
Efficient graphlet kernels for large graph comparison

Nino Shervashidze
MPI for Biological Cybernetics
MPI for Developmental Biology

Tübingen, Germany

S.V.N. Vishwanathan
Department of Statistics

Purdue University
West Lafayette, IN, USA

Tobias H. Petri
Institute for Computer Science

LMU München
München, Germany

Kurt Mehlhorn
MPI for Informatics

Saarbrücken, Germany

Karsten M. Borgwardt
MPI for Biological Cybernetics
MPI for Developmental Biology

Tübingen, Germany

Abstract

State-of-the-art graph kernels do not scale
to large graphs with hundreds of nodes and
thousands of edges. In this article we propose
to compare graphs by counting graphlets, i.e.,
subgraphs with k nodes where k ∈ {3, 4, 5}.
Exhaustive enumeration of all graphlets be-
ing prohibitively expensive, we introduce two
theoretically grounded speedup schemes, one
based on sampling and the second one specif-
ically designed for bounded degree graphs.
In our experimental evaluation, our novel
kernels allow us to efficiently compare large
graphs that cannot be tackled by existing
graph kernels.

1 Introduction

Graph comparison is an important problem in appli-
cation areas as disparate as bioinformatics, chemoin-
formatics, chemistry, sociology and telecommunica-
tion. Broadly speaking, existing graph comparison al-
gorithms may be classified into three categories: set
based, frequent subgraph based, and kernel based. Set
based approaches represent a graph as a set of edges,
or as a set of nodes, or both. Graphs are then com-
pared by measuring similarity between pairs of edges
or pairs of nodes between two graphs. While these ap-
proaches are computationally feasible – typically scal-
ing linearly or quadratically in the number of nodes
and edges – they are rather naive, as they neglect the
structure of the graphs, i.e., their topology.

Appearing in Proceedings of the 12th International Confe-
rence on Artificial Intelligence and Statistics (AISTATS)
2009, Clearwater Beach, Florida, USA. Volume 5 of JMLR:
W&CP 5. Copyright 2009 by the authors.

Frequent subgraph mining algorithms, on the other
hand, aim to detect subgraphs that are frequent in
a given dataset of graphs. Afterwards, feature selec-
tion is applied to select the most discriminative sub-
graphs. Efficient methods such as gSpan (Yan & Han,
2003) have been developed for this task, which use el-
egant data structures and efficient branch-and-bound
search strategies. Unfortunately, their computational
complexity scales exponentially with graph size in the
worst case.

Graph kernels represent an attractive middle ground.
They respect and exploit graph topology, but restrict
themselves to comparing substructures of graphs that
are computable in polynomial time. Many different
graph kernels have been defined, which focus on dif-
ferent types of substructures in graphs, such as ran-
dom walks (Gärtner et al., 2003; Kashima et al.,
2004), shortest paths (Borgwardt & Kriegel, 2005),
subtrees (Ramon & Gärtner, 2003), and cycles (Hor-
vath et al., 2004). Several studies have recently shown
that these graph kernels can achieve results com-
petitive with the state of the art on problems on
benchmark datasets from bioinformatics and chem-
istry (Borgwardt et al., 2005; Ralaivola et al., 2005).

When using graph kernels, a practitioner is faced with
three questions: Out of the numerous variants, which
graph kernel should I choose for a particular applica-
tion? Does this kernel capture graph similarity better
than others? Is it cheap to compute? Unfortunately,
these questions are far from being answered. Almost
all existing approaches are ad-hoc and are generally
motivated by runtime considerations. To make mat-
ters worse, there is no theoretical justification on why
certain types of subgraphs are better than the oth-
ers. The other extreme of comparing all possible sub-
graphs has been shown to be NP-hard (Gärtner et al.,
2003), thus making it practically infeasible. Even
the fastest polynomial-runtime graph kernels scale as

Efficient graphlet kernels for large graph comparison

O(n3) (Vishwanathan et al., 2007) or O(n4) (Borg-
wardt & Kriegel, 2005). These difficulties limit the
practical applicability of these kernels to graphs with
a few hundreds of nodes.

In essence, this problem could be solved by a rich
enough, still efficiently computable representation that
adequately captures the topology of the input graphs.
Drawing analogy from probability theory, we seek to
efficiently compute the sufficient statistics of a graph.

Paper contributions In this work we define a graph
kernel based on the distribution of subgraphs of size k,
k ∈ {3, 4, 5}, which we refer to as graphlets (Section
2).

This distribution, we argue, is similar to a sufficient
statistic of the graph, especially when the graph is
large. Exhaustive enumeration of these subgraphs is
prohibitively expensive, scaling as O(nk) where n is
the number of nodes in the graph and k ∈ {3, 4, 5} the
size of the subgraphs. We propose two theoretically
grounded speedups. First, we show that sampling a
fixed number of graphlets suffices to bound the devia-
tion of the empirical estimates of the graphlet distribu-
tion from the true distribution. Second, we show that
for graphs of degree bounded by d, the exact number
of all graphlets of size k can be determined in time
O(ndk−1). Large real world graphs are often sparse
with d� n. Finally, we experimentally show that our
novel sampling scheme allows us to compute graph ker-
nels on graphs of sizes that are beyond the scope of the
state-of-the-art (Section 5).

It is clear that isomorphic graphs have the same
graphlet distributions. But the question whether in
a general setting the equality of graphlet distributions
implies isomorphism is still unanswered. It is closely
related to the graph reconstruction problem, which is
a classic open problem in graph theory. Nonetheless,
it is interesting whether similarity of graphlet distri-
butions leads to a meaningful measure of similarity
between corresponding graphs. We provide an experi-
mental answer to this question in Section 5.

2 Graphlet kernels

2.1 Notation

Before we define our novel kernel, we here summarize
key concepts and clarify our notation.

By definition, a graph is a pair G = (V,E), where
V = {v1, v2, . . . , vn} is an ordered set of n vertices,
and E ⊆ V ×V is the set of edges. The size of a graph
is the size of the set V , here n. All edges of the form
(v, vi) ∈ E are said to be incident on vertex v. Given
G = (V,E) and H = (VH , EH), we say H is a subgraph

of G (or H has an embedding in G), denoted by H v
G, iff there is an injective mapping α : VH → V such
that (v, w) ∈ EH iff (α(v), α(w)) ∈ E. Furthermore,
#(H v G) denotes the number of embeddings of H in
G.

A graph is called undirected if (vi, vj) ∈ E iff (vj , vi) ∈
E; otherwise it is referred to as directed. Although
many of our techniques are applicable to both directed
and undirected graphs, for ease of exposition, we will
exclusively deal with undirected graphs in the remain-
der of this paper.

Any edge (vi, vi) is called a self loop. In a general graph
two vertices vi and vj may be connected by more than
one edge. A simple graph is a graph with no self loops
or multiple edges. Here we always work with simple,
connected graphs.

A simple graph can equivalently be represented by an
adjacency matrix A of size n×n. The (i, j)-th entry of
A is 1 if an edge (vi, vj) exists and zero otherwise. The
adjacency matrix of an undirected graph is symmetric.

Two graphs G = (V,E) and G′ = (V ′, E′) are isomor-
phic (denoted by G ∼= G′) if there exists a bijective
mapping g : V → V ′ (called the isomorphism func-
tion) such that (vi, vj) ∈ E iff (g(vi), g(vj)) ∈ E′.

2.2 The graphlet kernel

Let G = {graphlet(1), . . . , graphlet(Nk)} be the set of
size-k graphlets and G be a graph of size n. Define a
vector fG of length Nk whose i-th component corre-
sponds to the frequency of occurrence of graphlet(i)
in G, #(graphlet(i) v G). We will call fG the k-
spectrum of G. This statistic is the foundation of our
novel graph kernel.

Definition 1 (Graphlet kernel) Given two graphs
G and G′ of size n ≥ k, the graphlet kernel kg is de-
fined as

kg(G,G′) := f>G fG′ . (1)

As our goal is to develop scalable graph kernels, we
study graphlet kernels based on the 3-, 4- and 5-
spectra of graphs here. In order to account for dif-
ferences in the sizes of the graphs, which can greatly
skew the frequency counts fG, we normalize the counts
to probability vectors:

DG =
1

#all graphlets in G
fG,

and work with the following normalized variant of (1):

k(G,G′) = D>GDG′ . (2)

Since there are
(
n
k

)
size-k subgraphs in a graph, com-

puting DG for each graph of size n requires O(nk)

Shervashidze, Vishwanathan, Petri, Mehlhorn, Borgwardt

effort. Once all the DG vectors are computed, then
computing (2) requires essentially O(1) work. In the
sequel we will show how the O(nk) pre-processing step
can be made efficient.

Clearly, if G ∼= G′, then fG = fG′ . But is the reverse
true? It has been shown that when n = k + 1 and
n ≤ 11, equality of k-spectra implies isomorphism. For
n > 11, it is still a conjecture whether a graph of size n
can be reconstructed from its subgraphs of size n− 1.

2.3 Reconstruction of graphs

In fact, this problem of graph reconstruction is a clas-
sic open problem in graph theory (Kelley, 1957; Hem-
minger, 1969): Let G = (V,E) be a undirected graph
of size n. For each v ∈ V , let Gv denote a node-deleted
subgraph of G, i.e., the graph obtained by deleting
node v and all the edges incident on it from G. Can G
be reconstructed, up to an isomorphism, from its set
of node-deleted subgraphs {Gv}v∈V ?

Kelley (1957) proved the following theorem: Let G =
(V,E) and G′ = (V ′, E′) be trees and g : V → V ′ be
an isomorphism function such that Gv is isomorphic
to G′g(v) for all v ∈ V , then G is isomorphic to G′.
He conjectured that the following theorem is true for
arbitrary graphs:

Theorem 2 (Graph reconstruction conjecture)
Let G and G′ be graphs of size greater than 2 and
g : V → V ′ be an isomorphism function such that
Gv is isomorphic to G′g(v) for all v ∈ V . Then G is
isomorphic to G′.

Kelley (1957) verified his conjecture by enumeration
of all possible graphs for 2 < n ≤ 6, which was later
extended to 2 < n ≤ 11 by (McKay, 1997). Spe-
cial classes of graphs such as regular graphs, and dis-
connected graphs have also been shown to be recon-
structible (Kelley, 1957). The general case, however,
remains a conjecture. It is widely believed though,
that if a counterexample to the graph reconstruction
problem exists, then it will be of size n� 11 (McKay,
1997).

2.4 A recursive definition of the graphlet
kernel

Here we show that the graphlet kernel (1) can also be
defined based on the decomposition of a graph of size n
recursively into its subgraphs of size k. This decompo-
sition is similar to the one in the graph reconstruction
setting, but here we are interested in the similarity of
graphs rather than in their isomorphism. We will refer
to subgraphs of size k as k minors, as formalized in the
following definition.

Definition 3 (k minors) Let M be a n × n matrix.
The set of all size-k sub-matrices of M obtained by
deleting n−k rows and corresponding columns of M is
called the k minors of M . Analogously, given a graph
G of size n, the set of all size-k graphs obtained by
deleting n− k nodes from G is called the k minors of
G.

We now study some properties of k minors. For sim-
ple undirected unweighted graphs, the entries in the
upper triangular submatrix of the adjacency matrix
completely determine the graph. This submatrix con-
tains

(
k
2

)
entries, each of which could either be 1 or

0 depending on the presence or absence of the cor-
responding edge. Therefore, there are 2(k

2) differ-
ent k minors. Following (Przulj, 2007) we refer to
them as size k graphlets, and denote them as G =
{graphlet(1), . . . , graphlet(2(k

2))}. Modulo isomor-
phism, there will be only Nk < 2(k

2) distinct graphlets.

This is denoted by a matrix P ∈ {0, 1}2
(k
2)×2(

k
2) with

entries

Pij =

 1 if graphlet(i) ∼= graphlet(j),

0 otherwise.
(3)

It is easy to see that the matrix P corresponds to the
isomorphism kernel between graphs of size k, hence is
a symmetric positive semi-definite (PSD) matrix.

Definition 4 (Recursive graphlet kernel) Given
two graphs G and G′ of size n ≥ k, let M and
M′ denote the set of principal minors of G and G′

respectively. The recursive graph kernel, kn, based on
principal minors is defined as

kn(G,G′) =

=

1

(n−k)2
∑
S∈M,S′∈M′ kn−1(S, S′) if n > k,

δ(G ∼= G′) if n = k

(4)

where δ(G ∼= G′) is 1 if G and G′ are isomorphic,
and 0 otherwise. The graphlet kernel is defined as
kg(G,G′) := kn(G,G′).

Since the above kernel compares the k minors in both
G and G′, it can be computed non-recursively. We
state the following result without proof.

Lemma 5 Let Mk and M′k denote the set of k mi-
nors of G and G′ respectively. The graphlet kernel can
be computed without recursion via

kg(G,G′) = kn(G,G′) =
∑
S∈Mk

∑
S′∈M′

k

δ(S ∼= S′). (5)

Efficient graphlet kernels for large graph comparison

Equivalently, kg(G,G′) equals∑
S,S′∈G

#(S v G) #(S′ v G′) δ(S ∼= S′). (6)

Recall that there are 2(k
2) graphlets of size k, and

the matrix P encodes isomorphism relations between
them. Suppose we define a 2(k

2)-dimensional vector fG
whose i-th component corresponds to the frequency
of occurrence of graphlet(i) in a graph G, then one
can rewrite (6) as kg(G,G′) = f>GPfG′ . As before, we
normalize the counts to probability vectors:

DG =
1

#all graphlets in G
fG,

and work with the normalized variant of (6):

kg(G,G′) = D>GPDG′ . (7)

Since P is a PSD matrix, it immediately follows that
(7) is a valid positive semi-definite kernel.

3 Sampling from graphs

In order to compute our kernel exactly one needs to
exhaustively enumerate all graphlets of size k in the
input graphs. A graph with n nodes has

(
n
k

)
or equiv-

alently O(nk) graphlets, which is prohibitively expen-
sive to enumerate. Therefore we resort to sampling.
The hope is that if a sufficient number of random sam-
ples is drawn, then the empirical distribution is close
to the actual distribution of graphlets in the graph.
The number of samples needed to achieve a given con-
fidence with a small probability of error is called the
sample complexity.

This approach is not new; the problem of sampling
subgraphs from graphs has been widely studied in the
bio-informatics literature (Przulj, 2007; Kashtan et al.,
2004; Wernicke, 2005). Unfortunately, the algorithms
proposed there are ad-hoc and do not provide any
bounds on sample complexity. Recently, (Weissman
et al., 2003) proved distribution dependent bounds for
the L1 deviation between the true and the empirical
distributions. We adapt their results to derive strong
sample complexity bounds.

3.1 Sample complexity bound

Let A = {1, 2, . . . , a} denote a finite set of elements.
For two probability distributions P and Q on A, the
L1 distance between P and Q is defined as

||P −Q||1 :=
a∑
i=1

|P (i)−Q(i)|. (8)

Given a multiset X := {Xj}mj=1 of independent identi-
cally distributed (iid) random variables Xj drawn from
some distribution D (denoted as Xj ∼ D), the empir-
ical estimate of D is defined as

D̂m(i) =
1
m

m∑
j=1

δ(Xj = i), (9)

where i ∈ A, and δ(·) denotes the indicator function;
δ(Xj = i) = 1 if Xj = i and zero otherwise.

Theorem 6 Let D be a probability distribution on the
finite set A = {1, . . . , a}. Let X := {Xj}mj=1, with
Xj ∼ D. For a given ε > 0 and δ > 0,

m =

⌈
2
(
log 2 · a+ log

(
1
δ

))
ε2

⌉
(10)

samples suffice to ensure that P
{
||D − D̂m||1 ≥ ε

}
≤

δ.

We postpone the proof of this theorem to a longer
version of the paper, and note in the passing that it
follows from the results of (Weissman et al., 2003).

3.2 Implications of the bound

In order to apply Corollary 6 to our problem we set A
to be the set of all size-k graphlets and assume that
they are distributed according to an unknown distribu-
tion D. Furthermore, let m be the number of graphlets
randomly sampled from the graph. Then (10) gives the
number of samples needed to ensure that the empirical
distribution D̂m is at most ε distance away from the
true distribution D with confidence 1− δ.

When dealing with unlabeled graphs, there are a to-
tal of 2(k

2) possible graphlets of size k. But, mod-
ulo isomorphism, there are only Nk < 2(k

2) distinct
graphlets. For example, consider the case k = 4: We
have a = Nk = 11, while 2(4

2) = 64. If we set ε = 0.05
and δ = 0.05, then our bound implies that we only
need to sample 8, 497 graphlets from a graph. If we
decrease ε to 0.01 and δ to 0.01, then this number
increases to 244, 596.

4 Bounded degree graphs

While sampling allows us to deal with graphs on which
the exhaustive enumeration of all graphlets is infeasi-
ble, in pratice, there is a large fraction of graphs on
which complete counting can be performed efficiently:
the class of graphs with bounded degree d. We present
two algorithms for efficiently enumerating graphlets in
graphs of low degree: one for enumerating all con-
nected graphlets, and one for enumerating all graphlets.

Shervashidze, Vishwanathan, Petri, Mehlhorn, Borgwardt

I II III IV

Figure 1: Connected graphlets of size k which do not
contain a length-k−1 path (I is a size-4 graphlet, while
II-IV are size-5 graphlets)

4.1 Enumerating all connected graphlets

We assume that our graphs are given in standard ad-
jacency list representation. As a preprocessing step,
we construct a data structure that supports checking
the existence of edges in time O(1). Given vertices u
and v, the data structure checks whether (u, v) ∈ E.
We may either use the adjacency matrix or a hashing
scheme (Mehlhorn & Sanders, 2008, Chapter 4). Ob-
serve that the adjacency matrix can be constructed
in time O(|E|) if one uses an implicit initialization
scheme (Mehlhorn & Sanders, 2008, Exercise 3.16).
With such a data structure one can determine in time
O(k2) which graphlet is induced by a path of length
k.

Theorem 7 Let G be a bounded degree graph, and
let d denote the maximum degree. Then all connected
graphlets of G with size k ∈ {3, 4, 5} can be enumerated
in O(ndk−1) time.

Proof Graphlets of size k can be divided into two
classes: graphlets that contain a simple path of length
k − 1, and graphlets that do not contain such a path.

By a simple depth first search (DFS) all paths of length
k − 1 originating from a node v can be computed in
O(dk−1) time. Counting the size-k graphlets induced
by these paths requiresO(dk−1) effort; the overall com-
plexity for a graph with n nodes is therefore O(ndk−1).
One caveat is that the same graphlet might be induced
by more than one length-k−1 paths, and hence might
be counted multiple times. To account for this, we
need to divide the final counts by the number of length-
k − 1 paths per graphlet.

The second class can be computed efficiently for k ∈
{3, 4, 5}. For k = 3, there is no connected graphlet
that does not contain at least one path of length 2.

For k = 4, there is only one connected graphlet that
does not contain a length-3 path (see I in Figure 1).
Let us call this graphlet a 3 star. Let di denote the
degree of node vi. We look up the

(
di

3

)
neighbor triplets

of vi, and check if they induce the graphlet we are
interested in. The time complexity per node is O(d3),
and for the entire graph is O(nd3).

For k = 5, there are 3 connected graphlets with no
length-4 path (see II to IV in Figure 1). To compute
the frequency of their occurrence we note that all con-
tain the 3 star as a subgraph. So we first enumerate
all occurrences of 3 star, and then check the neigh-
bors of each node in 3 star to see if they induce the
graphlets in question, an O(d) operation per graphlet.
This brings the overall complexity of the method to
O(nd4), as claimed.

4.2 Enumerating all graphlets

Here we show that all size 3 and 4 graphlets can be
enumerated efficiently in bounded degree graphs. We
relegate the proof for size 5 graphlets to an extended
version of this article.

Theorem 8 For a fixed node v1, we can compute the
distribution of subgraphs of size 3 and 4 in time O(d2)
and O(d3) respectively, where d is the maximal degree
of any node.

Proof Let us first consider counting graphlets of size
3. Modulo isomorphism there are 4 types of such
graphlets. Let Fi and |Fi| denote the graphlet with
i edges and the number of its occurrences in a graph
respectively, i ∈ {0, 1, 2, 3}, and N(v) the set of neigh-
bors of a node v. We first count subgraphs with at least
one edge and then obtain the number of graphlets of
type F0 by subtracting |F1|+|F2|+|F3| from C3

n,which
is the number of all triplets of nodes in the graph.

For each pair of nodes (v1, v2) connected by an edge,
we have to distinguish four cases for the third node
v3: v3 ∈ N(v1) ∩N(v2), v3 ∈ N(v1) \ (N(v2) ∪ {v2}),
v3 ∈ N(v2) \ (N(v1) ∪ {v1}), v3 6∈ N(v1) ∪N(v2).

It is easy to see that the subgraph spanned by v1, v2
and v3 in the first case corresponds to the graphlet
with 3 edges, in the second and third cases it corre-
sponds to the graphlet with 2 edges, and in the fourth
to the graphlet with 1 edge.

Enumerating all pairs of edges originating at v1 is
a O(d) effort. For each pair (v1, v2), determining
the cardinality of the sets N(v1) ∩ N(v2), N(v1) \
(N(v2) ∪ {v2}) and N(v2) \ (N(v1) ∪ {v1}) has O(d)
time complexity as well. As to the cardinality of the
set V \ (N(v1)∪N(v2)), it can be easily computed by
observing that it is equal to n− |N(v1)∪N(v2)|. This
leads to the overall complexity of O(d2).

Note that counting graphlets in the proposed way
would imply counting them twice as many times as
the number of edges they contain. To deal with this,
we need to divide the final counts by twice the number
of edges per graphlet.

Efficient graphlet kernels for large graph comparison

F1 F2 F3 F4 F5 F6

F7 F8 F9 F10 F11

Figure 2: All graphlets of size 4

We now consider size 4 graphlets.

Modulo isomorphism there are 11 graphlets of size 4
(see Figure 2). Let us denote these graphlets Fi and
their counts |Fi|, i ∈ 1, 2, . . . , 11. As in the previous
case, we will first count all graphlets which contain at
least one edge.

Assume we want to count subgraphs containing edge
(v1, v2). As before, for v2 there are |N(v1)| choices
and for each pair (v1, v2) we have 4 cases for the third
node v3: v3 ∈ N(v1) ∩ N(v2), v3 ∈ N(v1) \ N(v2),
v3 ∈ N(v2) \N(v1) and v3 /∈ N(v1) ∪N(v2).

v3 from the first three cases can be enumerated in
O(d). And for each triplet (v1, v2, v3) we can count
size-4 subgraphs containing this triplet in O(d), as we
can compute cardinalities of all intersections of N(v1),
N(v2) and N(v3) in O(d).

As to v3 in the fourth case, there are 2 types of
graphlets which arise in this case and do not arise
in previous cases: graphlets of type F9 and F10. For
fixed v1 and v2 it is possible to obtain the number of
graphlets of type F9 by counting the number of edges
not adjacent to any of the nodes v ∈ N1(v1)∪N1(v2).
This quantity is equal to m+1−|N(v1)|−|N(v2)|−K,
where m is the number of edges in the graph which can
be precomputed, |N(v1)| + |N(v2)| − 1 is the number
of edges adjacent to v1 or v2 and K is the number of
edges adjacent to nodes in (N(v1) ∪N(v2)) \ {v1, v2}.
The latter equals to the number of previously counted
graphlets with the same v1 and v2, where v3 and v4
are connected (i.e. where v4 ∈ N(v3)). Once |F9|
is computed, we obtain |F10| by subtracting |F9| from(
n−|N(v1)∪N(v2)|

2

)
, which is the number of pairs of nodes

outside N(v1) ∪ N(v2). The fourth case does not in-
crease the runtime complexity of previous cases and
remains O(d3) per v1.

At last, |F11| =
(
n
4

)
−
∑10
i=1 |Fi|.

Note that, as in the previous case, we will count each
graphlet at least twice as many times as the number
of edges it contains. Additionally, in case if v3 and v4
are both neighbors of v1 or v2 (i.e., all configurations
except v4 ∈ N(v3) \ (N(v1) ∪ N(v2))), the graphlet
spanned by these four nodes will be counted twice per
fixed (v1, v2). To avoid this, we divide the counts of

dataset size classes # nodes # edges
MUTAG 188 2 (125 vs. 63) 17.7 38.9
PTC 344 2 (192 vs. 152) 26.7 50.7
Enzyme 600 6 (100 each) 32.6 124.3
D & D 1178 2 (691 vs. 587) 284.4 1921.6

Table 1: Statistics on classification datasets.

these graphlets by 2.

5 Experiments

In this section, we evaluate the performance of our ker-
nel and compare it with state of the art graph kernels
in terms of runtime, scalability, and prediction accu-
racy. Our baseline comparators are the classic ran-
dom walk kernel of (Gärtner et al., 2003; Kashima
et al., 2004; Vishwanathan et al., 2007), that counts
common walks in two graphs, and the shortest path
kernel of (Borgwardt & Kriegel, 2005), that compares
shortest path lengths in two graphs. Both these ker-
nels work on generic graphs, and are shown to perform
competitively in their respective publications. For the
random walk kernel we uniformly set the decay factor
λ = 10−4. For the shortest path kernel we used the
delta kernel to compare shortest-path distances.

Datasets We perform experiments on three different
well known, publicly available datasets namely MU-
TAG, PTC, Enzyme. We also test our kernels with a
large protein function prediction dataset from (Dob-
son & Doig, 2003), which we will refer to as D & D.
Table 1 provides a summary.

Experimental settings We test different variants
of our graphlet kernels: by varying the graphlet sizes
k ∈ {3, 4, 5}, the types of graphlets we consider (fully
connected vs all), and sample size (different values of
precision, ε, and confidence, δ).

To compute size-3 graphlet kernel based on sampling,
we drew samples of 1015 graphlets (corresponding to
ε = 0.1, δ = 0.1), 1154 graphlets (ε = 0.1, δ = 0.05),
4061 graphlets (ε = 0.05, δ = 0.1) and 4615 graphlets
(ε = 0.05, δ = 0.05). Analogously, for size-4 and size-
5 graphlet kernels we used four sample sizes: {1986,
2015, 7942, 8497} and {5174, 5313, 20696, 21250} re-
spectively.

We use a binary C-Support Vector Machine (SVM) to
test the efficacy of our kernels. We perform 10-fold
cross validation, and for each fold we independently
tune the value of C, the SVM regularizer constant, by
considering the training data from that fold. This pro-
cess is averaged over 10 random splits of the data. We
report classification accuracies in Table 2 and runtimes
for kernel matrix computation in Table 3.

Shervashidze, Vishwanathan, Petri, Mehlhorn, Borgwardt

Kernel MUTAG PTC Enzymes D & D
RW 71.89 ± 0.66 55.44 ± 0.15 14.97 ± 0.28 > 1 day
SP 81.28 ± 0.45 55.44 ± 0.61 27.53 ± 0.29 > 1 day
GK A3 1015 79.67 ± 0.67 55.20 ± 0.47 22.80 ± 0.22 74.88 ± 0.12
GK A3 1154 79.89 ± 0.69 55.50 ± 0.40 23.69 ± 0.23 75.14 ± 0.14
GK A3 4061 80.61 ± 0.67 55.23 ± 0.50 23.69 ± 0.26 75.09 ± 0.12
GK A3 4615 80.00 ± 0.67 55.29 ± 0.45 27.41 ± 0.22 74.97 ± 0.12
GK A3 all 82.11 ± 0.62 55.26 ± 0.39 25.80 ± 0.23 75.41 ± 0.13
GK C3 66.55 ± 0.83 57.68 ± 0.43 19.80 ± 0.21 74.14 ± 0.12
GK A4 1986 80.42 ± 0.23 59.09 ± 0.11 27.24 ± 0.17 74.51 ± 0.13
GK A4 2125 80.69 ± 0.31 58.86 ± 0.21 27.62 ± 0.42 74.55 ± 0.15
GK A4 7942 81.57 ± 0.41 59.06 ± 0.13 28.13 ± 0.24 74.67 ± 0.08
GK A4 8497 81.89 ± 0.23 59.38 ± 0.22 27.32 ± 0.17 74.46 ± 0.07
GK A4 all 82.17 ± 0.58 59.65 ± 0.31 28.95 ± 0.50 74.62 ± 0.12
GK C4 69.00 ± 0.74 58.62 ± 0.41 23.61 ± 0.22 75.90 ± 0.10
GK A5 5174 80.17 ± 0.67 58.85 ± 0.45 26.29 ± 0.23 74.95 ± 0.12
GK A5 5313 80.55 ± 0.72 58.50 ± 0.41 25.40 ± 0.22 74.74 ± 0.12
GK A5 20696 81.89 ± 0.72 59.41 ± 0.46 26.52 ± 0.25 74.64 ± 0.13
GK A5 21250 82.00 ± 0.64 58.70 ± 0.42 29.00 ± 0.23 75.35 ± 0.10
GK A5 all 82.50 ± 0.79 58.65 ± 0.40 30.64 ± 0.26 > 1 day
GK C5 70.94 ± 0.76 56.06 ± 0.46 26.66 ± 0.23 > 1 day

Table 2: Classification accuracy (in % ± standard error) on unlabeled graph benchmark datasets. RW is the
random walk kernel, while SP is the shortest-path kernel. GK Ak m denotes our graphlet kernel computed using
m samples of size k graphlets. GK Cn denotes the graphlet kernel computed using all connected graphlets of
size k. ’> 1 day’ means computation did not finish within 24 hours.

Kernel MUTAG PTC Enzymes D & D
RW 42.3” 2’ 39” 10’ 45” > 1 day
SP 23.2” 2’ 35” 5’ 1” > 1 day
GK A3 1015 21.5” 29.7” 39” 2’ 9”
GK A3 1154 23.1” 42.6” 48.7” 2’ 19”
GK A3 4061 1’ 18” 2’ 39” 1’ 51” 6’ 35”
GK A3 4615 1’ 38” 3’ 1” 2’ 51” 5’ 58”
GK A3 all 0.35” 0.9” 3.34” 2’ 34”
GK C3 0.14” 0.36” 1.3” 2’ 14”
GK A4 1986 1’ 39” 3’ 2” 4’ 20” 11’ 35”
GK A4 2125 1’ 46” 3’ 16” 4’ 36” 12’ 21”
GK A4 7942 6’ 33” 12’ 3” 16’ 35” 42’ 45”
GK A4 8497 6’ 57” 12’ 49” 17’ 38” 45’ 36”
GK A4 all 4.38” 10.8” 49.3” 2h 44’ 59”
GK C4 0.26” 0.9” 4.1” 35’ 22”
GK A5 5174 3’ 14” 8’ 1” 16’ 57” 1h 29’ 54”
GK A5 5313 3’ 18” 8’ 6” 17’ 3” 1h 1’ 54”
GK A5 20696 8’ 56” 18’ 28” 42’ 2” 1h 30’ 18”
GK A5 21250 9’ 5” 18’ 4” 27’ 2h 6’ 45”
GK A5 all 7’ 17” 16h 2’ 16” 20h 26’ 8” > 1 day
GK C5 0.79” 2.1” 40.7” > 1 day

Table 3: Runtime on unlabeled graph benchmark datasets (implemented in Matlab, for abbreviations see Table 2)

Efficient graphlet kernels for large graph comparison

Results On MUTAG, PTC and Enzymes, modeled
as unlabeled graphs, graphlet kernels enumerating all
graphlets reached the highest accuracy. Graphlet ker-
nels based on sampling also yield similarly good re-
sults. The classification accuracies they reach are com-
parable to that of the shortest path kernel on MUTAG
and Enzyme, while on PTC they are better. In all
cases they comprehensively outperform random walk
kernels. Note that our sampling technique is indepen-
dent of the size of the graph, and yet yields comparable
results to expensive kernels which depend on the size
of the graph.

In terms of runtime, 4 and 5-node graphlet sampling
and 5-node graphlet enumeration are expensive and
slower than the shortest path and the random walk
kernels on small datasets such as MUTAG and PTC.
As graph size increases (Enzyme), graphlet sampling
gets more competitive: Sampling 1986 and 2125 size-4
graphlets on Enzyme is already faster than computing
shortest path and random walk kernels. On D & D,
none of the latter kernels finishes computation within
24 hours, nor does the exhaustive enumeration of all
5-node graphlets. The graphlet kernels based on sam-
pling manage to compute kernel matrices on D & D in
less than 2 hours and 7 minutes for 5-node graphlets.

Kernels based on counting graphlets in bounded de-
gree graphs are fast to compute for MUTAG, PTC,
Enzymes, but less so for D & D. This is due to the
fact that the first three datasets have a low maximum
degree (4, 4 and 9 respectively), whereas for D & D
it is 52. In terms of accuracy, on PTC and D & D
they are comparable with other kernels, while on MU-
TAG and Enzymes they perform worse. Disconnected
graphlets seem to be essential for correct classification
on these datasets.

We note in the passing that even though our graphlet
kernels do not exploit any domain knowledge and op-
erate on simple unlabeled graph models of proteins,
on the D & D dataset the classification accuracy they
obtain is comparable with published work that uses
heavily annotated vector or graph models of proteins
(Dobson & Doig, 2003; Borgwardt et al., 2005).

6 Conclusions

In this paper, we have proposed efficient graph kernels
based on counting or sampling limited size subgraphs
in a graph. Our approaches are highly efficient for
unlabeled graphs, yet a central challenge of future re-
search will be to make our results memory and runtime
efficient on graphs with discrete node labels, and even
more so on graphs with continuous node labels. Our
methods for efficient counting of graph features are
not limited to being used in graph kernels, but can be

applied in a variety of problems in graph mining.

References

Borgwardt, K. M., & Kriegel, H.-P. (2005). Shortest-
path kernels on graphs. Proc. Intl. Conf. Data Min-
ing (pp. 74–81).

Borgwardt, K. M., Ong, C. S., Schonauer, S., Vish-
wanathan, S. V. N., Smola, A. J., & Kriegel, H. P.
(2005). Protein function prediction via graph ker-
nels. Bioinformatics, 21, i47–i56.

Dobson, P. D., & Doig, A. J. (2003). Distinguishing
enzyme structures from non-enzymes without align-
ments. J. Mol. Biol., 330, 771–783.

Gärtner, T., Flach, P., & Wrobel, S. (2003). On graph
kernels: Hardness results and efficient alternatives.
COLT (pp. 129–143). Springer.

Hemminger, R. L. (1969). On reconstructing a graph.
Proceedings of the American Mathematical Society,
20, 185–187.

Horvath, T., Gärtner, T., & Wrobel, S. (2004). Cyclic
pattern kernels for predictive graph mining. KDD
(pp. 158–167).

Kashima, H., Tsuda, K., & Inokuchi, A. (2004). Ker-
nels on graphs. Kernels and Bioinformatics (pp.
155–170). Cambridge, MA: MIT Press.

Kashtan, N., Itzkovitz, S., Milo, R., & Alon, U.
(2004). Efficient sampling algorithm for estimating
subgraph concentrations and detecting network mo-
tifs. Bioinformatics, 20, 1746–1758.

Kelley, P. (1957). A congruence theorem for trees.
Pacific J. Math., 7, MR 19:442.

McKay, B. (1997). Small graphs are reconstructible.
Australas. J. Combin., 15, 123–126.

Mehlhorn, K., & Sanders, P. (2008). Algorithms and
data structures: The basic toolbox. Springer.

Przulj, N. (2007). Biological network comparison us-
ing graphlet degree distribution. Bioinformatics, 23,
e177–e183.

Ralaivola, L., Swamidass, S. J., Saigo, H., & Baldi,
P. (2005). Graph kernels for chemical informatics.
Neural Networks, 18, 1093–1110.

Ramon, J., & Gärtner, T. (2003). Expressivity ver-
sus efficiency of graph kernels. First International
Workshop on Mining Graphs, Trees and Sequences.

Vishwanathan, S. V. N., Borgwardt, K., & Schrau-
dolph, N. N. (2007). Fast computation of graph ker-
nels. NIPS. Cambridge MA: MIT Press.

Weissman, T., Ordentlich, E., Seroussi, G., Verdu, S.,
& Weinberger, M. J. (2003). Inequalities for the
l1 deviation of the empirical distribution (Technical
Report HPL-2003-97(R.1)). HP Labs, Palo Alto.

Wernicke, S. (2005). A faster algorithm for detecting
network motifs. WABI (pp. 165–177).

Yan, X., & Han, J. (2003). Closegraph: mining closed
frequent graph patterns. KDD (pp. 286–295).

