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Functional analysis of multiple genomic
signatures demonstrates that classification
algorithms choose phenotype-related genes
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Gene expression signatures of toxicity and clinical response benefit both
safety assessment and clinical practice; however, difficulties in connecting
signature genes with the predicted end points have limited their application.
The Microarray Quality Control Consortium II (MAQCII) project generated
262 signatures for ten clinical and three toxicological end points from six
gene expression data sets, an unprecedented collection of diverse signatures
that has permitted a wide-ranging analysis on the nature of such predictive
models. A comprehensive analysis of the genes of these signatures and
their nonredundant unions using ontology enrichment, biological network
building and interactome connectivity analyses demonstrated the link
between gene signatures and the biological basis of their predictive power.
Different signatures for a given end point were more similar at the level of
biological properties and transcriptional control than at the gene level.
Signatures tended to be enriched in function and pathway in an end point
and model-specific manner, and showed a topological bias for incoming
interactions. Importantly, the level of biological similarity between different
signatures for a given end point correlated positively with the accuracy of
the signature predictions. These findings will aid the understanding, and
application of predictive genomic signatures, and support their broader
application in predictive medicine.
The Pharmacogenomics Journal (2010) 10, 310–323; doi:10.1038/tpj.2010.35
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Introduction

The analysis of high-content omics data can be roughly divided into two main
approaches: statistical analysis and functional (pathway or systems) analyses.
Statistical analysis reduces thousands of data points (for example, genome-wide
gene expression values) to a relatively short list of genes. These genes represent a
multivariant descriptor of the studied condition (end point), and may be further
refined to distinguish between or predict phenotypic outcomes (a ‘gene
signature’). Over the last decade, myriads of gene signatures have been reported
to predict metastases in breast cancer,1,2 classify cancer subtypes3,4 or predict
drug response and toxicity.5–9

Functional analysis (FA) of high-content molecular data aims to reveal the
underlying biology driving the observed changes by identifying key pathways
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and mechanisms associated with the studied phenotype
(reviewed in Nikolsky and Bryant10). Early FA involved
mapping of expressed genes onto pathway maps such as
Kyoto Encyclopedia of Genes and Genomes (KEGG)11 or
functional ontologies such as gene ontology (GO).12 FA
has more recently expanded into three main approaches:
enrichment in biological ontologies,13 biological network
reconstruction, and interactome analysis.14,15 The power
of FA has been demonstrated in studies of common
diseases,16–20 and in toxicity and drug response analyses.21,22

FA usually does not work well on gene signatures, making
it difficult to understand the underlying biology of classify-
ing gene sets, and thereby understand the link between the
signature genes and the phenotype being studied. This is
mainly because of the size of the signatures, which are
typically small—from several to a few dozen genes. FA
methods operate best on large, preferably whole genome,
data sets nonstringently filtered by fold change, P-value or
FDR thresholds,23,24 or not limited in size at all (gene set
enrichment analysis13). Signature generation often uses
advanced mathematical models (comprehensively summar-
ized and tested in Microarray Quality Control Consortium II
(MAQCII)25) to achieve the best predictive performance
using the smallest number of genes, irrespective of the
biological function of those genes. The quality of the
resulting lists of biomarkers, in terms of predictivity and
stability, can be assessed by a wide spectrum of techniques
(see Boulesteix and Slawski26 for a recent review), ranging
from set theory to algebraic computational biology meth-
ods.27 It is challenging to explain the mechanism, form
networks or represent specific biological processes from
small signatures. Not surprisingly, there have been few
attempts to analyze and compare gene signatures in a
functional context. A recent study28 compared six breast
cancer signatures by enrichment analysis (EA) in GO
processes, and BioCarta and KEGG pathways, showing that
the signatures, although similar in predictive performance,
shared very few genes.

The MAQCII experimental design created a unique
opportunity to conduct the first comprehensive FA study
on statistically generated predictive gene signatures. The
data are both massive and diverse, with six whole-genome
gene expression data sets representing 13 phenotypic end
points, 3 for chemically induced pathology (carcinogenesis
or organ damage), and 10 for 3 different types of cancer.29–33

We conducted a meta-analysis across 262 distinct signatures,
generated by 33 MAQCII data analysis teams for each end
point. We applied FA to assess the biological and topological
composition of individual and merged (union) signatures,
and to investigate biological consistency and interconnec-
tivity between different gene signatures. The diverse collec-
tion of signatures provided large enough union data sets for
FA, in which many functional dependencies and correla-
tions became apparent in cross-signature comparisons. In
this study, we report the results of this analysis, along with
two novel analytical techniques for gene list comparison.

Materials and methods

Data sets, end points and analysis teams
A detailed description of the MAQC phase II (MAQCII)
project is given in Shi and colleagues.45 A brief summary of
the data sets used, end points classified and analysis teams
participating is given in Tables 1 and 2.

Evaluation of network topology
Topology analysis gives information about how tightly the
GeneGo network nodes from the explored data set are
connected.
Degree is the average number of links (interactions)

connected to a node (protein). As the GeneGo database of
biological interactions includes directionality of effect, the
nodes may be characterized by IN and OUT degree, giving the
average number of outgoing and incoming interactions.
The clustering coefficient captures the degree connectivity

between a node’s neighbors. It is defined as: Ci ¼ 2ni
ki ki"1ð Þ,

Table 1 MAQCII data sets and classification end points

Date set provider End point code End point description Number of
samples

Positives Negatives

Hamner Institutes33 A Chemical tumorigenesis in mouse lung 70 26 44
Entelos29 B Chemical nongenotoxic carcinogenesis in rat liver 216 73 143
NIEHS46 C Necrosis in rat liver 214 79 135
MD Anderson
Cancer Center30

D Clinical breast cancer treatment response 130 33 97

E Breast cancer estrogen receptor status 130 80 50
University of Arkansas32 F Overall survival milestone outcome in multiple myeloma 340 51 289

G Event-free survival in multiple myeloma 340 84 256
H Control parameter S1 (gender) 340 194 146
I Control parameter R1 (random) 340 200 140

University of Cologne31 J Overall survival milestone outcome in neuroblastoma 238 22 216
K Event-free survival milestone outcome in neuroblastoma 239 49 190
L Control parameter S (gender) 246 145 101
M Control parameter R (random) 246 145 101
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where ni is the number of links among the ki neighbors of
node i. As ki(ki–1)/2 is the maximum number of such links,
the clustering coefficient is a number between 0 and 1. The
average clustering coefficient is obtained by averaging over
the clustering coefficient of individual nodes. A network
with a high clustering coefficient is characterized by highly
connected subgraphs.

Enrichment by protein classes
All signatures were analyzed for relative enrichment with
certain protein classes. The results were ranked by a P-value.
The P-values were calculated using the basic formula for a
hypergeometric distribution (listed below), where r is the
number of objects of particular protein class from the set of
interest (signatures); R is the number of objects in the set of
interest; n is the number of objects of particular protein class
in the whole GeneGo global network; N is the number of

objects in the GeneGo global network.

P r; n; R; Nð Þ ¼
R
r

! "
N"R
n"r

! "

N
n

! "

pVal r; n; R; Nð Þ ¼
Xmin n;Rð Þ

i¼max r;Rþn"Nð Þ
P i; n; R; Nð Þ

EA in functional ontologies
For FA, we used a number of public and proprietary
functional ontologies in MetaCore v6.0 (http://www.gene
go.com). MetaCore includes the public ontologies GO
biological processes (GO Processes), GO molecular function
(GO Molecular Function) and GO cellular component (GO
Localization), and the proprietary ontologies GeneGo Pathway
Maps, GeneGo Biological Processes, GeneGo Disease Biomarker
Networks, GeneGo Drug Target Networks, GeneGo Toxicity
Networks, GeneGo Metabolic Networks, GeneGo Diseases (by
Biomarkers) and GeneGo Metabolic Networks (Endogenous).
All signatures were analyzed for relative enrichment with

certain categories from several functional ontologies, in-
cluding GO and GeneGo cellular processes, canonical
pathway maps, diseases or molecular functions. The results
were ranked by P-value for a hypergeometric distribution
where the P-value essentially represents the probability of
particular mapping arising by chance, given the numbers of
genes in the set of all genes on maps/processes/diseases/
molecular functions, genes on a particular map/process/
disease/molecular function and genes in the analyzed
experiment. Significance cutoff was selected at Po0.05.
GeneGo canonical pathway maps comprise several hundred

pictorial representations of human and rodent signaling and
metabolic pathways. GeneGo cellular processes is a proprietary
ontology of biological processes based on functionally
interacting groups of genes. The GeneGo disease ontology
contains more than 8000 genes with their known links to
over 500 human diseases.

Relative connectivity of proteins inside the data set
(intraconnectivity), and between the set and the global interactome
All signature genes were associated with their proteins, and
all protein lists were screened for the number of interactions
with the global interactome (GeneGo global network
(interconnections)) and within the individual protein lists
(intraconnections). All proteins were divided onto seven
different functions (protein target classes): transcription
factors (TFs), receptors, ligands, kinases, proteases, phos-
phatases and metabolic enzymes. The expected number of
interactions for a given protein with (for interconnected)/
within (for intraconnected) the protein list is determined
as a fraction of the total number of its interactions in
the GeneGo global network proportional to the size of the
protein list. If the number of interactions with (for
interconnected)/within (for intraconnected) the protein list
is larger than expected, the protein is considered over-
connected; if the number of interactions is lower than

Table 2 Analysis teams25

Organization
abbreviation

Organization name

ABT Abbott Laboratories
Almac Almac Diagnostics, UK
CAS Chinese Academy of Sciences, China
CBC CapitalBio Corporation, China
CDRH Center for Devices and Radiological Health, FDA
CDRH2 Center for Devices and Radiological Health, FDA
CIPF Centro de Investigacion Principe Felipe, Spain
Cornell Weill Medical College of Cornell University
Cornell2 Cornell University
DKFZ German Cancer Research Center, Germany
EPA US Environmental Protection Agency
FBK Fondazione Bruno Kessler, Italy
GeneGo GeneGo Inc.
GHI Golden Helix Inc.
GT Georgia Institute of Technology, Emory University
JHSPH Johns Hopkins Bloomberg School of Public Health
KU University of Kansas
Ligand Ligand Pharmaceuticals
NCTR National Center for Toxicological Research, FDA
NIEHS National Institute of Environmental Health Sciences
NWU Northwestern University
Princeton Princeton University
Roche Roche Palo Alto LLC
SAI Systems Analytics Inc.
SAS SAS Institute Inc.
SDSU South Dakota State University
SIB Swiss Institute of Bioinformatics, Switzerland
SA SuperArray Bioscience Corporation
Tsinghua Tsinghua University, China
UAMS University of Arkansas for Medical Sciences
UCLA Cedars-Sinai Medical Center of UCLA
UIUC University of Illinois at Urbana-Champaign
UML University of Massachusetts Lowell
USM University of Southern Mississippi
ZJU Zhejiang University, China
GSK GlaxoSmithKline
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expected, the protein is considered underconnected. The
degree of over- and underconnectivity can be evaluated by
z-score and P-value. The z-score signifies the difference
between the obtained number of proteins and the expected
average number of proteins corresponding to genes
expressed in units of standard dispersion. P-values were
calculated using the basic formula for a hypergeometric
distribution listed above, where r¼number of proteins
derived from current protein list that have interactions with
given protein; R¼ total number of proteins in the GeneGo
global network that have interactions with given protein;
n¼ total number of proteins in given protein list; and
N¼ total number of proteins in the GeneGo global network.

Z " score ¼
r " n R

Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n R

N

! "
1" R

N

! "q
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Upstream and downstream targets
All signatures were analyzed for the most frequent upstream
targets that have outgoing links to genes in signatures, and
downstream targets, which have incoming links from genes
in signatures. The results were ranked by P-value. The
P-values were calculated using a binomial distribution.

Calculating significance for topological properties of end points
and signatures
Topological properties were calculated from the global
protein interaction network database of MetaCore v6.0.
The pool of genes present on the microarrays for each end
point was randomly sampled 10 000 times, and multiple
random sets of sizes corresponding to end points (union of
signatures) were generated. Topological features such as
largest direct interaction (DI) cluster size and average
shortest paths were calculated for the random sets and
compared to the topological properties of the corresponding
end points. The average shortest path of a set was calculated
as an average over the shortest paths between all possible
gene pairs from the set in the global interaction network.
To assign significance to the sizes of the DI networks of

end points, we evaluated the relative frequency of instances
for which the random DI networks were larger than or equal
to the DI network of the end points, and P-values were
calculated. Similarly, the average shortest paths of end
points was compared to the average shortest paths of
corresponding random sets, and we evaluated the number
of instances for which the random sets had smaller or equal
average shortest paths, and P-values were calculated.
Similarly, we calculated the significance of the topological

properties for signatures by randomly sampling the micro-
arrays and generating random sets of the sizes correspond-
ing to the sizes of the signatures.

Calculating significance for the overlap of signatures and end
points
To assign a significance level to the overlap of signatures and
end points, we generated 10 000 random samples of the
same sizes as the signatures and end points from the pools of

genes present on the microarrays. Next, we calculated the
overlaps between the gene sets of signatures and end points
and estimated P-values as relative frequency of instances in
which the random sets had higher or equal overlap than the
genes from the corresponding signatures and the end
points.

Calculating network distance between sets of genes
The network distance between two sets of genes (A and B)
was calculated as the average shortest path between all genes
from A to B. This distance was normalized with the sizes of
A and B. The distance can be written as:

sðA; BÞ ¼ sABh i= sAh iþ sBh ið Þ:

/SABS is the average undirected shortest path between all
genes from A to B. /sAS and /sBS are the average shortest
paths between gene pairs within A and B.

k Statistics
k Statistics is a statistical measure of interrater agreement.
The input for k involves a couple of raters or learners, which
classify a set of objects into categories. In this study, we used
it to compare different signatures for their congruency.
Similar to the design in Huang et al.,34 we consider each
team as a learner or rater and each object (probe) in the
union of signatures’ probes is categorized by each team as
1 (selected) or 0 (unselected). Using this 0/1 matrix
(object& learner) as input, we used the Cohen’s k function
{concord} package in R35 to derive k values, z-scores and
P-values for congruency. Instead of using Cohen’s k,36 we
used Siegel and Castellan’s k (1988), by assuming pooled
classification proportions and an adjustment for bias, in
which the different methods systematically differ in their
categorization.37 Such calculations are also provided by the
R package. The congruency can be between two raters
(teams) as pairwise or on all teams as overall congruency.
Our analysis is not only on signature genes, but also on a set
of pathways (arrived at by EA) for each team, which
calculates the congruency at the biological pathway level.

Pairwise trees at signature, pathway and network levels, and
their comparisons
k Statistics (z-scores) were calculated for signature con-
gruency based on three parameters: feature intersection, EA
(disease biomarkers) and network distance. The pairwise
matrix was calculated and the cluster trees were plotted for
feature intersection, pathway (disease) and network dis-
tance, respectively. The hierarchical tree was plotted using
the hclust function of R35 and ‘complete linkage’ as the
agglomeration method.38 As z-scores can be negative and
the higher z-scores correspond to shorter ‘distance’, the
‘similarity’ used a fixed positive number minus each z-score,
while keeping the relative ‘distance’ as the input for plotting
the trees.
A general comparison of two trees is a matter of graph

similarity. In this study, we introduced a simple but efficient
approach for our hierarchical trees. Assuming that we are
comparing signature tree with disease pathway tree for end
point A: starting with ‘distance matrix’, for each team, we
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selected its five nearest neighbors (if we set neighbor-
hood¼5) from the signature distance matrix and from the
disease pathway distance matrix, respectively. Then for each
of the 34 teams, we compared their 5 nearest neighbors as
overlap ratios. The average of 34 such overlap ratios is
considered as a statistic for similarity between signature tree
and disease tree for end point A. Comparisons for other end
points were calculated using the same approach.

Results

We analyzed all gene signatures produced by 33 teams for 13
end points (labeled A–M), a total of 262 gene lists between
3 and 200 probes in size. The number of signatures for
different end points varied from 17 to 27, as not every team
submitted signatures for all end points. In addition to
analyzing individual signatures, we created nonredundant
unions for each end point, comprising all the genes

represented in one or more of the individual signatures for
that end point. Signature unions varied in size from 92
(end point L) to 659 genes (F) (Supplementary Table 1).

Gene signatures for different end points vary in their composition
by protein function
We divided genes for each signature into eight broadly
defined encoded protein functions: TFs, receptors, ligands,
kinases, proteases, phosphatases, enzymes and ‘other’ (for
example, unspecified binding proteins) (Supplementary File
1). We considered as controls the overall distribution of
protein function in the MetaCore database (about 20 000
human proteins) and in the sets of differentially expressed
genes (DEGs) for each end point. Signatures varied signifi-
cantly in protein functions in an end point and model-
dependent manner (Figure 1). Signatures C, D, E and I were
enriched in TFs; A in metabolic enzymes; C, D and M:
receptors; and H: proteases. The protein function enrich-
ment pattern in signatures tended to reflect the biology of

Figure 1 Protein function enrichment in signatures and unions for all end points. (a) Protein class distribution for end point A, individual signatures.
(b) Protein class distribution for end point E, individual signatures. (c) Protein class distribution for union signatures for all 13 end points. (d) Protein
class distribution for all end points; all signatures.
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the corresponding phenotype. Signatures for end point A
(lung tumorigenicity) featured a high fraction of xenobiotic-
metabolizing enzymes. In contrast, signatures for end point
E (breast cancer) were highly enriched with TFs, reflecting
intensive transcriptional activity in invasive breast tumors.

Signature network topology is end point dependent
We evaluated the interconnectivity of signatures and their
unions, relative to the general connectivity of the human
interactome (about 300000 experimentally validated human

protein interactions recorded in MetaCore v6.0). Specifically,
we calculated the relative enrichment of signature genes with
IN and OUT hubs (proteins with the highest number of
incoming (upstream) and outgoing (downstream) interac-
tions, correspondingly)39 (Figure 2; Supplementary File 3).
Signature genes generally encoded proteins with more
interactions than the average human protein. In all, 10
out of the 13 union signatures were enriched in hubs (highly
connected proteins with many interactions). The degree of
enrichment with IN or OUT interactions reflected the

Figure 2 Network topology enrichment for signatures and unions for all end points. (a) Enrichment in ‘degree’—average number of interactions
per gene in signatures for end points A, E and median signatures for all end points. (b) Distribution of degrees IN and degrees OUT for end points A
and E and for all end points.
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observed protein function distribution: a high degree of
IN was observed with a high fraction of ‘effector’ proteins
such as core metabolic enzymes (end points A, B and C,
which represent pathological responses to xenobiotic
exposures), whereas a high degree of OUT is indicative
of an enrichment in TFs (end point E). Union signatures
for 11 of the 13 end points were enriched with IN interac-
tions compared with the global interactome (interactions
driven by an upstream protein, such as transcriptional
regulation or phosphorylation).

Signature genes are interconnected, but connectivity does not
correlate with signature performance
An important measure of functional connectivity between
genes is the ability of their protein products to form DI
networks.40 The size of the DI network and the probability
(P-value) of assembling a DI network with the same number
of nodes from a random set of genes serves as a quantitative
measure of interconnectivity (see Materials and methods for
details). We built DI networks for all 262 signatures and 13
unions (Supplementary Table 2; Supplementary File 4). The
ability of signature gene lists to generate DI networks was
dependent on the phenotype and the statistical method
used to derive the signature. No significant DI networks
were assembled from any signature for end points A, B, H
and L. Conversely, between 45 and 85% of signatures
assembled into statistically significant DI networks for end
points C, D, E and K. Signatures generated by certain
analysis groups (likely reflecting the methodology used)
formed DI networks more consistently than other teams’
signatures. Over 40% of signatures derived by the SAI,
Tsinghua and ZJU teams formed networks. Signatures from
other teams, however, did not assemble into DI networks
regardless of the end point (DKFZ, GT, JHSPH).
Signature unions for 10 of the 13 end points formed

statistically significant DI networks (Supplementary File 4).
No networks were formed by the unions of end points B, H
and L. Altogether, 22 out of 33 teams generated signatures
capable of forming statistically significant DI networks,
indicating that the genes comprising most signatures were
interconnected to a significantly higher degree than ex-
pected for a random gene list of the same size. Therefore, we
conclude that the predictive models used tended to select
interconnecting genes. We saw no correlation between
signature performance and interconnectivity between its
genes, however, so there does not appear to be any relation-
ship between the biological interconnectedness of signature
genes and their predictive power.

EA of gene signatures and unions
EA is a standard FA method to highlight and rank
biologically relevant pathways, processes, disease markers
or other functionality in a gene list. Relative enrichment can
be evaluated by hypergeometric distribution P-value,41 gene
set enrichment analysis score13 and other metrics. We
subjected all 262 signatures, signature unions and sets of
DEGs (as defined by t-test) for each end point to EA across
five ontologies in MetaCore: canonical pathway maps,

GeneGo process networks, GeneGo disease biomarkers, GO
cellular processes and GO molecular functions (Supplemen-
tary File 5, Supplementary Archive 2). We also tested
consistency in ontology distributions between signature
unions, all DEGs and end point phenotypes. The enrich-
ment pattern for both unions and DEGs was highly end
point dependent, and, in most cases, matched the biology of
the end point phenotype. For example, unions A and C
(xenobiotic-induced lung tumor and liver necrosis, respec-
tively) were highly enriched in pathways for oxidative stress
response, glutathione metabolism, and drug-metabolizing
enzymes and their transcriptional regulation by NRF2 and
CAR. Unions D and E (breast cancer end points) featured
enrichment in breast cancer biomarkers and pathways
characteristic of invasive carcinogenesis, such as cell adhe-
sion, PLAU signaling, estrogen receptor signaling and
apoptosis. Unions F and G (multiple myeloma) and J and
K (glioblastoma) were enriched in cell-cycle pathways, and
checkpoint proteins typical of early cancer development.
Interestingly, the average model performance for an end
point (evaluated by the Matthew’s correlation coefficient,
MCC) was strongest when the union’s enrichment in the
disease biomarkers ontology best reflected the phenotype of
the end point. MCC for end point C was the highest among
the three xenobiotic-induced pathology end points. The
signature union for C (overall necrosis score) was enriched
for ‘drug toxicity’ (PoE"17); ‘drug toxicity’ was less highly
enriched (P-value in the E"6 range) for A and B (carcino-
genicity), which were also less accurately classified by
signatures. In the breast cancer data set, signatures for end
point E (estrogen receptor status) had a higher MCC than
those for D (treatment response), and a very strong
enrichment for breast cancer-related genes (PoE"16) was
seen in the E signature union. For end point A, the
enrichment pattern of DEGs was more consistent with the
end point phenotype (chemically induced lung cancer in
mice) than that of the signature union. The signature union
for A showed two clear trends: general drug-induced toxicity
and specific lung cancer responses. Lung cancer-related
pathways and biomarkers were also enriched in DEGs for
end point C (liver necrosis) (PoE"8 for lung neoplasms,
compared with PoE"4 for end point A signature union
genes). DEGs for end point A were enriched with carcino-
genesis pathways and processes, whereas signature union
genes for A were enriched with drug response and oxidative
stress pathways (Supplementary File 5). MCC performance
for A was also the worst among the three xenobiotic
response data sets.

Ontology enrichment of outlier unions
FA revealed four outlier signature unions, those for end
points H, I, L and M. These unions showed dramatic
discordance with the corresponding data sets, and clear
differences to other unions, but for very different reasons.
End points I and M were ‘dummy’ end points, defined by

randomly generated label sets and introduced as a negative
control for model performance. In general, genes in
signatures for I and M had a model-dependent functional
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bias similar to other end points. Thus, I and M signatures
were enriched in hub genes, similar to others. Unions for I
and M formed statistically significant DI networks, and
contained common housekeeping genes, as seen for other
signatures. Moreover, P-value distributions in ontology EA
for I and M union signatures was characteristic of function-
ally cohesive data sets. These data suggests a systematic
topology bias toward highly connected genes implicated in
most models. However, ontology enrichment was in striking
dissonance with the expected functionality of the original
data sets. For the disease biomarker ontology, both I and M
were highly enriched in genes associated with cardiac and
blood vessel diseases (Po10"8), highly discordant with the
cancer-related phenotype of the data sets, multiple myelo-
ma and neuroblastoma, correspondingly. Similarly, distribu-
tions in other ontologies were enriched with pathways and
processes also inconsistent with the cancer source of the
data sets, but consistent with cardiovascular development
(Supplementary File 5).
End points H and L were composed of gender class labels

as a positive control for model performance. These also were
clear outliers in most of our analyses. The results of EA on
union signatures for H and L was inconsistent with the
expected cancer phenotype. The P-values for all ontologies
(with the exception of disease biomarkers) were several
orders of magnitude higher than that for other unions
(except the dummy end point, J). Moreover, the enriched
diseases were linked to male and female reproductive
systems, rather than cancer, including MeSH terms (http://
www.nlm.nih.gov/mesh) for urogenital diseases, gonadal
dysgenesis and sex-differentiation disorders. Enriched Gen-
eGo and GO processes for H and L included male sex
differentiation and androgen receptor signaling, and repro-
ductive categories such as spermatogenesis (Supplementary
File 5). Signatures for both H and L were enriched in
underconnected genes, in stark contrast to the other
signatures, which were enriched in highly connected hubs.
Interestingly, signatures for these two end points were most
similar in gene content in a pairwise comparison of all
signature unions (Supplementary File 6), and these were the
only end points for which the unions failed to form
statistically significant DI networks. The functional compo-
sition of signatures for H and L, although they differ from
those of the other end points, reflect their corresponding
class label (gender), and indicate that classification for this
phenotype is made on the basis of genes involved in gender-
specific processes. The consistency in composition of
signature unions for H and L underlines the robustness of
the models in selecting end point-relevant genes from very
different data sets.
In addition to highlighting the biological relevance of

gene signatures, the ability of our functional analyses to
clearly differentiate the positive- and negative-control label
sets from the other end points, and to reveal the sex-related
nature of genes that classify gender from different data sets,
demonstrates the validity of the approach in investigating
the biological basis of classifier gene signatures for other
phenotypes.

Signature similarity
A key issue in disease biology is the heterogeneity of human
samples and the problem of subclustering of samples in a
study (cohort) in a clinically relevant way to allow
phenotypic anchoring of gene expression data to well-
defined clinical classes. Traditionally, expression data sets
are clustered based on sharing DEGs between samples.4

However, recent data suggests that shared functionality
(differentially affected pathways, subnetworks) may repre-
sent a more robust classifier than gene expression alone.17,40

We addressed this issue by investigating the similarity
(congruency) between different signatures for the same
end point at three levels. First, the degree of overlap in gene
content was measured. Second, congruency at the level of
gene functionality (biological pathways, processes and
disease associations) was investigated. Third, we measured
topological congruency by the average distance between the
signature gene sets within the global interactome.

Similarity based on gene content
We calculated pairwise intersections (overlaps) of gene
content between signatures and evaluated their significance
by P-value. Signatures formed statistically significant inter-
sections in an end point-dependent manner, ranging from
38% of pairs (end point J) to 100% (end point H)
(Supplementary File 6). Importantly, some genes were
consistently repeated between signatures and unions.
Common genes between unions included housekeeping
genes, such as the 60S and 40S ribosomal subunit genes (10
and 9 unions, respectively), elongation factor 1-a (7 unions)
and ribonucleotide reductase (5 unions) (Supplementary
Table 3). Altogether, 9 of the 39 most common genes
encoded immunoglobulins of different A, G, E and M
complexes, particularly in breast cancer and multiple
myeloma signature unions. The most common genes were
generally enriched with IN interactions (10.5–24.5 interac-
tions per protein on average).
Pairwise similarity between signatures was calculated by k

values, z-score and P-value metrics, taking into account both
unique and common features (probes or probe sets) between
signatures (Supplementary File 7). k Values (value, z-score
and P-value) were calculated for each pair of signatures for
each phenotype. The higher the z-score, the lower the
P-value and the higher the congruency. Degree of con-
gruency varied between teams. For instance, the GSK team’s
signatures for A were similar to signatures from SDSU (P¼0)
and GHI (P¼0), but dissimilar to NCTR (P¼0.52) or CAS
(P¼0.41) signatures. Some signatures, for instance, those
from the ZJU team, were dissimilar to all others (minimum
pairwise P-values for ZJU¼0.77). Gene content-based con-
gruency was also end point specific (Supplementary File 8).

Similarity based on ontology enrichment
A pattern of distribution in EA can be used as a measure of
similarity between gene lists or experiments. We evaluated
congruency between all signatures within and across end
points using k statistics for the enrichment of all 262
signatures across 5 ontologies (see Materials and methods).
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For instance, for each end point, the composition of units
of the disease ontology with Po0.05 were compared
according to pairwise.path.z-score and pairwise.path.P-value
(Supplementary File 9). Similarity between signatures is shown
in a hierarchical tree (Supplementary File 8). Pairwise con-
gruency (P-values) at the pathway level varied significantly in
an end-point-dependent manner (Supplementary File 8).

Similarity based on network distance
Similarity between gene sets can also be assessed based on
the network distance between them. The topological
distances between all signature pairs were calculated as the
ratio of the average shortest path between proteins belong-
ing to different signatures to the average shortest paths
between proteins from the same signature. Hierarchical
clustering38 was applied to generate signature trees. Signa-

tures characterized by proximity on the global interaction
networks were grouped together (for example SAI, ABT, SA,
Cornell, EPA in Figure 3), whereas other signatures (FBK in
Figure 3) were characterized by large network distances from
all other signatures.
The hierarchical trees generated from gene content, ontology

enrichment (disease biomarkers) or network distance measure
relative pairwise closeness of the signatures. Trees for the same
end point are therefore directly comparable (Supplementary
Table 4). t-Test analysis showed that different signatures for the
same end point are more similar when compared by gene
content and ontology enrichment, than when compared by
network similarity (Supplementary Table 3).
We further evaluated whether gene content or ontology

enrichment is more relevant as a measure of similarity. Each
signature was pairwise compared with every other signature

Figure 3 Signature similarity for end point A based on (a) feature content; (b) ontology enrichment; (c) network closeness. Using the k statistics,
we generated hierarchical trees using z-scores as a measurement of distance. Trees for the 12 other end points are given in Supplementary File 9.
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by gene content and ontology using k P-value (Supplemen-
tary Table 5). At a cutoff of P¼0.05, we calculated pairwise
changes from nonsignificance at the gene level to signifi-
cance at the enrichment level, and changes from signifi-
cance by genes to nonsignificance by enrichment. For
signatures from the ABT team, the values were 15 and 0,
meaning that signatures from 15 other teams became
significantly more congruent to those from ABT when gene
overlap was substituted with ontology overlap. No teams’
signatures became more significant in the other direction.
The difference for ABT is 15 (15"0), compared to the null
hypothesis of zero. We repeated the above process for each
team for every end point (Supplementary Table 6). For end
points A, C, D, E, F, Land M, the GeneGo Disease Biomarkers
ontology produced significantly higher pairwise congruency
than with gene content. For end points H and K, the
P-values were nonsignificant following multiple test adjust-
ment. For end points B, G, I and J, P-values were higher than
0.2 (not significant). The P-value for the same t-test across all
13 end points simultaneously was 5.3E"19, confirming that
congruency at the level of functional ontologies was
significantly higher than by gene content.

Correlation between signature similarity and model performance
We evaluated the correlation between signature similarity
(measured as k at the level of feature intersection and ontology
congruency, Figure 4a) to model performance (internal valida-
tion on the training sets and external validation). The con-
gruence value was compared to the averagemodel performance
for an end point (Figure 4b, Supplementary Table 7). Overall,
we saw a strong positive correlation (Po0.001) between
signature congruency and model performance, suggesting that
certain phenotypes have a stronger characteristic transcrip-
tional fingerprint than others, and are therefore more amen-
able to addressing with the gene signature approach.

Transcriptional regulators of signature genes, and genes regulated
by signature genes, are end point related
Proteins functionally important for a particular phenotype
have many interactions with proteins encoded by genes
differentially expressed in the phenotype.16 This is logical,
as proteins function in physically connected groups (com-
plexes, pathways, network modules) and functionally
related genes are co-regulated by TFs. To identify the ‘most
relevant’ (that is, most connected) proteins for each end
point, we evaluated (1) for each protein from a given
signature, relative connectivity between it and other
proteins from the signature (intraconnectivity); (2) for each
protein from a given signature, relative connectivity
between it and all proteins from the human proteome
(defined by the MetaCore database of 20 000 human
proteins and 300000 directional protein interactions20

(Figure 5, see Materials and methods). Proteins were consi-
dered overconnected when the number of observed inter-
actions exceeded the number of expected interactions42

(details in Materials and methods). In general, connectivity
between genes within individual signatures (intraconnectiv-
ity) was low (Supplementary File 10). However, several TFs

were overconnected with the genes frommultiple signatures
for end points C, D, E, F, G, J and K (Supplementary File 10).
For instance, ATF3 regulates (physically binds to the
promoters of) genes from five signatures. ESR1 regulates
genes from 7 and 15 signatures for end points D and E,
correspondingly.
Considering all interaction mechanisms, we found that

signature genes were not overconnected with the global
proteome, with the exception of end points A, F and K.
However, signatures for all end points featured a dispropor-
tionably large fraction of targets of particular TFs (defined as
overconnected by transcription regulation interactions)
(Supplementary File 10). Most signature genes were regu-
lated by very few upstream TFs in a highly end-point-specific
manner (Supplementary File 10). For instance, 9 out of 24
signatures for end point A were regulated by NRF2 (a key TF
in controlling cellular oxidative stress response). Of 24, 17
signatures for E included direct targets of forkhead family TF
HNF3-a (epithelial transcription) and of 24, 16 included
direct targets of ESR1. Of 21, 15 signatures for H were co-
regulated by both En2 (developmental homeo-domain-
containing TF) and MBLR (developmental polycomb group
TF) (Supplementary File 10). Downstream signaling from
signature genes also was highly clustered. Signature genes
regulated a limited number of downstream genes and
reactions (Supplementary File 11). Out of 24, 16 signatures
for end point A contained drug-metabolizing enzymes; out
of 24, 20 signatures for E contained genes regulating
tyrosine 3-monooxygenase TY3H; 19 contained genes
regulating CG-a and 11 contained genes regulating inter-
leukin-4. In end point H, downstream signaling is seen with
only 4 out of 20 signatures (those from CBC, Cornell, DKFZ
and SA), which regulate IFN-b, TCL1A and TBX3.

Discussion

Our observations suggest that gene signatures derived statis-
tically and by machine-learning algorithms do not indepen-
dently make biological sense in the context of functional
biological units such as pathways. Instead, functional correla-
tions manifest only at the level of genotype–phenotype
association and protein interaction, where signatures are
logically distributed across ontologies of cellular processes,
pathways and biomarkers, and physically connected into
significant networks. Correlation through ontology enrich-
ment was particularly pronounced for the nonredundant gene
unions of all signatures for a given phenotype (lower distri-
bution P-values for unions than for individual signatures).
This suggests that different statistical models selected different
subsets of genes from the same pathways and processes, and
highlights the redundancy of molecular signatures where
variable selection can lead to many quantitative solutions of
equal reliability in terms of prediction rates.43,44 Biological
pathways are partly reconstructed from individual signatures
in signature unions.
Signatures selected by different methods share certain

features across all end points. Most signatures and all unions
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were enriched in hubs (the 25% highest-connected human
proteins). Moreover, signature genes predominantly encode
IN proteins, with most of their interactions being upstream.
A high ratio of IN to OUT interactions is typical of effector
proteins such as metabolic enzymes, cytoskeleton and cell
matrix proteins—housekeeping genes encoding homeo-
static functions. Genes encoding effector proteins are more
likely to show condition-related changes in expression levels
than transiently expressed regulatory genes, contributing to
a higher probability of selection in predictive models.
Phenotype (end point) dependency of gene signatures

is evident from multiple analyses. In addition to a high
fraction of OUT interactions, end points D and E (breast
cancer phenotypes) featured the largest number of statisti-
cally significant DI networks, both within their individual
signatures, and within their signature unions. The number
of intersignature links was also the highest for the breast
cancer end points D and E. Breast cancer is a complex and
heterogeneous disease with many different subtypes, invol-
ving hundreds of pathways and processes. Models applied

by different teams likely selected genes responsible for
different, yet related processes of carcinogenesis. Interest-
ingly, some signatures were enriched in regulatory genes
and some in regulated genes within the highly connected,
relatively small unions for end points D and E.
Some genes were consistently represented in multiple

signatures across different end points. A total of 38 genes
were selected in at least 4 out of 13 union signatures. Two
genes, encoding 60S and 40S rRNA, were selected in 10 and
9 unions, respectively. eEF1A1 (elongation factor 1) was
chosen in seven unions, including both xenobiotic-induced
pathology and cancer end points. A number of DNA
exchange and protein biosynthesis genes made the ‘top
38’, including CENP-A (histone H3-like centromeric protein
A), ribonucleotide reductase, Holliday junction recognition
protein and POLE2 (DNA polymerase-e subunit 2). This
suggests that the core cellular functions are profoundly
altered in both drug response and homeostasis-changing
diseases such as cancer. A large number of genes encoding
immunoglobulins appeared in signatures for multiple end

Figure 4 Correlation between signature similarity and model performance. (a) Correlation between signature intersection and ontological
enrichment similarity (five ontologies) for 13 end points. (b) Correlation between signature similarity and model performance. The similarity was
calculated by k statistics as P-values among all submitted gene lists for each end point. MCC was used to evaluate model performance.
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points (11 out of 38 top genes), partly due to their high
relevance for breast cancer and multiple myeloma end
points.
Although housekeeping genes are highly represented in

multiple unions, individual unions are also enriched in
tissue-specific genes, evident from EA in disease biomarkers
(Supplementary File 6; Supplementary File 14). With the
exception of the ‘dummy’ data sets I and M, unions are
enriched with disease-associated genes in a manner highly
consistent with the end points (P-value range E"6 to E"17
for different end points; Supplementary File 14). It was
recently shown that tissue-specific genes are twice as likely
as housekeeping genes to be associated with diseases.45

Signatures for the same end point showed both similarity
(or congruency—shared gene content and enriched ontol-
ogies) and synergy (interconnectivity). We compared con-
gruency by two statistical approaches at both the gene
content and the functional level (disease biomarkers,
canonical pathways, GO and GeneGo cellular processes).
Congruency at the functional level was consistently higher
than at the feature (gene) level for all end points. A logical
explanation for this observation is that different statistical
models may select different sets of genes from the same
biological categories. Higher pathway congruency supports
the assumption of common underlying biological mechan-
isms for each end point. Signature congruency is in
agreement with the observation of ‘synergy’ between
signatures in ontology EA, evidenced by lower P-values for
unions compared with the individual signatures for the
same end point42 (data not shown). These two observations
suggest that FA procedures are robust and efficient tools
for the measurement of similarity between data sets and
gene lists. The pathway/ontology congruency technique we
developed will be useful in such critical applications as

patient cohort stratification and clustering of clinical
samples in biomarker discovery, with important applica-
tions in personalized medicine for precise diagnosis and
treatment choice.
A relationship between signature congruency at the gene

level (gene list stability) and average prediction perfor-
mance was noted,25 and we further observed a correlation
between signature congruency at the functional level
and model performance on both training and validation
sets. In general, the more congruent the signatures, the
better the average prediction performance. This is an
unexpected and important finding. The better performing
sets of predictor genes appear to be biologically related, and
are more reflective of the phenotype. The congruency of
different gene classifiers for a given phenotype or outcome
may therefore also be a useful indicator of the amenability
of the end point to accurate prediction using the signature
approach.
For every end point, different signatures were co-regulated

by surprisingly few significantly overconnected TFs. Signa-
ture genes also had a small number of interactions with
overconnected downstream genes and reactions. Typically,
the common regulators and regulated genes do not belong
to the signatures they regulate. The common regulators and
regulated genes are likely to be important in the biology of
the phenotype and can potentially be used as conditional
biomarkers.
Overall, our analysis suggests that although gene signa-

tures, when analyzed individually, are difficult to link to
the predicted phenotype (end point), the genes identified
by various methodologies do have biological relevance.
The union of signature genes for each end point provided a
better indication of the underlying biology of the pheno-
type studied. Signatures for a given end point were

Figure 5 Interactome analysis of signature gene lists. The most frequent upstream and downstream genes for each signature generated for end
points A (a), E (b), H (c) and J (d).
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also congruent at the level of protein functionality
and interconnection. Phenotypes that showed a greater
biological homogeneity, evidenced by higher functional
overlap between different signatures for the end point,
were likely to generate better-performing gene signatures
overall.
When generating predictive signatures for critical applica-

tions, the use of multiple statistical feature selection
approaches, several different classification algorithms or a
recursive feature elimination approach (or a combination
of these approaches) may be employed to generated multi-
ple, independent classifying gene sets to predict the same
outcome. A comparison of these signatures at the feature
level and at the functional, biological level (biological
processes, diseases and interactions), would give confidence
both that the final choice of predictive model is likely to
perform robustly in prospective application, and that the
classification is biologically sound. The approaches pre-
sented here, alongside the wealth of information on best
practices for signature generation and performance assess-
ment resulting from the MAQCII project, will enhance the
development, analysis and appropriate use of gene signa-
tures, and their application to compound safety assessment,
disease diagnosis and personalized medicine.
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