algorithms described elsewhere.

Index Terms—Generalization, margin, margin distribution,
neural networks, probably approximately correct (pac) learning,
ridge regression, soft margin, statistical learning, support vector
machines (SVMs).

I. INTRODUCTION

BOTH theory and practice have pointed to the concept of
the margin of a classifier as being central to the success of

a new generation of learning algorithms. This is explicitly true
of support vector machines (SVMs) [4], [1], which in their sim-
plest form implement maximal margin hyperplanes in a high-di-
mensional feature space, but has also been shown to be the
case for boosting algorithms such as Adaboost [2]. Increasing
the margin has been shown to implement a capacity control
through data-dependent structural risk minimization [5], hence
overcoming the apparent difficulties of using high-dimensional
feature spaces.

In the case of SVMs, a further computational simplification
is derived by never explicitly computing the feature vectors, but
defining the space implicitly using a kernel function. In contrast,
Adaboost can be viewed as a sophisticated method of selecting
and explicitly computing a small number of features from a vast
reservoir of possibilities.
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The key bounds on the generalization typically depend on
the minimal distance of the training points from the decision
boundary [5], the so-called margin of the classifier. Ignoring log
factors, in the realizable case the bound is proportional to the
ratio between the fat-shattering dimension measured at a scale
proportional to the margin and the size of the training set (see
Theorem III.5). This raises concern that they are very brittle in
the sense that a single training point can have a very significant
influence on the bound, possibly rendering the training set in-
separable.

Bartlett [6] extended the analysis to the case where a number
of points closest to the boundary are treated as errors and the
minimal margin of the remaining points is used. The bound ob-
tained has the disadvantage that now the ratio of the fat-shat-
tering dimension to training set size appears under a square root
significantly weakening the power of the result asymptotically.
A further problem with this approach is that there are no ef-
ficient algorithms for even obtaining a fixed ratio between the
number of misclassified training points and the true minimum
for linear classifiers unless [7], [8]. Hence, in SVM
practice, the so-called soft margin versions of the algorithms are
used, that attempt to achieve a (heuristic) compromise between
large margin and accuracy. Note, however, that the-SVM im-
plements a different parameterization of the soft margin algo-
rithm that results in the parameterproviding an upper bound
on the fraction of margin errors [9].

The question whether it is possible to construct more robust
estimators of the margin distribution that can be used to bound
generalization has remained open for some time [2]. The pos-
sibility that optimizing the measure might lead to a polynomial
time algorithm was hardly considered likely.

The current paper not only provides one possible answer to
the open question by deriving a robust measure of the margin
distribution, but it also shows that the measure can indeed be op-
timized efficiently for linear function classes—indeed, by mea-
suring the margin distribution in two natural ways the two stan-
dard SVM algorithms are derived. This derivation shows how
the NP-hard problem of approximate agnostic learning for linear
classifiers can be overcome by obtaining a more precise bound
on the generalization error that the classifier aimed to minimize
in the first place.

Interestingly, the technique turns out to be equivalent to a
manipulation of the kernel matrix, as well as being related to
common statistical practices like ridge regression and shrinkage
methods. There is also a strong link with regularization.

Our analysis and bound make crucial use of a special loss
function, that is equivalent to the slack-variables used in opti-
mization theory and is related to the hinge loss. Our analysis
was motivated by work of Freund and Schapire [10], though

0018-9448/02$17.00 © 2002 IEEE



2722 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 10, OCTOBER 2002

their technique was originally introduced by Klasner and Simon
[11].

Furthermore, for neural networks the criterion derived cor-
responds exactly to that optimized by the back-propagation al-
gorithm using weight decay further clarifying why this algo-
rithm appears to generalize well when training is successful.
The bound suggests variations that might be used in the error
measure applied in the back-propagation algorithm.

More recent work [3] has derived a precise boosting algo-
rithm directly from the error bounds obtained by the methods
developed in this paper. This development parallels the move
from hard to soft margin in SVMs since the Adaboost algorithm
places an exponentially growing penalty on the margin deficit.

Finally, the results are also extended to the case of regression
where they are shown to motivate SVM regression with linear
and quadratic-insensitive loss functions, with ridge regression
as the special case of quadratic loss and . Note that we will
refer to this loss as the-insensitive loss to avoid confusion with
the use of to denote the misclassification probability. They
provide probabilistic bounds on the likelihood of large output
errors in terms of the least squares training error.

The paper is organized as follows. After summarizing our
results in Section II, we introduce background material in
Section III before giving the key construction in Section IV.
Section V derives the results for linear function classes using
the -norm of the slack variables, which leads naturally into
a discussion of the algorithmic implications in Section VI.
Section VII extends the results to nonlinear function classes,
while Section VIII addresses regression estimates.

II. SUMMARY OF RESULTS

The results in this section will be given in thenotation in-
dicating asymptotics ignoring factors. The aim is to give
the flavor of the results obtained which might otherwise be ob-
scured by the detailed technicalities of the proofs and precise
bounds obtained. We should also emphasize that as with almost
all probably approximately correct (pac) style bounds, there is
considerable slackness in the constants. For this reason, they
should be regarded as giving insight into the factors affecting
the generalization performance, rather than realistic estimates
for the error. As such, they can be used to motivate algorithms
and guide model selection.

The first case considered is that of classification using linear
function classes. This therefore includes the use of kernel-based
learning methods such as those used in the SVM [1]. The kernel

provides a direct method of computing the inner product be-
tween the projection of two inputsand into a high-dimen-
sional feature space via a mapping

Many algorithms for linear function classes create weight vec-
tors that can be written as a linear combination of the training
feature inputs with coefficients . Hence,
the evaluation of a new point can be obtained as

Provided the algorithms only make use of inner products be-
tween feature vectors then there will be no need to explicitly
compute in the feature space.

When used for classification, the real-valued function is
thresholded at. The margin of a point is the product of its label
and the output of the underlying real-valued function. Detailed
definitions are given in the next section. The-insensitive loss
function measures the loss in the case of regression by ignoring
errors that are less thanand subtracting from (the absolute
value of) larger errors.

For the linear function case, consider a target margin
about the decision hyperplane and for training setlet

be the vector of the amounts by which the
training points fail to achieve the margin(these correspond
to the slack variables in some formulations of the optimiza-
tion problem—for this reason, we refer to them as the slack
variables). We bound the probabilityof misclassification of a
randomly chosen test point by (see Theorem V.2)

where is the radius of a ball about the origin which contains
the support of the input probability distribution. This bound di-
rectly motivates the optimization of the-norm of the slack vari-
ables originally proposed for SVMs by Cortes and Vapnik [12]
(see Section VI for details).

The results are generalized to nonlinear function classes using
a characterization of their capacity at scaleknown as the fat-
shattering dimension . In this case, the bound obtained
has the form (see Theorem VII.11)

The fat-shattering dimension has been estimated for many func-
tion classes including single hidden layer neural networks [13],
general neural networks [6], and perceptron decision trees [14].
An important feature of the fat-shattering dimension for these
classes is that it does not depend on the number of parame-
ters (for example, weights in a neural network), but rather on
their sizes. These measures, therefore, motivate a form of weight
decay. Indeed, one consequence of the above result is a justifi-
cation of the standard error function used in back-propagation
optimization incorporating weight decay, as well as suggesting
alternative error measures—see Section VII-B for details.

The preceding result depends on the-norm of the slack vari-
ables, while many optimization procedures use the-norm. We
have, therefore, derived the following bound in terms of the
-norm of the vector (see Theorem VII.14):
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which can also be applied to the linear case using a bound on
the fat-shattering dimension for this class, hence motivating the
box constraint algorithm (see Section VI).

Finally, the problem of estimating errors of regressors
is addressed with the techniques developed. We bound the
probability that for a randomly chosen test point the absolute
error is greater than a given value. In this case, we define a
vector of amounts by which the error on the
training examples exceeds . Note that
is simply the least squares error on the training set. We then
bound the probability by (see Theorem VIII.2)

These results can be used for support vector regression (SVR)
[1] and give a criterion for choosing the optimal size of
the tube for the -insensitive loss function. In addition, they can
be applied to standard least square regression by setting
to obtain the bound (see Corollary VIII.4)

For the case of linear functions (in a kernel-defined feature
space) this reduces to a bound for (kernel) ridge regression.

III. B ACKGROUND RESULTS

We consider learning from examples, initially of a binary
classification. We denote the domain of the problem byand
a sequence of inputs by . A training
sequence is typically denoted by

The performance of a classification function

on a training set is measured by the empirical error

We will say that a classification functionis consistent with
if , that is, correctly classifies all of the examples
in . We adopt the pac style of analysis of generalization. This
model posits an underlying distribution generating labeled
examples. This distribution is used to generate training sets by
independent sampling. It is also used to measure the generaliza-
tion error of a classifier by

The thrust of the results in this paper relies on using real-valued
functions for classification by thresholding at a fixed value. In
some cases, it is useful algorithmically to set the threshold value
separately from the function selection. This approach can be
continued into the analysis of generalization, though both al-
gorithmically and theoretically it is possible to simply treat the
threshold as part of the function class and, therefore, fix the
threshold at once and for all. We will follow this approach in
order to simplify the presentation and form of the results, though

explicit treatment of the threshold could be incorporated using
the techniques presented.

Hence, if we are using a real-valued function, the corre-
sponding classification function is , denoting the func-
tion giving output if has output greater than or equal toand

otherwise. For a class of real-valued functions, the class
is the set of derived classification functions.

We first consider classical learning analysis which has been
shown to be characterized by the Vapnik–Chervonenkis (VC)
dimension [15].

Definition III.1: Let be a set of binary-valued functions.
We say that a set of points is shattered by if for all binary
vectors indexed by , there is a function realizing
on . TheVC dimension, VC , of the set is the size
of the largest shattered set, if this is finite or infinity otherwise.

The following theorem is well known in a number of different
forms. We quote the result here as a bound on the generalization
error rather than as a required sample size for given generaliza-
tion.

Theorem III.2 [5]: Let , be a sequence of hy-
pothesis classes mappingto such that VC

, and let be a probability distribution on . Let
be any set of positive numbers satisfying . With

probability over independent examples drawn according
to , for any for which a learner finds a consistent hypothesis

in , the generalization error of is bounded from above by

provided .

This classical result only considers the classification func-
tions as binary valued. In many practical systems such as SVMs
or neural networks, the classification is obtained by thresholding
an underlying real-valued function. In such cases, the distance of
the real-valued output from the threshold is known as the margin
and the margin values of the training set can provide additional
insight into the generalization performance of the resulting clas-
sifier.

We first formalize the notion of the margin of an example and
training set.

Definition III.3: For a real-valued function

we define the margin of a training example
to be

Note that implies correct classification. For a
training set

we define the (hard) margin of to be
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Hence, implies that is consistent with .

We now introduce the fat-shattering dimension, a generaliza-
tion of the VC dimension that renders it sensitive to the size of
the margin.

Definition III.4: Let be a set of real-valued functions. We
say that a set of points is -shattered by if there are real
numbers indexed by such that for all binary vectors
indexed by , there is a function satisfying

if

otherwise.

The fat-shattering dimension of the set is a function
from the positive-real numbers to the integers which maps a
value to the size of the largest-shattered set, if this is finite
or infinity otherwise.

We will make use of the following result contained in Shawe-
Taylor et al. [5] which involves the fat-shattering dimension of
the space of functions.

Theorem III.5 [5]: Consider a real-valued function class
having fat-shattering function bounded above by the dimension

which is continuous from the right. Then with
probability at least over randomly drawn training sets
of size , a function consistent with

such that will have generalization error
bounded from above by

where .

Note how the fat-shattering dimension at scale plays the
role of the VC dimension in this bound. This result motivates
the use of the term effective VC dimension for this value. In
order to make use of this theorem, we must have a bound on the
fat-shattering dimension and then calculate the margin of the
classifier. We begin by considering bounds on the fat-shattering
dimension. The first bound on the fat-shattering dimension of
bounded linear functions in a finite-dimensional space was ob-
tained by Shawe-Tayloret al. [5]. Gurvits [16] generalized this
to infinite-dimensional Banach spaces. We will quote an im-
proved version of this bound for inner product spaces which is
contained in [17] (slightly adapted here for an arbitrary bound
on the linear operators).

Theorem III.6 [17]: Consider an inner product space and the
class of linear functions of norm less than or equal to re-
stricted to the sphere of radius about the origin. Then the
fat-shattering dimension of can be bounded by

In order to apply Theorems III.5 and III.6, we need to bound
the radius of the sphere containing the points and the norm of
the linear functionals involved.

IV. CONSTRUCTING THEAUXILIARY FUNCTIONS

As we have seen in the last section, previous margin results
bound the generalization error of a large margin classifier in
terms of the fat-shattering dimension measured at a scale pro-
portional to the hard margin. These results can be used to moti-
vate the large margin algorithms which implement the so-called
hard margin optimization; in other words, maximize the min-
imum margin over all the points in the training set. Frequently,
the minimum margin can be greatly reduced by a small number
of examples either corrupted by noise or simply representing
atypical inputs. In such cases, the majority of the data still ex-
hibits a large margin, but the hard margin measure is small or
even negative.

The new technique we introduce in this section allows us to
shift this small number of points back to the larger margin using
an auxiliary function space. The cost of performing this shift
is seen in an increase in the complexity of the function class
used for the classification. Hence, we are able to restore a large
hard margin at the expense of additional complexity and we can
therefore apply the hard margin generalization results, using al-
beit more sophisticated tools for measuring the increased com-
plexity of the function class.

The idea of performing this shift was used by Freund and
Schapire [10] for the case of on-line learning algorithms. For
this application, it is possible to add an extra coordinate for each
training example, which makes the presentation easier. Since we
are undertaking a pac analysis, we cannot use a data-dependent
construction, but must ensure that the input space is defined be-
fore learning begins. This fact forces us to construct an auxiliary
function class that will enable us to increase the margin of indi-
vidual training examples. Let be the input space. We define
the following inner product space derived from.

Definition IV.1: Let be the set of real-valued functions
on with countable support (that is, functions in

are nonzero for only countably many points). We consider
two norms, the -norm is defined by

while the -norm is given by

The subclass of functions with-norm bounded by is denoted
, while is the class of functions for which the

-norm is finite. We define the inner product of two functions
by

Clearly, the spaces are closed under addition and multi-
plication by scalars.

Definition IV.2: Now for any fixed , we define an
embedding of into the inner product space as
follows:
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where is defined by

if

otherwise.

We denote by the image of under . For the special
case of we denote by .

We have defined the augmented input space, but must now
describe the auxiliary functions. For a general real-valued func-
tion class of functions with domain , we define
to be the class

The domain of these functions is , with their action
defined by

Definition IV.3: For a real-valued function on we define

This quantity is the amount by whichfails to reach the margin
on the point or if its margin is larger than. Similarly,

for a training set , we define

If we fix a target margin , the points with nonzero
are those which fail to achieve a positive

margin of (see Fig. 1). Given a real-valued function
and a training set , we now construct an auxiliary function

, which will ensure that achieves a margin
on . Note that we assume throughout the paper that there

are no duplicates in the training set. The functiondepends
on and the training set , but we suppress this dependency to
simplify the notation

If we now consider the margin of the function applied
to a training point , we have

(1)

Furthermore, if we apply the function to a point
we observe that for ,

, and so

Fig. 1. Two slack variables� = �((x ; y ); f; ) and � =
�((x ; y ); f; ).

Hence, we see that the off-training set performance of
satisfies

(2)

We have, therefore, shown the following lemma.

Lemma IV.4: For any training set , real-valued function ,
and target margin the function satisfies the properties

1) .

2) For .
Proof: The properties 1) and 2) are a direct consequence

of (1) and (2).

The construction we have established in this section enables
us to force a target margin at the cost of reinforcing the
function class with the auxiliary functions in . The
second property demonstrated in Lemma IV.4 shows that the
off-training set performance of the augmented classifier exactly
matches the original function. Hence, we can analyze the
generalization of by considering how performs on
the training set. In the next section, we first consider the case
where the class of functions is linear.

V. SOFT MARGINS FORLINEAR FUNCTION CLASSES

The construction of the previous section shows how the mar-
gins can be forced to a target value ofat the expense of addi-
tional complexity. We consider here how that complexity can be
assessed in the case of a linear function class. We first treat the
case where the parametercontrolling the embedding is fixed.
In fact, we wish to choose this parameter in response to the data.
In order to obtain a bound over different values of, it will be
necessary to apply the following theorem several times.

In applying the theorems, a problem can arise if the clas-
sification given by the underlying function disagrees with the
augmented function and there is a nontrivial measure on the
points of disagreement. Since this can only occur on the subset
of points in the training set for which , we
always assume that the test function first checks if a test point
is one of these points and if so makes appropriate adjustments
to the classification given by the underlying (in this case linear)
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function. We use the phrasetraining set filteredto refer to this
procedure. These same observations apply throughout the paper.

Theorem V.1:Fix . Consider a fixed but unknown
probability distribution on the space with sup-
port in the ball of radius about the origin in . Then with
probability over randomly drawn training setsof size
for all , the generalization of a training set filtered linear
classifier on with , thresholded at is bounded by

where

provided , .
Proof: Consider the fixed mapping and the augmented

linear function over the space

By Lemma IV.4, has margin on the training set ,
while its action on new examples matches that of. Observe
that since we are dealing with a class of linear functions on,

is a linear function on the space . It follows that
we can form the function

which has norm and satisfies

and also mimics the classification of for . We
can, therefore, apply Theorems III.5 and III.6 to the training
set filtered function. Note that the support for the distribution
of is contained within a ball of radius . The
theorem follows.

We now apply this theorem several times to allow a choice of
which approximately minimizes the expression for. Note

that the minimum of the expression (ignoring the constant and
suppressing the denominator) is , attained when

.

Theorem V.2:Consider a fixed but unknown probability dis-
tribution on the space with support in the ball of
radius about the origin in . Then with probability over
randomly drawn training setsof size for all such that

, for some , the generalization of
a unit norm training set filtered linear classifieron thresh-
olded at is bounded by

where

for , and provided , .

Proof: Consider a fixed set of values for,

for

where satisfies

Hence,

We apply Theorem V.1 for each of these values of, using
in each application. For a given value ofand

, it is easy to check that the value ofis minimal for
and is monotonically decreasing for smaller values

of and monotonically increasing for larger values. Note that

as the largest absolute difference in the values of the linear func-
tion on two training points is and since ,
for some , we must have , for
all . Hence, we can find a value of satisfying

provided . In this case, the value of the ex-
pression

at the value will be upper-bounded by its value at
. A routine calculation confirms that for this value of

, the expression is equal to . Now suppose
. In this case, we will show that

so that the application of Theorem V.1 with covers
this case once the constant is replaced by . Recall that

and note that . We,
therefore, have

as required. The result follows.

VI. A LGORITHMICS

The theory developed in the last two sections provides a way
to transform a nonlinearly separable problem into a separable
one by mapping the data to a higher dimensional space, a tech-
nique that can be viewed as using a kernel in a similar way to
SVMs.

Is it possible to give an effective algorithm for learning a large
margin hyperplane in this augmented space? This would auto-
matically give an algorithm for optimizing the margin distribu-
tion in the original space. It turns out that not only is the answer
yes, but also that such an algorithm already exists.
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The mapping defined in Section IV when applied to a
linear space implicitly defines a kernel as follows:

Note that for the analysis of the algorithms we are allowing a
variable threshold in order to match more closely the defini-
tions in standard usage. By using this kernel, the decision func-
tion of the SVM becomes

If we begin with a kernel that defines an implicit fea-
ture map satisfying , we need only
consider applying the map to to obtain the new kernel

Hence, to optimize the new bound, we need only replace the
kernel matrix with the matrix , which has
a heavier diagonal, which is equivalent to applying the hard
margin algorithm after adding to the covariance matrix.

This technique is well known in classical statistics, where it is
sometimes called the “shrinkage method” (see Ripley [18]). In
the context of regression with squared loss, it is better known as
ridge regression (see [19] for an exposition of dual ridge regres-
sion), and in this case, leads to a form of weight decay. It is a
regularization technique in the sense of Tikhonov [20]. Another
way to describe it is that it reduces the number of effective free
parameters, as measured by the trace of. Note, finally, that
from an algorithmic point of view these kernels still give a pos-
itive-definite matrix, in fact, a better conditioned one, though
one that may lead to less sparse solutions.

Using the kernel is equivalent to solving the
soft margin problem for the case , as stated by Cortes
and Vapnik [12], minimize subject to

and . The solution obtained is

subject to the constraint

which makes clear how the tradeoff parameterin their formu-
lation is related to the kernel parameter, namely,

Note that this approach to handling nonseparability goes back
to Smith [21], with Bennett and Mangasarian [22] giving essen-
tially the same formulation as Cortes and Vapnik [12], but with
a different optimization of the function class.

The expression also shows how moving to the soft margin en-
sures separability of the data, since both primal and dual prob-
lems are feasible. The soft margin has introduced a type of
weight decay factor on the dual variables.

The analysis we have performed so far is applicable to the
case of in the terminology of Cortes and Vapnik [12].
Though this approach has been extensively used, Cortes and
Vapnik favored setting arguing that it is closer to the
minimization of the training error that results from taking .
This leads to the so-called-norm optimization problem

minimize

subject to

.

(3)

The dual of this problem is maximization of the Lagrangian

subject to the constraints

The second set of constraints has resulted in the method being
known as the box constraint algorithm. It again shows how non-
separability has been overcome since the dual feasible region is
now bounded ensuring the existence of an optimal solution. In
contrast to the weight decay style of constraint introduced by
the -norm criterion, the dual variables are now restricted to a
finite region.

Viewing the two primal objective functions, the change in the
loss function is evident. The tradeoff parametercontrols the
relative importance given to controlling the loss as opposed to
regularizing the function. The cases considered so far have all
been linear function classes using-norm regularization giving
rise to the -norm of the weight vector in the primal objective.

The next section will further develop the techniques we have
introduced in order to bound the generalization in terms of quan-
tities optimized by the box constraint algorithm as well as ex-
tending the results beyond-norm regularization and beyond
linear function classes.

An example applying the approach when using the-norm of
the dual variables as a regularize is given in [23].

VII. N ONLINEAR FUNCTION SPACES

A. Further Background Results

In order to develop the theory for the case of nonlinear func-
tion classes we must introduce some of the details of the large
margin proof techniques. The first we need is the concept of
covering numbers—this is used to replace an infinite function
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class by a finite set of functions characterizing its performance
to a given accuracy.

Definition VII.1: Let be a (pseudo-) metric space, let
be a subset of and . A set is an -coverfor

if, for every , there exists such that . The
-covering numberof , , is the minimal cardinality

of an -cover for (if there is no such finite cover then it is
defined to be ). We will say the cover is proper if .

Note that we have used less than or equal to in the definition of
a cover. This is somewhat unconventional, but will not change
the bounds we use. It does, however, prove technically useful
in the proofs. The idea is that should be finite but approx-
imate all of with respect to the pseudometric. The pseu-
dometric we consider is the distance over a finite sample

in the space of functions

We write for . For a training set

we will also denote the covering numbers for the sequence of
inputs by . We
will consider the covers to be chosen from the set of all functions
with the same domain as and range the reals.

We now quote a lemma from [5] which follows immediately
from a result of Alonet al. [24].

Corollary VII.2 [5]: Let be a class of functions
and a distribution over . Choose and

let . Then

For a monotonic function we define

that is, the left limit of at .

Note that the minimal cardinality of an-cover is a monotoni-
cally decreasing function of, as is the fat-shattering dimension
as a function of . Hence, we can write for the
limit of the covering number as tends to from below.

Definition VII.3: We say that a class of functionsis sturdy
if for all sequences of inputs its image under
the multiple evaluation map

defined by

is a compact subset of .

Note that this definition differs slightly from that introduced
in [25]. The current definition is more general, but at the same
time simplifies the proof of the required properties.

Lemma VII.4: Let be a sturdy class of functions. Then for
each and any fixed sequence , the infimum

is attained.
Proof: The straightforward proof follows exactly the

proof of [25, Lemma 2.6].

We will make use of the following lemma, which in the form
below is due to Vapnik [26, p. 168].

Lemma VII.5: Let be a set and a system of sets on ,
and a probability measure on . For and ,
define . If , then

The following two results are essentially quoted from [5] but
they have been reformulated here in terms of the covering num-
bers involved. The difference will be apparent if Theorem VII.7
is compared with Theorem III.5 quoted in Section III.

Lemma VII.6: Suppose is a sturdy set of functions that
map from to . Then for any distribution on , and any

and any

where .
Proof: We have omitted the detailed proof since it is es-

sentially the same as the corresponding proof in [5] with the sim-
plification that Corollary VII.2 is not required and that Lemma
VII.4 ensures we can find a cover where

which can be used for all satisfying
Note also that an inequality is required , as we have
coverings using closed rather than open balls.

The next result is couched in terms of a bound on the covering
numbers in order to make explicit the fact that all applications
of these results make use of such bounds and to avoid using
the limits implicit in the argument . This does not have any
implications for the tightness of the result.

Theorem VII.7: Consider a sturdy real-valued function class
having a uniform bound on the covering numbers

for all , for all . Consider a fixed but unknown prob-
ability distribution on . Then with probability

over randomly drawn training setsof size , a func-
tion consistent with such that

, will have generalization error bounded from
above by

where .
Proof: Making use of Lemma VII.5, we will move to the

double sample and stratify by. By the union bound, it thus
suffices to show that , where
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(The largest value of we need consider is , since for larger
values the bound will in any case be trivial.) It is sufficient if

. We will. in fact. work with the set

We will show that . The result will then follow as
. To show this consider any . Therefore,

, such that , ,
and . By the bound on

, there exists such that

so that we have

implying that , as asserted. It, therefore, remains to
show that .

Consider the function class acting on
defined by

where

Hence, we have

using the fact that . Re-
placing by and setting in Lemma VII.6, we obtain

for

as required. Note that the condition of Lemma VII.5 are satisfied
by and .

B. Margin Distribution and Fat Shattering

In this subsection, we will generalize the results of Section IV
to function classes for which a bound on their fat-shattering di-
mension is known. The basic trick is to bound the covering num-
bers of the sum of two function classes in terms of the covering
numbers of the individual classes. If and are real-valued
function classes defined on a domainwe denote by
the function class

Lemma VII.8: Let and be two real valued function
classes both defined on a domain. Then we can bound the
cardinality of a minimal cover of by

Proof: Fix and let (respectively, ) be a
minimal (respectively, ) cover of (respectively, ) in

the metric. Consider the set of functions . For any
, there is an within of in the metric

and a within of in the same metric. For

(4)

(5)

Hence, forms a cover of . Since

the result follows by setting .

Before proceeding, we need a further technical lemma to
show that the property of sturdiness is preserved under the
addition operator.

Lemma VII.9: Let and be sturdy real-valued function
classes. Then is also sturdy.

Proof: Consider . By the sturdiness of ,
is a compact subset of as is . Note that

where the addition of two setsand of real vectors is defined

Since is a compact set of and is a con-
tinuous function from to , we have that
is the image of a compact set underand is, therefore, also
compact.

Recall the definition of the auxiliary function space given in
Definition IV.1 and the mapping given in Definition
IV.2. We make use of this same construction in the following
proposition. Hence, for , is defined with

.

Proposition VII.10: Let be a sturdy class of real-valued
functions having a uniform bound on the covering numbers

for all , for all . Let be a sturdy subset of with
the uniform bound on the covering numbers

for , where . Consider a fixed but un-
known probability distribution on the space . Then
with probability over randomly drawn training setsof
size for all , the generalization of a training set filtered
function satisfying is bounded by

where

provided .
Proof: Consider the fixed mapping . By Lem-

ma IV.4, we have
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1) ;

2) for .

Hence, the off training set behavior of the classifiercan be
characterized by the behavior of , while is a large
margin classifier in the space . In order to bound the
generalization error, we will apply Theorem VII.7 for ,
which gives a bound in terms of the covering numbers. These
we will bound using Lemma VII.8. The space is sturdy
by Lemma VII.9, since both and are. In this case, we obtain
the following bound on the covering numbers:

as required.

Proposition VII.10 gives a general framework for deriving
margin distribution generalization bounds for general function
classes using different bounds on the slack variables. The next
theorem considers a function class with bounded fat-shattering
dimension, and combines this with the-norm bound on the
slack variables. We will see that this combination is applicable
to the back-propagation algorithm training of neural networks
when the quadratic loss is used for the error function.

Theorem VII.11:Let be a sturdy class of real-valued func-
tions with range and fat-shattering dimension bounded
by . Fix a scaling of the output range . Con-
sider a fixed but unknown probability distribution on the space

. Then with probability over randomly drawn
training sets of size for all , the generalization of
a training set filtered function is bounded
by

where and

provided .
Proof: Consider the sequence of function classes

, where , for (see
Definition IV.1) where we assumeis chosen to makea whole
number. We will apply Proposition VII.10 with for
each class . Note that the image of under any multiple
evaluation map is a closed bounded subset of the reals and hence
is compact. It follows that is sturdy. It has range
on the space . We have , for all

and all . Hence, for any value of
obtained there is a value of satisfying .
Substituting the upper bound for this will give the
result, when we use and bound the covering numbers

of the component function classes using Corollary VII.2 and
Theorem III.6. In this case, we obtain the following bounds on
the covering numbers:

where , and

where . Hence, in this case we can bound
by

giving the result where the contributes a factor of into the
argument of the final log term.

The theorem can be applied to a wide range of function
classes for which bounds on their fat-shattering dimensions
are known. For example Gurvits [16] bounds the fat-shattering
dimension of single hidden layer neural networks. Bartlett
extends these results to multilayer sigmoidal neural networks
[6]. Bartlett argues that neural network training algorithms are
designed to enlarge the margin of the classifier and hence gives
algorithms such as back-propagation a theoretical justification.
The back-propagation algorithm performs gradient descent
over the weights of the quadratic loss of the neural network
function given by

If we consider a target margin of, this is precisely the square
of the -norm of the slack variables

Hence, Theorem VII.11 provides a direct motivation for the
back-propagation algorithm and, in particular, the quadratic loss
function with a weight decay term to control the growth of the
fat-shattering dimension. Since the bound is not proven to be
tight, the algorithm is still only optimizing a heuristic, but one
that has been proven to upper-bound the error. It also suggests
that different target margins could be considered. For example.
if we take training points with margin already greater
than will be ignored, while the loss for those with smaller
margins will be evaluated as
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The theorem can, of course, be applied for linear function
classes, using the bound on the fat-shattering dimension given
in Theorem III.6. The bound obtained is worse since separately
estimating the covering numbers for function class and slack
variables incurs extra factors when compared to Theorem V.2.

C. -Norm Bounds on the Margin Distribution

We now consider altering the measure used to assess the slack
variables. As previously mentioned, the box constraint algo-
rithm optimizes the -norm of the slacks. We will therefore con-
centrate on deriving a bound in terms of this norm, though there
is no reason why other norms could not be considered. The most
appropriate norm will depend on the type of noise that is af-
fecting the data. For example, the-norm will be more appro-
priate if the noise distribution has a longer tail.

Definition VII.12: For a training set , we define

The following lemma bounds the covering numbers of the rel-
evant subset of when bounding the-norm of the slacks.
The result is a special case of a more general development given
by Carl and Stephani [27].

Lemma VII.13: Consider the function class

any finite set of labeled examples,

and

There exists a -covering of in the metric with respect
to for any set of labeled points with that has
size bounded by

where .
Proof: First note that any points in have no effect on

the value of the function on points in. Hence, we can construct
the cover from the points of provided we allow
to take any value in the interval . We explicitly construct
the covering by choosing the functions

where satisfies

To see that does indeed form a cover, consider any

with and , and choose as

Hence, and so

At the same time, , implying that

so that, taking into account that , we have

It remains to estimate . Consider first those elements offor
which . There is a one to one correspondence
between the allocations to theand the choice of distinct
boundaries between elements in a sequence of ’s (so as to
form a subsequence for each ). The correspondence
is made with being one fewer than the number of’s in ’s
partition. Since we must choose the boundaries from
among positions, the number of allocations is

Hence, if we set we can bound the number of elements
in by

where the last inequality follows from a similar bound to that
used in the application of Sauer’s lemma. The result follows.

Putting together the result of Lemma VII.13 with Proposition
VII.10 gives the following generalization bound in terms of the
fat-shattering dimension of the function class and the-norm of
the slack variables.

Theorem VII.14:Let be a sturdy class of real-valued func-
tions with range and fat-shattering dimension bounded
by . Fix a scaling of the output range . Consider
a fixed but unknown probability distribution on the input space

. Then, with probability over randomly drawn training
sets of size for all , the generalization of a
training set filtered function is bounded by
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where

and

provided .
Proof: Consider the sequence of function classes

, where , for (see
Definition IV.1) where we assumeis chosen to makea whole
number. We will apply Proposition VII.10 with for each
class . Note that the image of under any multiple evalu-
ation map is a closed bounded subset of the reals and hence is
compact. It follows that is sturdy. It has range on
the space . We have , for all
and all . Hence, for any value of ob-
tained there is a value of satisfying .
Substituting the upper bound for this will give the re-
sult, when we use and bound the covering numbers of
the component function classes using Corollary VII.2, Theorem
III.6, and Lemma VII.13. In this case, we obtain the following
bounds on the covering numbers:

where , and

where . Hence, in this case we can bound
by

giving the result where the contributes a factor of into the
argument of the final log term.

If we use Theorem III.6 to bound the fat-shattering dimension
of the underlying linear classifier, Theorem VII.14 is directly
applicable to the box constraint algorithm for SVMs [1]. Note
that in this case the target margin isand the fat-shattering di-
mension is given by . Hence, ignoring the logarithmic
factors, the quantity to be minimized to improve the generaliza-
tion is

precisely the quantity optimized by the box constraint algo-
rithm.

VIII. R EGRESSION

In order to apply the results of the last section to the regres-
sion case we formulate the error estimation as a classification
problem. Consider a real-valued function classwith domain

. For we define the function on the domain
and hence the class

Note that we could use any loss function and apply the subse-
quent analysis to the loss function class.1 The size of the slack
variables would change as would the corresponding covering
numbers at different scales resulting in different optimization
criteria and bounds.

We now fix a target accuracy . For a training point
we define

This quantity is the amount by whichexceeds the error margin
on the point or if is within of the target

value. Hence, this is the-insensitive loss measure considered
by Druckeret al. [28] with . Let be the
function

As in the classification case, when evaluating a function on a
test point, a disagreement between the underlying function and
the augmented function if is possisble. We
again use the phrasetraining set filteredto refer to the procedure
that first checks if the test point is one of these training points
and if so makes an appropriate adjustment to the underlying
function.

Proposition VIII.1: Fix , . Let be a sturdy
class of real-valued functions having a uniform bound on the
covering numbers

for all . Let be a sturdy subset of with the
uniform bound on the covering numbers

for , where . Consider a fixed but
unknown probability distribution on the space . Then with
probability over randomly drawn training setsof size
for all the probability that a training set filtered function

has error greater thanon on a randomly chosen input
is bounded by

where

provided and .
Proof: The result follows from an application of Proposi-

tion VII.10 to the function class , noting that we treat all

1We are grateful to an anonymous referee for pointing out this natural gener-
alization.
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training examples as negative, and hence correct classification
corresponds to having error less than. Finally, we can bound
the covering numbers

The result follows.

For a training set , we define

The above result can be used to obtain a bound in terms of the
observed value of and the fat-shattering dimension
of the function class.

Theorem VIII.2: Let be a sturdy class of real-valued func-
tions with range and fat-shattering dimension bounded
by . Fix , , and a scaling of the output range

. Consider a fixed but unknown probability distribution
on the space . Then with probability over randomly
drawn training sets of size for all with the
probability that a training set filtered function has error
larger than on a randomly chosen input is bounded by

where and

provided .
Proof: This follows from a direct application of The-

orem VII.11.

A special case of this theorem is when the function classes are
linear. We present this case as a special theorem. Again, by using
the techniques of Section V, we could improve the constants,
but because the norm is no longer, the results are not directly
applicable. We, therefore, present a weaker version.

Theorem VIII.3: Let be a the set of linear functions with
norm at most restricted to inputs in a ball of radius about
the origin. Fix , , and a scaling of the output range

. Consider a fixed but unknown probability distribution
on the space . Then with probability over
randomly drawn training sets of size for all , with

, the probability that a training set filtered function
has error larger than on a randomly chosen input is bounded
by

where and

provided .
Proof: The range of linear functions with weight vectors

bounded by when restricted to the ball of radius is
. Their fat-shattering dimension is bounded by

Theorem III.6. The result follows.

This theorem is directly applicable to SVR[28], [1]. Again
is the sum of the slack variables using the

-insensitive loss function. The SVR algorithm minimizes the
quantity , hence optimizing the bound of Theorem
VIII.3.

Note that we obtain a generalization bound for standard least
squares regression by taking in Theorem VIII.2. In this
case, is the least squares error on the training set,
while the bound gives the probability of a randomly chosen
input having error greater than. This is summarized in the fol-
lowing corollary.

Corollary VIII.4: Let be a sturdy class of real-valued func-
tions with range and fat-shattering dimension bounded
by . Fix , , and a scaling of the output range

. Consider a fixed but unknown probability distribution
on the space . Then with probability over
randomly drawn training setsof size , the probability that a
training set filtered function has error larger thanon a
randomly chosen input is bounded by

where and

provided .

For the case of linear functions this is a special case of The-
orem VIII.3, namely, that obtained by taking-insensitive loss.
In this case, the algorithm to optimize the bound reduces to
Ridge Regression or kernel ridge regression [19], [1] for a kernel
defined feature space.

As mentioned in the section dealing with classification, we
could bound the generalization in terms of other norms of the
vector of slack variables

The aim of this paper, however, is not to list all possible results,
it is rather to illustrate how such results can be obtained.
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Another application of these results is to choose the best
for the -insensitive loss function for SVR [1]. This problem
has usually been solved by using a validation set, but Corollary
VIII.3 could be used by choosing the value ofwhich gives the
best bound on the generalization. We assume here that a target
accuracy has been set and we wish to minimize the probability
that the error exceeds this value. The optimum will be the
which minimizes

where is the solution obtained when using the-insensitive
loss function.

IX. CONCLUSION

The key contribution of this paper is a technique that enables
us to transform hard margin bounds into soft margin ones, by
trading in slacks of individual training points for increases in
function complexity. The advantage of this exchange is that we
are able to analyze function complexity more easily than taking
into account individual margin errors.

The analysis for SVMs has placed the heuristic approach of
Cortes and Vapnik [12] on a firm theoretical foundation. It has
therefore demonstrated that by a more direct optimization of the
desired property (generalization) of the linear classifier, the im-
passe of the NP-hardness of minimizing the training error has
been avoided and an efficient agnostic learning algorithm de-
veloped for linear classifiers. Though the algorithm is not new,
the analysis has already given further insights for SVMs that
have been used to tune their application to microarray data [29].

The analysis has also placed the optimization of the quadratic
loss used in the back-propagation algorithm on a firm footing,
though, in this case, no polynomial time algorithm is known.
The paper has, however, described variations of the back-prop-
agation algorithm suggested by the analysis and we expect that
further applications of the approach will emerge as more large
margin algorithms are developed.

The paper has contained only a few applications of the tech-
niques in order to demonstrate their generality. As mentioned
before, the approach has already been applied to develop a soft
margin boosting algorithm [3]. Standard boosting has been
shown to perform gradient descent in function space optimizing
the negative exponential of the margins of the training points
[30]. The exponential function applies something close to a
hard margin penalty to individual margin errors and hence can
suffer from overfitting if the training data is noisy and difficult
to separate with the available weak learners. Some heuristic
algorithms have been derived for soft margin boosting [31], but
Bennettet al. [23] show how optimizing a soft margin bound
derived using the techniques of this paper reduces to solving
a linear program via column generation techniques. The dual
variables of the linear program perform the role of the boosting
weighting of the training examples. Hence, not only does the
algorithm optimize a well-founded criterion, but instead of
being an approximate gradient descent method, it optimizes the
criterion exactly in polynomial time.

In the case of neural networks, the question naturally arises
as to whether there might exist a polynomial-time algorithm for

optimizing the soft margin bound. This seems very unlikely but
hardness results have always considered minimizing classifica-
tion error as in the case of linear classifiers, so the possibility is
not as yet excluded.

From a theoretical point of view, the bounds are only as tight
as the results on which they depend. There has been a significant
tightening of the covering number bounds for linear classifiers
taking into account the structure of the training data itself [32],
[33], [25] and all of these results could be combined with the
techniques described here to give equivalent soft margin bounds.
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