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ABSTRACT 
A number of medically important disease-causing bacteria 
(collectively called Gram-negative bacteria) are noted for the extra 
"outer" membrane that surrounds their cell. Proteins resident in 
this membrane (outer membrane proteins, or OMPs) are of 
primary research interest for antibiotic and vaccine drug design as 
they are on the surface of the bacteria and so are the most 
accessible targets to develop new drugs against. With the 
development of genome sequencing technology and 
bioinformatics, biologists can now deduce all the proteins that are 
likely produced in a given bacteria and have attempted to classify 
where proteins are located in a bacterial cell. However such 
protein localization programs are currently least accurate when 
predicting OMPs, and so there is a current need for the 
development of a better OMP classifier. Data mining research 
suggests that the use of frequent patterns has good performance in 
aiding the development of accurate and efficient classification 
algorithms. In this paper, we present two methods to identify 
OMPs based on frequent subsequences and test them on all Gram-
negative bacterial proteins whose localizations have been 
determined by biological experiments. One classifier follows an 
association rule approach, while the other is based on support 
vector machines (SVMs). We compare the proposed methods with 
the state-of-the-art methods in the biological domain. The results 
demonstrate that our methods are better both in terms of 
accurately identifying OMPs and providing biological insights 
that increase our understanding of the structures and functions of 
these important proteins. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications - Data 
Mining 
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1. INTRODUCTION 
Understanding the biology of disease-causing, or pathogenic, 
organisms can have a great impact on improving the quality of 
human life. With the progress of high throughput genome 
sequencing projects, biologists have accumulated huge amounts 
of raw biological sequences that are publicly available. In order to 
gain a better understanding of the structure and function of such 
sequences, one critical task facing the biology community is to 
correctly classify these sequences into corresponding functional 
families. One of the most important protein classification 
problems is to predict the subcellular localization of proteins [5]. 
For proper functioning, a protein has to be transported to the 
correct intra- or extra-cellular compartments in a soluble form, or 
attached to a membrane that surrounds the cell, hence the 
subcellular localization of a protein plays a key role with regard to 
its functions. 

 

Figure 1. The Gram-negative bacterial cell. 5 primary 
localization sites are noted. 

Studies of a family of bacteria, collectively known as Gram-
negative bacteria, have shown that such bacteria have a distinct 
cell structure that presents an interesting challenge for localization 
prediction. While many bacteria have only 3 primary localization 
sites, in a Gram-negative bacterial cell a protein may be resident at 
one of 5 primary localization sites, as illustrated in Figure 1. 
Proteins are synthesized in the cytoplasm and may remain there, 
or be transported to the inner membrane, the periplasm, the outer 
membrane, or the extracellular environment. Most other bacteria, 
as well as all animal and plant cells, do not have the additional 
outer membrane structure, and so methods for identification of 
proteins on the surface of other such cells are not directly 
applicable.  

Biological experiments indicate that the information required to 
direct a protein to any localization site is primarily encoded in the 
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protein's amino acid sequence. For example, the presence of a 
string of amino acid residues in a protein that forms a structure 
known as a transmembrane α-helix is indicative of a protein 
resident at the inner membrane. Such α-helix structures have a 
very characteristic sequence and current algorithms for their 
detection in a given protein sequence are very accurate. However, 
the integral outer membrane proteins, characteristic of Gram-
negative bacteria, do not consist of transmembrane α-helices, but 
rather form antiparallel β-strands that form a barrel shape. Such 
proteins are therefore also referred to as β-barrel outer membrane 
proteins (Figure 2) [20]. In this paper, we study the problem of 
identifying these outer membrane proteins (OMPs) from sequence 
information alone, and its application to localization 
classification. 

The prediction of OMPs is of great interest to biologists for 
several reasons. Many Gram-negative bacteria are medically 
important pathogens that cause a number of different diseases, 
including food poisoning, typhoid fever, E. coli, and other food- 
and water-borne diseases, stomach ulcers, meningitis, gonorrhea, 
cholera and plague. Some of these Gram-negative bacterial family 
members also cause diseases that affect other animals and plants 
of agricultural interest and others are of environmental interest for 
their bioremediation properties. Because OMPs are exposed on 
the surface of these bacterial cells, they represent primary drug 
and vaccine targets since it is usually easier to develop drugs 
against the surface of a disease-causing bacterial cell. In addition, 
such surface-exposed proteins are potentially useful as part of 
diagnostics to detect the bacteria. Such bacterial detection systems 
are useful for diagnosing disease and for detection of bacteria in 
the environment.  

The ability to identify such potential targets from sequence 
information alone would allow researchers to quickly prioritize a 
list of proteins for further study. Additionally, OMPs represent a 
class of proteins that exhibit high similarity at the 3-dimensional 
level but little at the level of the amino acid sequence itself, and it 
remains difficult to characterize the factors that cause a protein to 
take its 3-dimentional shape. Being able to predict OMPs from 
sequence information alone will not only assist in genome 
annotation, functional classification, and drug discovery; 
determination of the relevant sequence patterns may also provide 
insights into the biology of this important class of proteins. 

Two notable characteristics present in this practical application 
make the problem interesting and challenging. First, because of 
the medical significance of OMPs, and the lengthy time it takes to 
further study a prioritized drug, vaccine or diagnostic target in the 
laboratory, biologists want to be fairly sure about the certainty of 
a sequence being an OMP when it is classified as so by our 
classifier. That is, our goal is to maximize the precision of our 
outer membrane predictions while maintaining the corresponding 
recall at a reasonable level. This is very different from many data 
mining applications, where the overall classification accuracy for 
all classes is used as a performance measure. It is also different 
from typical rare-class classification problems, where an 
important consideration is to cover as many rare-class samples 
(e.g., responders in direct marketing or intruders in network 
intrusion detection) as possible, at the expense of covering some 
other-class samples, i.e., favoring recall over precision. Secondly, 
biologists are very interested in identifying the most significant 
subsequences that discriminate OMPs from non-OMPs. This 
requires techniques that could produce such patterns in order for 
biologists to make further analyses. 

In this paper, we apply data mining techniques to solve the OMP 
prediction problem. Our approach is based on two biological 
observations. First, common subsequences among related proteins 
may perform similar functions via related biochemical 
mechanisms. Second, OMPs have the general structure of 
alternating "turns", “strands”  and "loops" within the β-barrel 
shape, as illustrated in Figure 2. Characteristic sequence residues 
occur in these different regions of the protein, such as the 
aromatic residues are located near turns, followed by particular 
residues that prefer to form the “strand”  structures.  Thus a 
reasonable approach is to extract similar patterns that occur in 
many OMPs and search for the combinations that distinguish 
OMPs from non-OMPs. We exploit the notion of frequent 
subsequences studied in association rule mining to capture such 
similarities. A frequent subsequence is a consecutive subsequence 
of amino acids that occurs in many OMPs. However, frequent 
subsequences alone do not work because they may also occur in 
non-OMPs and may not generalize well to proteins not contained 
in the training set. We present two methods of using frequent 
subsequences for identifying OMPs. One uses frequent 
subsequences to construct classification rules for OMPs, and the 
other uses frequent subsequences as features for a support vector 
machine (SVM) [21] that will search for the hyperplane to 
separate the two classes. Our experiments on a biologically 
verified dataset show that these methods dramatically outperform 
the state-of-the-art methods developed by biologists for OMP 
prediction. 

Figure 2. A ββββ-barrel outer membrane protein. The central 
barrel shape, formed by antiparallel β-strands, rests in the outer 
membrane. The aromatic amino acids shown form a “ girdle”  to 
anchor the protein in the membrane. The β-strands are 
connected by short stretches of amino acid sequences (turns) at 
the inner, or periplasmic side, and longer stretches (loops) at the 
outer, or extracellular side. 



 

The rest of this paper is organized as follows. Section 2 briefly 
discusses the related work. Section 3 introduces the dataset used 
in our experiments, as well as the evaluation measures that we 
applied in our research. Section 4 describes the details of the rule-
based method and Section 5 describes the SVM-based method. 
Section 6 discusses the experimental results and the biological 
significance of our methods. Section 7 concludes the paper and 
suggests directions for future research. 

2. RELATED WORK 
2.1 Work on Related Problems 
Several publicly-available localization predictors exist in the 
biological domain, all based on different sequence features and 
capable of predicting different localizations. As it has been shown 
that intracellular and extracellular proteins differ significantly in 
their amino acid composition [15], methods based on protein 
amino acid composition have been developed to predict proteins 
of cytoplasmic, periplasmic, and extracellular localizations, such 
as neural networks [17], Markov chain models [27] and SVMs [6]. 
In particular, SVMs have achieved a classification accuracy of 
91.4% for prokaryotic organisms. 

However, these methods are limited to predicting three out of five 
classic subcellular localizations present in a Gram-negative 
bacterial cell and do not predict OMPs. In fact, even for the 
predictive methods that are capable of identifying OMPs, 
precision remains poor [4, 8, 14, 19, 25, 28]. Furthermore, the 
datasets used to train and evaluate these existing methods are 
often small and not manually curated. They are typically 
assembled based on third-party annotations in the SWISSPROT 
database [2], annotations which are not verified in some cases and 
may present incorrect information. 

To date, little research has been done on the prediction of OMPs. 
Scientists have previously used neural network-based methods [4, 
8], hydrophobicity analysis [19], and combinations of methods, 
including homology analysis and amino acid abundance [25, 28], 
to varying degrees of success. The most recent approach, reported 
by Martelli et al. [14] is, to date, the most successful attempt at 
OMP classification. They used a hidden Markov model (HMM) to 
represent the prototypes of OMPs, as it is known that each amino 
acid residue of a β-barrel membrane protein can be categorized 
into one of three types: outer/extracellular loops, transmembrane 
β-strands and inner/periplasmic turns. The HMM was trained on 
all non-redundant β-barrel OMPs whose 3-dimentional structure 
has been determined experimentally, however there were only 12 
of such proteins, which is not a large dataset. Once the HMM was 
trained, classification was performed by computing the probability 
of the protein sequence being emitted by the model. They reported 
a fairly good recall of 84% for OMP prediction (called accuracy 
in their paper) on their test dataset. 

Unfortunately, none of the above methods for OMP prediction are 
publicly available on the Internet. Additionally, most methods 
were trained on small datasets with localization information 
typically derived from third-party annotations – information that 
can be inaccurate. The methods, in many cases, were not tested on 
a dataset of known OMPs - rather they were used to screen 
genomes or a list of putative OMPs, and the number of OMPs 
found was reported. Thus, there is no way to critically evaluate 
any methods other than Martelli et al's HMM. Furthermore, all 

previous protein localization research evaluated the classification 
performance based on overall accuracy and weighted all locations 
equally. In our research, performance evaluation is focused on the 
precision of OMP prediction. In terms of this measure, the method 
used by Martelli et. al obtained a very low precision of 46% on 
their dataset, as calculated by us based on other reported measures 
in their publication. 

2.2 Work Related to Our Methods 
In data mining research, many schemes that use frequently 
occurring itemsets in classification have been studied [1, 13, 24]. 
However, these techniques are concentrated on transactional 
datasets. Lesh et al [11] presents a technique for mining frequent 
subsequences which satisfy some user-specified constraints. These 
constraints are intended to select a subset of frequent 
subsequences as features for classification. Their work focuses on 
efficient feature mining but not on building a classifier. 

A growing interest in the use of SVMs in bioinformatics has 
emerged recently and resulted in research exploring string-based 
(sequence-similarity) kernels for SVM classification. Deshpande 
and Karypis [3] evaluate several widely used biological sequence 
classification algorithms: K-nearest neighbor, Markov model and 
SVMs, where biological sequences are modeled as vectors in the 
feature space of subsequences up to a given length. The feature 
space chosen by Vert [22] consists of all potential subsequences. 
Each feature is weighted by its inversed probability density 
evaluated under different probability models. The intuition behind 
this is that the rarer the subsequence is, the more its occurrence in 
two sequences increases the similarity between them. Leslie et al 
[12] considers all possible subsequences of a fixed length k as 
features, which are weighted by the number of occurrences in a 
sequence. Our feature space consists of only frequent 
subsequences that occur in at least some minimum fraction of 
OMPs. This dramatically reduces the number of features 
compared with the feature space comprising all potential 
subsequences. Later experiments also show SVMs trained in such 
a feature space can perform better. 

3. DATASET AND EVALUATION 
METHODOLOGY 
3.1 Dataset 
To critically evaluate the effectiveness of OMP prediction 
methods, we created a dataset that represents the largest available 
set of Gram-negative bacterial proteins with experimentally 
determined subcellular localizations (available at 
http://www.psort.org/dataset). This dataset was created by 
extracting all Gram-negative proteins with an annotated 
subcellular localization site from the SWISSPROT database 
(http://us.expasy.org/sprot/). The annotated localization sites were 
then confirmed through a manual search of the literature, and 
those proteins with an experimentally verified localization site 
were added to the dataset. Being the largest dataset of its kind, 
and with the subcellular localization of each protein confirmed by 
biological experiments, this dataset is of excellent quality and 
provides a reliable means to evaluate different methods. 

The dataset contains protein sequences of variable lengths. The 
longest sequence consists of 3705 amino acid residues and the 
shortest sequence has a length of only 50. Two classes are present 
in this dataset: OMPs and non-OMPs. They are referred to as the 



 

“OM” class and “NOM” class, respectively. The distribution of 
these two classes is imbalanced, with 27% being “OM” and 73% 
being “NOM”. The details are shown in Table 1. 

Table 1. Gram-negative Bacterial Membrane Protein Dataset 

Data 
# of 

Sequences 

% of 
each 
class 

Min. 
Length 

Max. 
Length 

Ave. 
Length 

OM 427 27.4% 91 3705 571.1 

NOM 1132 72.6% 50 1034 256.8 

Total 1559    342.9 

 

3.2 Classifier Evaluation Methodology 
The performance of a classifier is usually measured by 
classification accuracy, precision and recall. They are defined 
based on a confusion matrix as shown in Table 2. Because we are 
primarily interested in identifying OMPs, we refer to the OMPs as 
“positive”  samples and all non-OMPs as “negative”  samples here. 

Table 2. Confusion Matrix in Classification 

 Actual OMP Actual non-OMP 

Classified as 
OMP 

TP 
(true positive) 

FP 
(false positive) 

Classified as 
non-OMP 

FN 
(false negative) 

TN 
(true negative) 

 

Overall Accuracy: Acc = (TP+TN) / (TP+FP+FN+TN) (1) 

Precision of OM class: P = TP / (TP+FP) (2) 

Recall of OM class: R = TP / (TP+FN) (3) 

In our research, the performance of our predictive methods is not 
measured by the overall accuracy, because the majority of proteins 
belong to the NOM class and the overall accuracy would be 
influenced mainly by NOM protein prediction. Instead, since the 
identification of OMPs is our primary concern, our goal is high 
precision in OMP identification. Because of the inherent tradeoff 
between precision and recall in classification, our goal is to 
maximize the precision for OM class predictions while 
maintaining the recall of the same class at a reasonable level (at 
least 50%). Because the classification performance of the NOM 
class is not our main concern, all classification results are 
evaluated based on precision and recall of the OM class. Note that 
we do not use some single comprehensive measure such as F-
measure (defined as 2RP /(R+P) ) for our evaluation, as we prefer 
high precision and it is impossible to explicitly quantify the 
tradeoff between precision and recall in this particular context. 

4. ASSOCIATION RULE BASED 
CLASSIFICATION 
4.1 Rule-Based Classification 
In the context of protein sequence mining, frequent sequential 
patterns can be considered as an analogue to frequent itemsets in 
traditional transactional data. A pattern is frequent if it matches at 
least a fraction of sequences (specified by minimum support, or 
MinSup) in the OM class. If a pattern P appears frequently in 
OMPs, it is called an association rule, which in turn will serve as 

a classification rule P=>OM. This rule implies that any protein 
sequence matching P belongs to the OM class. The confidence of 
this rule is the conditional probability that a sequence belongs to 
the OM class given that it contains pattern P. Our classifier is thus 
built upon these association rules. 

Note that since we are interested in identifying OMPs, only rules 
that are mined from the OM-class sequences are used. Thus we 
divided the original training dataset into two subsets, with each 
subset containing only sequences of one class. Rules are then 
mined only from the OM-class subset. 

A frequent pattern has the form *X*X*…, in which each ‘X’  is a 
frequent subsequence made of consecutive amino acids, and each 
‘ *’  is a VLDC (variable-length-don’ t-care) which may substitute 
for one or more letters when matching the pattern against a 
protein sequence. The reason we choose this form of pattern is 
that subsequences capture the local similarity that may relate to 
important structures or functions of OMPs, and VLDCs compress 
the remaining irrelevant portions. To remove trivial local 
similarities, we restrict frequent subsequences to those of some 
minimum length. Indeed, with the alphabet of only 20 amino 
acids, it is likely that very short subsequences will occur in 
sequences of both classes and such subsequences are non-
discriminative with regard to classification. 

Our algorithm comprises three stages: 
1. Find frequent subsequences above some minimum 

length (specified by MinSup and MinLgh; both are 
determined empirically). 

2. Find frequent patterns, using frequent subsequences and 
VLDCs, that match at least Minsup fraction of OM class 
sequences. 

3. Build the classifier using frequent patterns. 

4.1.1 Stage 1 
To find frequent subsequences, we made use of an efficient 
implementation of generalized suffix tree (GST) [23] with some 
simple modifications. Suffix trees have been extensively used in 
string matching and are shown to be an effective data structure for 
finding common subsequences that runs in linear time [7, 10]. 
Since each protein sequence is essentially a string of letters, 
generalized suffix trees can be easily applied to mine frequent 
subsequences among protein sequences. Interested readers are 
referred to the above-mentioned documents for details. 

4.1.2 Stage 2 
Starting from frequent subsequences, we build frequent patterns 
by looking at the support of each candidate pattern constructed by 
concatenating two or more frequent subsequences with VLDCs. 
To deal with the explosive number of candidates based on the 
number of subsequences, several optimization heuristics and 
techniques have been used in order to speed up this process. 

Our goal is to predict OM sequences with high precision, i.e., 
whenever we classify a sequence as OM, more than 90% 
confidence in the prediction is required. Therefore the patterns we 
need to extract to use as classification rules should be highly 
confident. Thus we set the minimum confidence (MinConf) to a 
fairly high level (greater than 85%). Intuitively, this means that 
frequent patterns found in OM sequences should appear very 
infrequently in NOM sequences. Hence we have another 



 

constraint called MaxSup, which is the maximum allowed support 
level of a candidate pattern in the NOM training sequences. 
Whenever a candidate pattern does not satisfy these constraints, it 
is pruned immediately, i.e., it will not be used to build further 
patterns with more subsequences. Further experiments have 
shown that this has drastically reduced the running time while 
producing satisfactory results. 

As we will show in the next stage, our final set of classification 
rules is built following the MCF principle (most-confident-first) 
[24], i.e., rules are ranked first according to their confidence, then 
according to their support level, then their general-specific 
relationship if applicable, and finally according to the 
lexicographical order. Hence, if two rules r and r’  have the same 
confidence and rule r is more specific than r’ , then rule r is 
redundant, since r cannot have higher support than r’  and will be 
always ranked after r’ , any protein sequence that matches rule r 
must also match r’  and will always be classified using rule r’ . 
Based on this observation, if a frequent subsequence itself has 
confidence of 100% - i.e., it appears only in OM sequences - any 
pattern that is built upon this subsequence will also have 
confidence 100% and thus is redundant with regard to 
classification. Therefore no further patterns will be constructed on 
top of such subsequences; instead, these subsequences will be 
used immediately as classification rules in the next stage. 

4.1.3 Stage 3 
In this stage, we must decide which ruleset to select from among 
all rules mined in previous steps. Using the procedures presented 
in [24], rules are first ranked following the MCF principle and a 
tree structure is built with each node in the tree representing one 
rule. The error-based pruning based on pessimistic error 
estimation [16] is used in order to prune overfitting rules. The 
general principle of pruning is that if the classifier without a 
certain rule has the same or lower estimated error rate than the 
classifier with this rule, the rule is pruned. 

The remaining rules are used as classification rules. Any unseen 
case will be matched against these OM rules. A default rule 
(φ=>NOM) is added to the last to cover all cases that cannot be 
covered by any previous OM rules. Only when all OM rules have 
failed would a protein sequence be predicted as NOM by the 
default rule. 

4.2 Refined Rule-Based Classification 
Our experiments showed that the classifier built with the method 
described in Section 4.1 has very good performance in terms of 
OM class precision (well over 90%), however, the corresponding 
recall is low (around 40%). This is due to the high confidence of 
our classification rules, which have captured some features that 
are very specific to OM sequences; on the other hand, they cover 
only a portion of OM protein sequences and reject many other 
members of this class. As a further effort to identify more OM 
sequences and increase recall, we built a second level of classifier 
on top of the existing classifier. 

At the second level, all training sequences that are covered by the 
default rule in the first classifier are used as a new training 
dataset. We apply the same pattern-mining process to this new 
dataset, and build a second-level classifier with newly mined 
rules. Now, for any unseen protein sequence, we first apply the 

first-level classifier and search for the presence of an OM rule. If a 
rule is found within the sequence, then the sequence is classified 
as OM; if no rule is found,  the second-level classifier is used and 
only when both classifiers do not yield matching OM rules will a 
sequence be classified as NOM. Since the second-level classifier 
is essentially a refinement aiming to improve the classification 
performance of the first-level classifier, we will refer to it as 
Refined Rule-Based classification, or RRB. In contrast, the rule-
based classification implementing only the first level is termed 
Single-level Rule-Based classification, or SRB. 

In our experiments, this approach was shown to have effectively 
improved the recall level to 60%, while maintaining the precision 
at 90%. Theoretically, such a refinement may be repeatedly done 
in more than two levels. However, when classification is done 
across multiple levels, the remaining training data that can be used 
at the next level is reduced quickly. When there is no sufficient 
training data left, no further improvement can be done. 

5. SUPPORT VECTOR MACHINE BASED 
CLASSIFICATION 
With the increased interest in techniques of classifying biological 
sequences, Deshpande and Karypis [3] evaluated several widely-
used sequence classification algorithms and showed that 
classifiers based on Support Vector Machines (SVMs) [21] are 
able to achieve higher accuracy than others such as Markov model 
based classifiers and K-nearest neighbour based classifiers. Thus 
we explored the use of SVMs for our outer membrane 
classification problem. In addition, traditional classifiers like C4.5 
[16] work successfully in feature spaces with moderate 
dimensions. However, they are not as robust as SVMs in a high 
dimensional feature space. We will compare See5 [18] (an 
improved version of C4.5) with SVMs through experiments in 
Section 6. 

SVMs assume all data to be represented as vectors in some feature 
space. Given a labelled set of training data from two classes (the 
positive and the negative class), SVMs find a hyperplane that 
correctly separates the training data of the two different classes 
while maximizing the distance of either class from the hyperplane 
(maximizing the margin). SVMs can also deal with linearly non-
separable data sets by either using a kernel function K to map the 
original data vectors into a much higher dimensional space where 
the data points are linearly separable, or by using soft margin 
separation hyperplanesthat allows some degree of training error in 
order to obtain a large margin. A parameter C is introduced to 
control the trade-off between training error and size of the margin. 

The direction of the maximal margin hyperplane is determined 

through a set of support vectors SV. A new sample x
�

 is classified 
depending on the sign of the following decision function: 
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Figure 3. A linear SVM for a two-dimensional training set. 

Figure 3 illustrates the basic concepts of SVMs, in particular the 
maximum margin separating hyperplane and the support vectors. 

M is the margin between the two classes. w
�

 is the norm vector of 
the separating hyperplane. 

5.1 Feature Extraction 
To apply the SVM-based method, the fist step is to transform the 
protein sequences, which are strings of letters, into a vector 
representation suitable for SVMs. 

The error bounds of SVMs, E ( w
�

), are defined in [26] as 

E ( w
�

) ≈  
2
2

2
2 ||||max|||| i

i
xw

��

  

where w
�

 is the norm vector of the separating hyperplane and ix
�

 

denotes the ith training data vector. This indicates that the error 
bounds are restrained by both the margin between the two classes 

(given by the inverse of the L2-norm of w
�

) and the maximal L2-
norm of the data vectors. Obviously, if more features are used to 
describe protein sequences, the average distance between 
sequence pairs in the feature space becomes larger. As a result, 
this increases the chance of a larger margin. On the other hand, in 
general the maximal L2-norm of the data also increases with an 
increasing number of features. Therefore the feature space should 
be carefully chosen to allow an appropriate trade-off between 
achieving a large margin and keeping the maximal L2-norm of the 
data small. 

We chose to use subsequences that occur frequently in OM 
sequences as our feature space. These frequent subsequences 
represent statistically significant features with regard to OM 
sequences, while resulting in substantially lower dimensions 
compared with the feature space of all potential subsequences. 
Unlike the rule-based method in Section 4, the SVM-based 
method uses only the minimum support MinSup to extract 
frequent subsequences. In other words, we do not restrict the 
minimum length of subsequences and the maximum support in the 
NOM class. The idea is to let the SVMs select important features. 

5.2 Sequence Transformation 
The protein sequences are then mapped into the resulting feature 
space. Each sequence is represented as an n-dimensional vector, 
where n is the number of frequent subsequences. A binary 
representation is used, i.e. if a frequent subsequence occurs in the 

protein sequence, the value of the corresponding feature is 1, 
otherwise it’s 0. 

5.3 Building SVM Classifiers 
SVMs are trained in the transformed feature space with different 
kernel functions and different values for the trade-off parameter C 
to construct classifiers. Classical kernel functions include: 

• Linear Kernel Function: 

xxxxK ii

����

•=),(  

• Polynomial Kernel Function: 

d
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• Radial Basic Function (RBF): 

)||||exp(),( 2xxxxK ii
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−−= γ  

We will explore the choice of different kernel functions and 
values of parameter C in Section 6. 

6. EXPERIMENTAL EVALUATION 
We evaluated the proposed data mining methods on the dataset 
introduced in section 3. We performed 5-fold cross validation, 
wherein each run takes one of the 5 folds as the test set and the 
remaining 4 folds as the training set. We report the average 
precision and recall over the 5 runs. In addition, to ensure 
absolute fairness, all compared methods are evaluated using 
exactly the same folding. In other words, the 5 folds are generated 
only once and are used by all methods. 

6.1 SRB and RRB Classification 
Since biological interest is focused on OM-class rules, we mine 
frequent subsequences from the subset of data that contains only 
OM-class proteins and use relatively high minimum confidence 
(95%, 90% and 85%). Maximum support in the NOM class is set 
at the same level of MinSup in OM class. Tables 3 and 4 show the 
precision and recall achieved by SRB at different parameter 
settings. Keep in mind that our goal was to maximize precision 
while obtaining reasonably high recall. To this end, the best result 
achieved by SRB is precision 97% and recall 42% (with 
parameters MinSup=0.8%, MinConf=95%, MinLgh=7), as 
boldfaced in Table 4. To get an idea of the size of the final 
classifier, the number of classification rules is also shown in the 
tables. 

The RRB classifier is built on top of the SRB classifier that gave 
us the best results. Similar to the first level classifier, frequent 
patterns are mined from the leftover OM training data. These 
patterns are then used to build the next-level classifier. Here the 
Minsup level cannot be too low because our remaining training 
data is significantly reduced relative to the first level data. Also 
we decrease the MinConf level to 75%, since we are looking for 
rules that improve our recall level. In addition, the maximum 
support in the NOM class is set to be higher (10%) for the same 
reason. 

Table 5 shows the classification results of the RRB classification. 
As expected, with the RRB classifier precision is reduced whereas 
recall is increased to the 60% level. However, precision can still 
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be maintained at the 90% level. This shows that the idea of 
refinement works quite well, as expected. 

6.2 SVM Classification 
The SVM light implementation [9] was chosen because it is quite 
well-known and has been used extensively in previous research. 
Since an SVM can be trained with many different choices of input 
parameters, we have carried out separate experiments to 
investigate the impact of the MinSup parameter and the SVM 
parameters. 

6.2.1 Different MinSup 
To investigate the pure impact of MinSup, we first trained SVMs 
based on feature spaces that consist of all frequent subsequences 
mined at different MinSup values (from 0.8% to 15%), using the 
linear kernel function and setting the parameter C (the trade-off 
between training error and margin) to 1. 

Table 6 reports the performance of the SVM classifier. The 
numbers of frequent subsequences, i.e. the numbers of features 
used by the SVMs, are also shown. We observe that the 
performance is quite stable across the whole table. Comparing the 
performance of SVMs trained at MinSup of 15% and 0.8%, we 
see that the number of features increases by a factor of more than 
100, while the recall and precision values change only by 2% and 
11%, respectively. The recall achieved is at least 79% and the 
lowest precision is 86%. These observations demonstrate that the 
influence of the feature space’s dimensionality on the 
performance of SVMs is rather small. 

On the other hand, the performance of the SVM-based classifier 
does vary at different MinSup values. With the decrease of 
MinSup, the number of frequent subsequences - i.e. the number of 
features - is increased dramatically, as is the margin between the 
 

 

 

Table 3. Single-level Rule-Based Classification (I) 

MinSup in OM class = MaxSup in Non-OM class 

MinSup (%) 1 2 3 4 5 Min. 
Length 

MinConf (%) 85 90 95 85 90 95 85 90 95 85 90 95 85 90 95 

Precision (%) 56 58 59 56 58 61 57 62 73 61 74 85 72 92 99 

Recall (%) 80 78 77 79 77 74 81 74 55 72 59 41 50 36 30 4 

# of rules 144 138 131 142 135 122 112 93 53 64 42 19 20 13 10 

Precision (%) 78 78 78 79 82 84 91 91 92 100 100 100 100 100 100 

Recall (%) 69 68 68 55 51 50 22 21 20 14 14 14 13 13 13 5 

# of rules 160 158 157 90 79 74 19 19 15 7 7 6 5 5 5 

 

Table 4. Single-level Rule-Based Classification (II) 

MinSup in OM class = MaxSup in Non-OM class Min. 
Length MinSup (%) 0.8 1 2 3 

Precision (%) 94 96 96 100 

Recall (%) 50 42 22 12 

6 

# of rules 141 86 21 4 

Precision (%) 97 97 97 100 

Recall (%) 42 33 19 12 

7 

# of rules 77 39 12 4 

 

Table 5. Refined Rule-Based Classification 

RRB 

MinSup at 2nd-level (%) (MinConf: 75%, MaxSup: 10%) 

 

SRB 

1.5 2 3 4 5 

Precision (%) 97 90 91 94 97 97 

Recall (%) 42 60 58 51 44 42 

# of rules in classifier 77 159 139 98 80 77 

 



 

Table 6. SVM Classification at different MinSup (linear kernel, C=1) 

MinSup (%) 0.8 1 2 3 4 5 6 7 8 9 11 13 15 

Precision (%) 97 98 95 94 92 92 91 92 91 90 88 88 86 

Recall (%) 79 81 82 82 83 82 83 82 83 82 82 81 81 

# frequent 
subsequences 

115028 53879 14058 6611 5042 4252 3561 3111 2733 2403 1858 1458 1124 

 

Table 7. SVM Classification using different kernels and parameter C (MinSup=5%) 

 

two classes. Thus, the precision is slowly increased while the 
recall remains stable. But note that the best performance is not 
achieved at the smallest MinSup value. When the number of 
features exceeds a certain level, the performance of SVMs is 
degraded. This is due to the fact that from some number of 
dimensions on, the loss caused by an increased maximal L2-norm 
of data exceeds the benefit from enlarging the maximal margin. 

6.2.2 Different SVM training parameters 
As described in Section 5, two parameters - the kernel function K 
and the parameter C - are used in SVM training. In this set of 
experiments, we chose the feature space of all frequent 
subsequences with MinSup of 5% and trained SVMs with linear 
kernel, polynomial kernel of degree of 2 and RBF kernel with γ  

=0.005. In addition, we investigated different values of the 
parameter C (default C, 1, 10, 100, 1000). The default C set by 
SVM light is equal to the inverse of average squared Euclidian 
length of training data. In our experiments, this value was much 
smaller than 1. 

The results of these experiments are summarized in Table 7. 
Linear kernels in general produced higher recall values while 
polynomial kernels produced higher precision values. Variations 
of the parameter C have little effect on the performance of the 
SVMs. In particular, for values of C larger than 10, the 
performance of SVMs remains unchanged.   

6.2.3 Summary of SVM classification 
In general, the performance of all SVMs trained in different 
feature spaces and with different parameter settings is very good 
and rather robust. The best SVM achieves a precision of 98% and 
a recall of 81%, when setting MinSup=1%, C=1 and using the 
linear kernel function, as boldfaced in Table 6. Our results show 
that the best results can be obtained when choosing all frequent 
subsequences with a relatively small MinSup value, however, the 
performance decreases when choosing more subsequences. SVM 

classification seems to be very robust in terms of all other 
parameters. 

6.3 Cross Comparison 
Currently, the state-of-the-art OMP prediction algorithm is the 
one developed by researchers in the biology field [14], using an 
HMM based on highly specialized biological domain knowledge. 
For a more complete comparison, we have supplied our dataset to 
the authors of [14] to obtain classification results of their method. 
Note that their method used OMPs with known 3D structures to 
build the prediction model and, therefore, did not use our training 
set. Instead, the model that they have built from the 12 OMPs 
with atomically resolved 3D structures as described in [14] was 
applied directly to classify our test set. The results they reported 
on our dataset were a precision of 64% and a recall of 71% 
(averages of the 5-fold cross validation). 

In addition, because decision-tree algorithms could also produce 
classifiers in the form of rulesets, the decision-tree algorithm See5 
[18] was also selected for comparison. See5 is an improved 
version of the prestigious C4.5 algorithm [16] with even higher 
accuracy. For the purpose of this research, we obtained an 
evaluation license for See5. Since See5 cannot be run on sequence 
databases directly, we first transformed our sequence data into 
table-formatted data, using frequent subsequences in a fashion 
similar to the SVM method. The best results achieved were a 
precision of 95% and a recall of 40%, obtained with subsequences 
mined at MinSup 0.8%, MinConf 95% and MinLgh 6. 

The comparison of all five methods is shown in Figure 4. The 
SVM-based method significantly outperforms all other methods. 
It achieved both the highest precision and the highest recall. In 
particular, compared to RRB - the second best performer - SVMs 
reduce the classification error for OM proteins from 10% to 2%, 
i.e., by a factor of 5, while at the same time increasing the recall 
by 20%. Such drastic improvement confirms the exciting 
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Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) 

Default C 74 95 71 97 72 90 

C = 1 82 92 78 96 75 91 

C=10 82 92 78 96 78 92 

C=100 82 92 78 96 78 92 

C=1000 82 92 78 96 78 92 



 

 

Figure 4. Comparison of Five Outer-Membrane Protein Classifiers
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capability of SVMs for use in biological sequence classification. 
Meanwhile, the second best result was obtained by the refined 
rule-based classification method (RRB), which also performs 
much better (a classification error of 10% instead of 36%) than 
the current state-of-the-art method in the biological domain. This 
success demonstrates the strength of the frequent subsequence-
based approach of protein classification. In addition, the 
improvement of RRB over SRB shows that the performance of 
rule-based classifiers can be improved by applying the framework 
of further refinement. 

On the other hand, although SVM classification achieved the best 
overall performance, there are certain advantages to using rule-
based classifiers. These classifiers are much easier for users to 
analyze and interpret, whereas no biological analysis can be easily 
done with the incomprehensible decision functions that are 
learned by SVMs. 

In our application, biologists are very interested in identifying the 
most significant subsequences capable of discriminating OMPs 
from non-OMPs, as such subsequences may lead to new 
biological insights about this class of proteins. However, SVMs 
do not explicitly assign weights to all features. Instead, they 
perform a kernel convolution between test data and support 
vectors for the sake of efficient classification in high dimensional 
feature spaces. This holds even if a simple kernel, say the linear 
kernel, is used, which allows us to explicitly express the decision 
function as a linear combination of features. Our experimental 
evaluation showed that SVMs tend to use a large majority of all 
features, and generally the weight distribution among features is 
more or less uniform, i.e. with very small variance. Therefore, it is 
very hard to extract the most significant features from SVM 
classifiers. 

In contrast, the classification rules used in the rule-based 
classifiers can be easily extracted. Initial analysis of these rules 
maps them to both 

�
-strands and the short periplasmic turn 

regions. This may point to the importance of these regions, 
particularly the turns, in helping the protein to assume the correct 
conformation and to properly insert into the membrane. The 
failure of frequent subsequences to map to the extracellular loop 
regions supports the idea that these surface-exposed regions can 
be highly variable in both sequence identity and length. Disease-
causing bacteria, for example, are thought to vary such surface 
sequences as a mechanism to evade detection by our immune 
system. This is one reason why 

�
-barrel proteins are difficult to 

identify from sequences alone. However, as more frequent 
subsequences are generated through data mining experiments, 
mapping them to known structures will continue to provide 
insights into the structural biology of this class of proteins, and 
may assist scientists in developing 3-dimensional models for 
proteins which cannot be analyzed experimentally. In addition, 
the identification of conserved sequences that are found in the 
surface-exposed regions would be primary targets for new 
diagnostics and drugs, permitting even better prioritization of 
targets for further pharmaceutical study. 

7. CONCLUSIONS 
In this paper, we presented two new methods that make use of 
frequent subsequences to deal with the OMP classification 
problem. We created a dataset that is the largest available set of 
Gram-negative bacterial proteins with experimentally determined 
subcellular localizations. All methods were experimentally 
evaluated on this dataset. Both methods significantly 
outperformed the state-of-the-art classifier developed in the 
biological domain, demonstrating the remarkable strength of the 
frequent subsequence-based approach of protein classification. In 
particular, the performance achieved by our SVM-classifier is by 
far the best result for OMP classification that has been reported. It 
outperforms all other competing methods significantly and 
exhibits outstanding potential for biological sequence 
classification. In addition, the idea of refinement of rule-based 
classification has also been shown to perform relatively well and 
should be investigated in other applications. Finally, rule-based 
classifiers have been shown to provide biologists with useful 
biological patterns that improve their understanding of OMPs. 
Both approaches will aid research of important disease-causing 
bacteria, including the organisms responsible for conditions as 
diverse as food poisoning, water-borne diseases, ulcers, and 
meningitis. The combination of the classification power of the 
SVM approach and the biological insights gained from the rule-
based approaches will allow researchers to screen genomes for 
novel OMPs and, potentially, to generate models of their 
secondary and tertiary structures. 

Currently all of our classification methods only make use of the 
primary sequence information. We did not consider any secondary 
structure or additional properties of proteins at this time, for 
example, β-strand barrel and turn sizes, polarity of different 
amino-acids, etc. However, biological studies have indicated that 



 

such characteristics are strongly correlated with the functions of 
proteins. We feel that future research may take these into account 
in order to build classifiers that integrate more key characteristics 
in the model. Meanwhile, we are also interested in exploring ways 
of extracting symbolic information from SVMs. The motivation 
behind this is to keep the good generalization property of SVMs 
and at the same time build a more understandable classifier. 
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