
Partitionable kernels for mapping kernels

Kilho Shin

Graduate School of Applied Informatics

University of Hyogo

Kobe, Japan

yshin@ai.u-hyogo.ac.jp

Abstract—Many of tree kernels in the literature are designed
tanking advantage of the mapping kernel framework. The
most important advantage of using this framework is that we
have a strong theorem to examine positive definiteness of the
resulting tree kernels. In the mapping kernel framework, each
data object is viewed as a collection of components, and a
mapping kernel for a pair of data objects is determined as a
sum of kernel values of component pairs over a certain range
determined according to the purpose of use of the resulting
mapping kernel. For those tree kernels known to belong to the
mapping kernel category, the string kernel of the product type
is commonly used to compute the kernel values of component
pairs. This is because it is known that use of the product-
type string kernel together with the mapping kernel framework
allows us to have recursive formulas to calculate the resulting
tree kernels efficiently. We significantly generalizes this result.
In fact, we show that we can use partitionable kernels, a new
class of string kernels instead of the product-type string kernel
to enjoy the same advantage, that is, efficient computation
based on recursive formulas. The class of partitionable kernels
is abundant, and contains the product-type string kernels just
as an instance. Also, this result, not limited to tree kernels, can
be applied to general mapping kernels after we formalize the
decomposition properties of trees as the new notion of pretty
decomposability.

I. INTRODUCTION

The remarkable success of support vector machine in the

recent ten years emphasizes the importance of designing

good kernels. In fact, the efficiency and the predictive

performance of SVM are greatly affected by the quality of

kernels used, and we have two fundamental requirements for

good kernels: (1) positive definiteness and (2) efficiency of

computation ([1]). These two requirements are not always

easy to support, and hence, an ad-hoc design of kernels

could result in miserable failure. In this regard, a theoretical

approach to design good kernels is important. For example,

Haussler’s convolution kernel ([2]) is an effective tool to

design positive definite kernels. Recently, Shin et al. ([3])

generalized Haussler’s convolution kernel, and introduced

the notion of mapping kernel. Moreover, they applied the

framework of mapping kernel to tree structures, and revealed

that 13 of 19 tree kernels known in the literature are defined

according to the single template formula of

K (X,Y) =
∑

(X′,Y ′)∈MX,Y

|X′|∏
i=1

ϕ(xi, yi).

In the formula, X and Y denote trees; MX,Y represents a

set of isomorphic pairs (X ′, Y ′) of substructures of X and

Y ; {x1, . . . , x|X′|} and {y1, . . . , y|Y ′|} are the vertex sets

of X ′ and Y ′ (the isomorphism of X ′ and Y ′ determines

a bijective correspondence between the vertex sets); and ϕ
is a primitive kernel defined over an alphabet of (labels of)

vertices. Shin et al. showed a general condition of MX,Y

for K (X,Y) to become positive definite.

Furthermore, by taking advantage of certain good decom-

posability of the structure of trees and the form of the inner

kernel
∏|X′|

i=1 ϕ(xi, yi), we can derive a recursive formula to

compute K (X,Y) efficiently.

The main contribution of this paper is to generalize

this result in two ways. On one hand, we formalize the

structural features of trees useful for efficient computation of

K (X,Y), and introduce the notion of pretty decomposability
of MX,Y . By this notion, we can extend the range of appli-

cation of the method from trees to more general structures.

On the other hand, we define the class of partitionable

kernels, which includes the kernel
∏|X′|

i=1 ϕ(xi, yi) as an

instance, and extend the range of inner kernels to which

the aforementioned efficient method to compute K (X,Y)
is applicable. Hence, we will show that a mapping kernel

K (x, y) =
∑

(x′,y′)∈Mx,y

κ(x′, y′)

has a set of recursive formulas to compute itself, if Mx,y

is pretty decomposable and κ is partitionable. Moreover, we

define an invariant hidden degree for partitionable kernels,

and show that the hidden degree one exactly characterizes

the set of kernels of the form of
∏|X′|

i=1 ϕ(xi, yi). For an

arbitrary positive hidden degree, we have instances of the

partitionable kernel with the hidden degree.

In the remainder of this introductory section, we take the

theory of tree edit distance and tree kernel as an example,

and clarify the problem that we are going to struggle with

2011 11th IEEE International Conference on Data Mining

1550-4786/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDM.2011.115

645

Symbol Definition

•X The root of �X
◦X The remaining sub-forest when eliminating •X from X
�X The leftmost subtree of X
�X The remaining sub-forest when eliminating �X from X

Figure 1. Definition of •X, ◦X, �X and �X

in this paper. Throughout in this paper, by trees, we always

mean rooted, ordered and labeled trees.

Introduced by Taı̈ et al. ([4]), Taı̈ edit distance is widely

used for comparison of trees, and is defined as follows. An

edit script σ that converts a tree X into another Y is a finite

sequence of edit operations, where each edit operation can

either be:

1) deletion of a vertex x from X , written as 〈x→ •〉,
2) insertion of a vertex y of Y into X , 〈• → y〉,
3) substitution of a vertex y of Y for x of X , 〈x→ y〉.

To each operation 〈a → b〉, is associated a cost γ〈a → b〉
which is symmetric in the sense that γ〈a→ b〉 = γ〈b→ a〉
holds. The cost γ(σ) of a script σ is the sum of the costs

of all edit operations in σ. Then, Taı̈ edit distance d(X,Y)
between X and Y is defined as the minimum over the costs

of all scripts that convert X into Y , which can be formulated

as follows.

d(X,Y) = min{γ(σ) | σ : X → Y }
Taı̈ et al. also showed that their tree edit distance can be

computed by an efficient dynamic programming algorithm

determined by the following recursive expression.

d(X,Y) = min⎧⎨
⎩

γ〈•X → •〉+ d(◦X,Y),
γ〈• → •Y 〉+ d(X, ◦Y),

γ〈•X → •Y 〉+ d(◦�X, ◦�Y) + d(�X, �Y)

⎫⎬
⎭ (1)

The range of X and Y is extended to forests, ordered

sequences of one or more trees, and •X, ◦X, �X and �X
are operations on forests defined as depicted by Figure 1.

On the other hand, since Collins and Duffy ([5]) intro-

duced the first instance of tree kernels, many tree kernels

have been proposed. In relation to tree edit distance, Shin

and Kuboyama ([6]) introduced a kernel that is defined as

the exponentiated soft minimum of costs of edit scripts.

K ′(X,Y) =
∑

σ:X→Y

e−λγ(σ). (2)

This is a clear contrast with Taı̈’s edit distance, which is

defined as the hard minimum. The exponentiated soft mini-

mum gives an analytic approximation of the hard minimum,

and the following asymptotic property holds.

lim
λ→∞

1

−λ log

(
n∑
i

e−λai

)
= min{a1, . . . , an}

Although the kernel is not always positive definiteness, it

is positive definite for the practical setting of γ〈a → b〉 =
1− δa,b, where δa,b is Kronecker’s delta, that is, δa,b is 1 if

a = b, and is 0 otherwise.
Moreover, the normalized form of this kernel, that is

K (X,Y) = g(X)g(Y)K ′(X,Y), (3)

where g(X) =
∏

x∈X eλγ〈x→•〉, turns out to have an effi-

cient method of calculation. In fact, the following recursive

formulas yield an efficient dynamic programing algorithm.

K (X,Y) =
•K (X,Y) +K (X, ◦Y) +K (◦X,Y)−K (◦X, ◦Y)

•K (X,Y) =

(
e−λγ〈•X→•Y 〉

e−λγ〈•X→•〉e−λγ〈•→•Y 〉

)
·

(
1 +K (◦�X, ◦�Y)

) · (1 +K (�X, �Y)
)

(4)

The reader may notice a similarity between the formulas

(1) and (4). Both include γ〈•X → •Y 〉, γ〈•X → •〉,
γ〈• → •Y 〉, (X, ◦Y), (◦X,Y), (◦�X, ◦�X) and (�X, �Y),

and the resulting dynamic programming algorithms for

edit distance and kernel have the same time complexity

O(|X|3/2 |Y |3/2) by taking advantage of Demaine’s strategy

([7]). This similarity is not just a coincidence, but is because

these recursive expressions are designed based on the same

structural decomposition rules of trees.
In addition, this method to calculate Shin and Kuboyama’s

kernel is extended to arbitrary tree kernels of the form of

K (X,Y) =
∑

(X′,Y ′)∈MX,Y

|X′|∏
i=1

ϕ(xi, yi). (5)

In the above, MX,Y is the entire set of isomorphic pairs of

substructures (X ′, Y ′), that is, for X ′ � X and Y ′ � Y ,

there exists a unique bijection between the vertex set of X ′

and that of Y ′ that preserves the parent and sibling orders

at the same time. Moreover, (xi, yi) are the corresponding

pairs of vertices of X ′ and Y ′ under this bijection, and ϕ is

a kernel determined over the set of vertices. To obtain the

tree kernel (3) from (5), we have only to let

ϕ(x, y) =
e−λγ〈x→y〉

e−λγ〈x→•〉e−λγ〈y→•〉 . (6)

646

On the other hand, the recursive formulas to calcu-

late the kernel (5) are obtained by simply replacing
e−λγ〈x→y〉

e−λγ〈x→•〉e−λγ〈y→•〉 in (4) with ϕ(•X, •Y).

In order to investigate positive definiteness of the ker-

nel (5), we can take advantage of a general result for

mapping kernels. A mapping kernel is abstractly defined by

K (X,Y) =
∑

(X′,Y ′)∈MX,Y

κ(X ′, Y ′),

and the set {MX,Y | X,Y } is called a mapping system.

Theorem 1 of [6] asserts that K is positive definite for any

positive definite κ, if, and only if, the mapping system is

transitive in the following sense: (X ′, Y ′) ∈MX,Y implies

(Y ′, X ′) ∈MY,X , and (X ′, Y ′) ∈MX,Y ∧(Y ′, Z ′) ∈MY,Z

implies (X ′, Z ′) ∈ MX,Z . The mapping kernel has a wide

range of application. Shin and Kuboyama ([3]) reported that

18 of 19 tree kernels known in the literature can be defined

as mapping kernels, and in particular, 13 of 18 are of the

form (5) for different MX,Y .

The aim of this paper is to extend the aforementioned

technique for efficient computation of tree kernels to general

mapping kernels. In fact, we investigate conditions of Mx,y

and κ such that a mapping kernel determined by

K (X,Y) =
∑

(X′,Y ′)∈MX,Y

κ(x1 . . . x|X′|, y1 . . . y|Y ′|)

has recursive formulas to calculate itself efficiently. Here

and throughout in this paper, we assume Mx,y is a subset of⋃∞
i=0

(
Σi × Σi

)
, where Σ denotes an alphabet, and hence,

an element of Mx,y is a pair of strings of the same length.

This setting is not too restrictive in practice. For example,

a substructure of a tree can be viewed as a sequence of

vertices by aligning the vertices in the order of any of in-

order, post-order and pre-order traversals. With this setting,

we introduce two conditions, pretty decomposability for

mapping systems MX,Y and partionability for κ, and show

that, if a mapping system Mx,y is pretty decomposable and

κ is partitionable kernel, such recursive formulas exist.

The organization of this paper is as follows. After in-

troducing the definition of partitionable kernels in Sec-

tion II-A, we show several examples of partitionable kernels

in Section II-B. In Section II-C, we see several important

properties of partitionable kernels. The properties include

closedness of partitionable kernels for addition, multiplica-

tion and scholar multiplication. In Section II-D, we first see

the reason why partitionable kernels can provide recursive

formulas to compute the resulting mapping kernels by taking

tree kernels as an instance, and then, introduce the notion

of pretty decomposability. In Section III, we see time ef-

ficiency and predictive performance of partitionable-kernel-

based mapping tree kernels through experiments with four

tree kernels and three tree datasets.

II. PARTITIONABLE STRING KERNELS

A. Definitions

In order to introduce the definition of partitionable ker-

nels in Definition 3, we first see a couple of preliminary

definitions.

Definition 1. An integral kernel κ[∗] over Σ is a family of

string kernels {κ[i] : Σi × Σi −→ R | i ∈ {0} ∪ N}. In

particular, Σ0 is a singleton set of the null string {∅}, and

a real value is assigned to κ[0](∅,∅). �
Definition 2. Let x = x1 . . . xk and y = y1 . . . yk be strings

in Σk and � be a positive integer. When a sequence of indices

0 = j0 ≤ j1 ≤ j2 ≤ · · · ≤ j�−1 ≤ j� = k is given, the

corresponding �-partition of the pair (x,y) is defined as

a sequence of � pairs of strings (xP1 ,yP1), . . . , (xP� ,xP�)
such that xPi = xji−1+1 . . . xji and yPi = yji−1+1 . . . yji .

For ji = ji+1, we define that xPi and yPi represent the

null string ∅.

For simplicity of description, we denote a 2-partition of

(x,y) by ((xL,yL), (xR,yR)). �
Now, we are ready to introduce partitionable kernels.

Definition 3. A family of integral kernels κ = (κ
[∗]
1 , . . . κ

[∗]
n)

is said to be partitionable, when there exist n-dimensional

square matrices Q1, . . . ,Qn such that

κ
[k]
i (x,y) = κ(xL,yL)Qi

tκ(xR,yR)

holds for any non-negative integer k, any strings x and

y of length k, and any 2-partition ((xL,yL), (xR,yR)) of

(x,y). κ(xL,yL) and tκ(xR,yR) are the row and column

vectors determined by
[
κ
[j1]
1 (xL,yL), . . . , κ

[j1]
n (xL,yL)

]
and

t
[
κ
[k−j1]
1 (xR,yR), . . . , κ

[k−j1]
n (xR,yR)

]
, where the index

sequence 0 = j0 ≤ j1 ≤ j2 = k determines the relevant

2-partition. �
The constraint of 2-partition in Definition 3 is not essen-

tial. When we define �-degree form p as a homogeneous

polynomial of the form

p(X1, . . . ,X�) =
∑

(j1,...,j�)∈{1,...,n}�
cj1,...,j�

�∏
i=1

X(i,ji),

where Xi = (X(i,1), . . . , X(i,n)) is a vector of independent

variables, Theorem 1 indicates that the same concept can be

defined using �-degree form with � 	= 2.

Theorem 1. For a family of kernels κ = (κ
[∗]
1 , . . . , κ

[∗]
n),

the following are equivalent to each other.
1) κ is partitionable.
2) For some � � 2, there exist �-degree

forms p1, . . . , pn such that κ
[∗]
i (x,y) =

pi
(
κ(xP1 ,xP1), . . . ,κ(xP� ,yP�)

)
holds for any

�-partition.

647

3) For any � � 2, there exist �-degree
forms p�1, . . . , p

�
n such that κ

[∗]
i (x,y) =

pi
(
κ(xP1 ,xP1), . . . ,κ(xP� ,yP�)

)
holds for any

�-partition.

Proof: We prove that 1 implies 3 by the mathematical

induction on �. Given an �-partition (xP1 , . . . ,xP�), we let

xL = xP1 and xR = xP2‖ . . . ‖xP� , where ‖ indicates

the concatenation of strings (vectors). Due to κ
[∗]
i (x,y) =

κ(xL,yL)Qi
tκ(xR,yR) and the hypothesis of induction, we

have

κ
[∗]
i (x) = κ(xP1 ,yPi)Qi

t
[
p�−1
j

(
κ(xP2 ,yP2), . . . ,κ(xP� ,yP�)

)]
j=1,...,n

.

We can define the �-degree form p�i by

p�i(X1, . . . ,X�) = X1Qi
t
[
p�−1
j (X2, . . . ,X�)

]
j=1,...,n

.

It is evident that 3 implies 2. To prove that 2 im-

plies 1, we let (xP1 , . . . ,xP�) = (xL,xR,∅, . . . ,∅) and

(yP1 , . . . ,yP�) = (yL,yR,∅, . . . ,∅). Then, we have

fi(x,y) = pi
(
κ(xL,yL),κ(xR,yR),κ(∅,∅), . . . ,κ(∅,∅))).

Qi is determined by

X1Qi
tX2 = pi(X1,X2, (∅,∅), . . . , f(∅,∅)).

Definition 4. An integral kernel κ[∗] is said to be par-
titionable, if there exists a partitionable kernel family

(κ
[∗]
1 , . . . , κ

[∗]
n) that contains κ[∗]. �

Definition 5. The hidden degree of a partitionable kernel

κ[∗] that is not identically 0 is defined as the minimum

n of the partitionable kernel families (κ
[∗]
1 , κ

[∗]
2 . . . , κ

[∗]
n)

that includes κ[∗]. We denote the hidden degree of κ[∗] by

hd(κ[∗]), and define hd(κ[∗]) = 0 for κ[∗] ≡ 0. �

B. Examples

We show a couple of examples of partitionable kernels.

Example 1. For an arbitrary kernel κ over Σ, sin[∗]κ and

cos
[∗]
κ defined below are partitionable.

sin[0]κ (∅,∅) = 0, sin[k]κ (x,y) = sin

(
k∑

i=1

κ(xi, yi)

)

cos[0]κ (∅,∅) = 1, cos[k]κ (x,y) = cos

(
k∑

i=1

κ(xi, yi)

)

sin[∗]κ (x,y) = sin[∗]κ (xL,yL) cos[∗]κ (xR,yR)

+ cos[∗]κ (xL,yL) sin[∗]κ (xR,yR)

cos[∗]κ (x,y) = cos[∗]κ (xL,yL) cos[∗]κ (xR,yR)

− sin[∗]κ (xL,yL) sin[∗]κ (xR,yR)

Example 2. For an arbitrary kernel κ over Σ,

(e
[∗]
0 , e

[∗]
1 , e

[∗]
2 , . . .) defined below are partitionable.

e
[k]
d (x,y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if d = 0,

0, if d > k,∑
1≤i1<···<id≤k

d∏
j=1

κ(xij , yij) if 0 < d ≤ k.

In fact, e
[∗]
d (x,y) =

∑
i+j=d

e
[∗]
i (xL,yL) · e[∗]j (xR,yR)

holds. In addition, e
[k]
∞ (x,y) =

∏k
i=1 κ(xi, yi) satisfies

e
[∗]
∞(x,y) = e

[∗]
∞ (xL,yL) · e[∗]∞(xR,yR).

C. Important properties

Partitionable string kernels have several good properties.

Proposition 1. Let integral kernels κ[∗] and λ[∗] be parti-
tionable. Then, κ[∗] +λ[∗], cκ[∗] and κ[∗] ·λ[∗] are also par-
titionable. In addition, hd(κ[∗]+λ[∗]) ≤ hd(κ[∗])+hd(λ[∗]),
hd(cκ[∗]) = hd(κ[∗]) and hd(κ[∗] ·λ[∗]) ≤ hd(κ[∗]) ·hd(λ[∗])
hold.

Due to these properties, we can derive an indefinitely

abundant pool of partitionable kernels from a small num-

ber of seeds. Regarding positive definiteness, we have the

following property.

Proposition 2. Let κ = (κ
[∗]
1 , . . . , κ

[∗]
n) be a partitionable

kernel family. If κ
[1]
1 , . . . , κ

[1]
n are all positive definite and

Qi are all non-negative, κ[∗]
1 , . . . , κ

[∗]
n are positive definite.

Of course, the converse does not necessarily hold.

Example 3. Alghough cos
[∗]
κ is positive definite for

κ(x, y) = x− y, Q
cos

[∗]
κ

=

[
1 0
0 −1

]
holds.

We say that κ[∗] is character-wise symmetric, iff,

κ[k](x1 . . . xk, y1 . . . yk) = κ[k](xσ(1) . . . xσ(k), yσ(1) . . . yσ(k))

holds for arbitrary k and permutation σ ∈ Sk. Although

whether all partitionable kernels are character-wise symmet-

ric is an open problem, we have the following properties.

Proposition 3. Let (κ[∗]
1 , . . . , κ

[∗]
n) be a partitionable kernel

family. If all of Qi are symmetric, all of κ[∗]
i are character-

wise symmetric. For n = 2, if κ
[1]
1 and κ

[1]
2 are linearly

independent, all of Qi are symmetric.

Proof: 1. For a permutation σ ∈ Sk, we let σx1 . . . xk =

xσ(1) . . . xσ(k), and show κ
[k]
i (x,y) = κ

[k]
i (σx, σy). We

prove the claim by mathematical induction on k. When

k = 2, the claim follows from

κ
[2]
i (x1x2, y1y2) = κ(x1, y1)Qi

tκ(x2, y2)

= κ(x2, y2)Qi
tκ(x1, y1) = κ

[2]
i (x2x1, y2y1).

648

When k > 2, it suffices to prove the claim for the case of

σ = (i, i+1). First, we assume that i < k− 1, and take the

2-partition corresponding to 0 = j0 ≤ j1 = i+ 1 < j2 = k.

By the hypothesis of induction, we have

κ
[k]
i (σx, σy) = κ(σxL, σyL)Qi

tκ(σxR, σyR)

= κ(σxL, σyL)Qi
tκ(xR,yR)

= κ(xL,yL)Qi
tκ(xR,yR) = κ

[k]
i (x,y).

In the case of i = k − 1, we have onlyt to let j1 = k − 2,

and exchange the roles of (xL,yL) and (xR,yR).

2. We will see that Q1 is symmetric. Since κ
[∗]
1 and κ

[∗]
2

are linearly independent, we have

Q1

[
κ
[0]
1

κ
[0]
2

]
=

[
1
0

]
and [κ

[0]
1 , κ

[0]
2]Q1 = [1, 0].

The claim follows.

Even if all κ
[∗]
i are character-wise symmetric, Qi are not

necessarily symmetric. For example, let κ
[∗]
i (x,y) ≡ i for

i = 1, 2. When we define Qi =

[
ai bi
ci di

]
to satisfy

i = κ
[k]
i = [1, 2]

[
ai bi
ci di

] [
1
2

]
= ai + 2bi + 2ci + 4di,

Qi is not necessarily symmetric.

For partitionable kernels of hd(κ[∗]) = 1, we have the

following beautiful theorem.

Theorem 2. If κ[∗] is partitionable with hd(κ[∗]) = 1,

κ[k](x,y) = (κ[0])1−k
k∏

i=1

κ[1](xi, yi) holds.

D. Kernel computation

Lemma 1 shows the key property of partitionable kernels

with respect to computational feasibility of mapping kernels

derived from them. In the remainder of this paper, I denotes

P0

(⋃∞
i=0(Σ

i × Σi)
)
, that is, the entire set of finite subsets

of
⋃∞

i=0(Σ
i × Σi).

Lemma 1. Let (κ
[∗]
1 , . . . , κ

[∗]
n) be a partitionable kernel

family. Hence, there exists Qi such that

κ
[∗]
i (x,y) =(κ

[∗]
1 (xL,yL), . . . , κ

[∗]
1 (xL,yL))Qi

t(κ
[∗]
1 (xR,yR), . . . , κ

[∗]
1 (xR,yR))

holds for all i. Then, if M1 and M2 are in I,∑
(x,y)∈M1‖M2

κ
[∗]
i (x,y) =

(K1,1, . . . ,K1,n)Qi
t(K2,1, . . . ,K2,n)

holds for Ki,j =
∑

(x,y)∈Mi
κ
[∗]
j (x,y).

We let a‖b denote the concatenation of strings a and b,
and define M1‖M2 ∈ I by

{(x1‖x2,y1‖y2) | (x1,y1) ∈M1, (x2,y2) ∈M2} .

Since proving Lemma 1 is easy, we see how this property

is useful to calculate partitionable-kernel-based mapping

kernels using an example. In the example, we let x and y
be ordered forests, and consider the entire set of isomorphic

pairs of substructures of X and Y . Converting a substructure

z of x or y into a string of vertices by aligning the

vertices of z in the order of in-order traversal, Mx,y � I
is derived from the set of isomorphic substructure pairs,

where Σ denotes the alphabet composed of vertices. Letting
•Mx,y = {(x′,y′) ∈ Mx,y | •x ∈ x′, •y ∈ y′}, it is easy to

see that the following decomposition formulas hold.

Mx,y = •Mx,y �
(
Mx,◦y ∪M◦x,y

)
(7)

Mx,◦y ∩M◦x,y = M◦x,◦y (8)
•Mx,y = M•x,•y �

(
M•x,•y‖M◦�x,◦�y

) � (M•x,•y‖M�x,�y
)

� (M•x,•y‖M◦�x,◦�y‖M�x,�y
)

(9)

In the above, � denotes the disjoint union.

When we let Ki(x, y) =
∑

(x′,y′)∈Mx,y

κ
[∗]
i (x′,y′), the for-

mulas of (7) and (8) imply

Ki(x, y) =
∑

(x′,y′)∈•Mx,y

κ
[∗]
i (x′,y′)

+Ki(x,
◦y) +Ki(

◦x, y)−Ki(
◦x, ◦y).

The first term of the right-hand side can be further decom-

posed by the formula (9) as∑
(x′,y′)∈•Mx,y

κ
[∗]
i (x′,y′) = κ

[1]
i (•x, •y)

+
∑

(x′,y′)∈M•x,•y‖M◦�x,◦�y

κ
[∗]
i (x′,y′) +

∑
(x′,y′)∈M•x,•y‖M�x,�y

κ
[∗]
i (x′,y′)

+
∑

(x′,y′)∈M•x,•y‖M◦�x,◦�y‖M�x,�y

κ
[∗]
i (x′,y′),

and we can apply Lemma 1 to the last three terms of the

right-hand side. For example, by Lemma 1, the second term

turns out to be∑
(x′,y′)∈M•x,•y‖M◦�x,◦�y

κ
[∗]
i (x′,y′)

=
(
K1(

•x, •y), . . . ,Kn(
•x, •y)

)
Qi

t
(
K1(

◦�x, ◦�y), . . . ,Kn(
◦�x, ◦�y)

)
=
(
κ
[1]
1 (•x, •y), . . . , κ[1]

n (•x, •y)
)
Qi

t
(
K1(

◦�x, ◦�y), . . . ,Kn(
◦�x, ◦�y)

)
.

Thus, the formulas of (7), (8) and (9) together with

Lemma 1 provide us with a method to reduce calculation of

K1(x, y), . . . ,Kn(x, y) to that of K1, . . . ,Kn for smaller

forests. By applying this method iteratively, we can finally

reach the concrete values of K1(x, y), . . . ,Kn(x, y).
In [8], in addition to the formulas of (7), (8) and (9),

seven sets of decomposition formulas are presented in order

649

to calculate seven different classes of tree kernels. These tree

kernels are of the form of
∑

(x′,y′)∈Mx,y

∏|x′|
i=1 ϕ(x

′
i, y

′
i),

and hence, are derived from partitionable kernels with hid-

den degree 1.

In the same way as mentioned above, Lemma 1 enables us

to take advantage of these decomposition formulas in order

to compute novel mapping tree kernels derived by replacing∏|x′|
i=1 ϕ(x

′
i, y

′
i) with partitionable kernels of higher hidden

degree.

In the following, we will generalize what we saw in the

above on decomposition formulas of tree mapping systems,

and will introduce the notion of pretty decomposability as

a formalized condition for mapping systems that allows

application of Lemma 1 in order to calculate the resulting

mapping kernels.

We let (X , <) be an (infinite) ordered set of objects such

that, for any x ∈ X , there exists a positive integer p and,

if x ≥ x1 ≥ · · · ≥ xq for p < q, then xp = xp+1 = · · · =
xq holds. In addition, we assume that a mapping system

M : X × X → I and a finite set of reduction operations
π1, . . . , π� are given. A reduction operation is a mapping

π : X → X such that π(x) < x holds for ∀x ∈ X unless x
is minimal.

We define E as the minimum subset of (X × X)I that

satisfies the following conditions. We let X and Y be

variables that move over X .

1) The constant mapping (X,Y) �→ ∅ is in E .

2) M(X,πi(Y)) and M(πi(X), Y) are in E .

3) If e(X,Y) is in E , e(πi(X), Y) and e(X,πi(Y)) are

in E .

4) If e(X,Y) and e′(X,Y) are in E , e(X,Y)∪e′(X,Y)
and e(X,Y)‖e′(X,Y) are in E .

We can view e(X,Y) ∈ E as an expression with respect to

X and Y composed of symbols ∅,M(·, ·), πi,∪ and ‖.
Pretty decomposable defined below is a condition of a

mapping system M such that the resulting mapping kernels

have recursive decomposition formulas when the sub-kernels

are partitionable.

Definition 6. A mapping system M is said to be pretty
decomposable, if, and only if, there exists a finite set of

expressions {e1(X,Y), . . . , em(X,Y)} ⊂ E that satisfies

the following.

1) M is identical to e1(X,Y) as a mapping from X ×X
to I.

2) If a sub-expression e′(X,Y) ∪ e′′(X,Y) appears in

some ei(X,Y), e′(X,Y) ∩ e′′(X,Y) determines the

same mapping as some ej(X,Y). �
When X is the set of ordered forests, we can define

an order > so that x > y, if, and only if, y is a proper

substructure of x. Then, the operations •x, ◦x, �x and �x are

all reduction operators. Moreover, under these settings, the

mapping system M(x, y) = Mx,y is pretty decomposable.

In fact, the decomposition formulas of (7), (8) and (9)

determines a set of expressions that satisfies the conditions

described in Definition 6.

Theorem 3. Let Mx,y be pretty decomposable and
(κ

[∗]
1 , . . . , κ

[∗]
n) be a partitionable kernel family. There exists

a set of recursive decomposition formulas that reduces
calculation of

Ki(x, y) =
∑

(x′,y′)∈M(x,y)

κ
[∗]
i (x′,y′)

for i = 1, . . . , n to calculation of a finite set of
{Kij (xj , yj) | j = 1, . . . , N} such that at least one of
xj < x and yj < y holds for any j = 1, . . . , N .

Proof: (Sketch) First, we introduce an order ≤ into E .

We denote e ≤ e′ if, and only if, for any (x, y) ∈ X × X ,

there exists an injective mapping f : e(x, y)→ e′(x, y) such

that each component of f(ξ, η) contains the corresponding

component of (ξ, η). Note that, if (ξ, η) ∈ e(x, y), the

components ξ and η are strings over Σ of the same length.

Also e < e′ indicates the case that e ≤ e′ and e is not

identical to e′ as a mapping from X × X to I.

We prove that the assertion of the theorem holds for∑
(x′,y′)∈e(x,y) κ

[∗]
i (x′,y′) when e is a sub-expression of

some of ei by the mathematical induction on the order < of

E .

We investigate two cases one by one: e′(X,Y) =
e′′(X,Y)∪e′′′(X,Y) and e′(X,Y) = e′′(X,Y)‖e′′′(X,Y).

First, we assume e(X,Y) = e′(X,Y) ∪ e′′(X,Y). If

e′(x, y) � e′′(x, y) holds for all (x, y), we can eliminate

such e′ without harming the result at all. Thus, we can

assume that e′′(x, y)\e′(x, y) 	= ∅ holds for some (x, y), and

hence, we can conclude e > e′. In the same way, we have

e > e′′. On the other hand, e′(X,Y)∩e′′(X,Y) = ei(X,Y)
holds for some i (Definition 6), and hence e > ei holds. The

claim follows from the hypothesis of induction and∑
(x′,y′)∈e(x,y)

κ
[∗]
i (x′,y′) =

∑
(x′,y′)∈e′(x,y)

κ
[∗]
i (x′,y′)+

∑
(x′,y′)∈e′′(x,y)

κ
[∗]
i (x′,y′) −

∑
(x′,y′)∈ei(x,y)

κ
[∗]
i (x′,y′).

Secondly, we assume e(X,Y) = e′(X,Y)‖e′′(X,Y). If

e′′(x, y) = ∅ for all (x, y), we can eliminate such e′′ without

harming the result at all. Thus, we can assume that e > e′

and e > e′′. By Lemma 1,
∑

(x′,y′)∈e(x,y) κ
[∗]
i (x′,y′)

is a function of
∑

(x′,y′)∈e′(x,y) κ
[∗]
j (x′,y′) and∑

(x′,y′)∈e′′(x,y) κ
[∗]
j (x′,y′). The claim follows from

the hypothesis of induction.

Given x ∈ X , since the length of a path from x to

a minimal object is bounded above by p, a program that

iteratively evaluate the recursive decomposition formulas

obtained by Theorem 3 stops within finite lengths of time.

Furthermore, the time complexity of this program when

650

applied to κ[∗] is hd(κ[∗]) times as large as that of the

program when calculating

K (X,Y) =
∑

(X′,Y ′)∈M(X,Y)

1.

This is because the program has to calculate hd(κ[∗]) map-

ping kernels in parallel.

III. EMPIRICAL RESULTS

In this section, we will show some experimental results.

In the experiments, we experimented with four different

mapping tree kernels, which are all derived from partition-

able kernels. Two of the kernels (K0 and K3) are selected

from the literature, while the others (K1 and K2) are newly

examined in this paper.

To begin with, we would like to describe the purpose

of our experiments briefly. The main contribution of this

paper is to propose an abundant class of mapping kernels

that have practical computational complexity, and hence, we

think that it is not so meaningful to focus on a small number

of instances of partitionable kernels out of a large number of

candidates, and to run experiments with them for the purpose

of comparing them with kernels known in the literature. In

fact, Proposition 1, for example, provides us with a method

to explore novel kernels in a large space of partitionable

kernels. Hence, evaluation of predictive performance of a

few instances will say almost nothing about the property of

the entire class. In addition, a kernel which is effective to a

particular type of datasets is not always effective to another

type of datasets. Also, the fact that a kernel is not useful for

some type of datasets does not necessarily mean that it is

always useless. When we understand that the purpose of our

contribution is never to propose kernels that will be effective

to particular types of datasets, experimental results with a

small number of specific datasets can only show a potential

of the kernel class. Thus, the purpose of the experiments to

describe here is to show (1) the fundamental computational

feasibility of partitionable-kernel-based mapping kernels and

(2) their potential in terms of predictive performance when

applied to practical problems.

All tree kernels Ki used in the experiments are mapping

kernels derived from partitionable kernels κ
[∗]
i . The mapping

system MX,Y is determined to be the entire set of isomor-

phic substructures of trees X and Y . Hence,

Ki(X,Y) =
∑

(X′,Y ′)∈MX,Y

κ
[∗]
i (X ′, Y ′)

holds. The partitionable kernels κ
[∗]
0 and κ

[∗]
3 are of hidden

degree 1, while κ
[∗]
1 and κ

[∗]
2 are of hidden degree 2 and 3,

respectively. In fact, κ
[∗]
1 forms a partitionable kernel family

with κ
[∗]
0 , and κ

[∗]
2 does with κ

[∗]
0 and κ

[∗]
1 . Table I and

Table II describe Ki and κi.

For the experiments, we use three datasets, named

colon-cancer, cystic and leukemia, from the

KEGG/GLYCAN database [9]. The total number of and

averages of sizes and heights of the examples in those

datasets are given as follows.

Dataset # Examples Ave. Size Ave. Height

colon-cancer 134 8.4 5.6
cystic 160 8.3 5.0

leukemia 442 13.5 7.4

The following is the steps of the experiment with each

dataset.

1) For each tree kernel, compute the corresponding Gram

matrix. The matrix includes N2 elements, when the

relevant dataset includes N sample trees. An element

of the matrix includes the decay factor λ, and is a

function of λ.

2) Generate 10 pairs of a training dataset and a test

dataset by splitting the relevant dataset independently

at random. The training dataset is so generated that it

is approximately four times larger than the test dataset.

3) For each combination of a dataset pair and a tree

kernel, perform the following steps.

a) Run a grid search to find optimal values for the

decay factor λ and the regulation parameter C
of SVM. Hence, repeat run of five-fold cross

validation on the training data changing λ and C
and select the parameter assignment that exhibits

the greatest AUC-of-ROC-Curve value.

b) Make SVM learn the entire training data with the

optimal parameters obtained in 3a.

c) Evaluate three measures, namely, AUC of ROC

Curve, F-Score and Accuracy by applying the

hypothesis (model) obtained in 3b to the test

dataset.

In these steps, SVM refers to the Gram matrix gen-

erated in Step 1 in one of the following ways. In one

way, SVM uses values Ki(X,Y) found in the matrix

as they are. In the other way, it uses normalized values
Ki(X,Y)√

Ki(X,X)Ki(Y,Y)
.

In computing the Gram matrices in Step 1, we employed

the accelerating technique reported in [8], which first ex-

tracts all of the substructures up to congruence that appear

in a dataset, and then calculate kernel values for all possible

substructure pairs in the incremental order of their sizes. The

followings are the run-time in seconds of having calculated

these Gram matrices with a laptop PC. Since K0, K1 and

K2 are calculated simultaneously, only the total run-time is

displayed.

Kernel colon-cancer cystic leukemia

K0,K1 and K2 17.9 sec 31.6 sec 661.8 sec
K3 3.8 sec 5.1 sec 261.8 sec

651

Table I
DEFINITION OF THE MAPPING TREE KERNELS: K0,K1,K2 AND K3

Kernel Explanation

K0 A weighted count of congruent substructure pairs. The weight is determined by λn with the decay factor λ and the size n
of the substructure.

K1 A weighted sum of the sizes of congruent substructure pairs. Hence, λnn is summed up over the entire congruent substructure
pairs.

K2 A weighted sum of the squared sizes of congruent substructure pairs. Hence, λnn2 is summed up over the entire congruent
substructure pairs.

K3 A tree kernel derived from Taı̈ tree edit distance with the cost function γ〈x→ y〉 = 1− δx,y .

Table II
DEFINITION OF THE PARTITIONABLE KERNELS: κ

[∗]
0 , κ

[∗]
1 , κ

[∗]
2 AND κ

[∗]
3

Sub-kernel (|X ′| = |Y ′| = n) κ
[0]
i Quadratic Form

κ
[n]
0 (X ′, Y ′) =

n∏
i=1

λδxi,yi 1 κ
[∗]
0 (x,y) = κ

[∗]
0 (xL,yL)κ

[∗]
1 (xR,yR)

κ
[n]
1 (X ′, Y ′) =

(
n∏

i=1

λδxi,yi

)
·
(

n∑
i=1

δxi,yi

)
0 κ

[∗]
1 (x,y) = κ

[∗]
0 (xL,yL)κ

[∗]
1 (xR,yR) + κ

[∗]
1 (xL,yL)κ

[∗]
0 (xR,yR)

κ
[n]
2 (X ′, Y ′) =

(
n∏

i=1

λδxi,yi

)
·
(

n∑
i=1

δxi,yi

)2

0 κ
[∗]
2 (x,y) = κ

[∗]
0 (xL,yL)κ

[∗]
2 (xR,yR) + κ

[∗]
2 (xL,yL)κ

[∗]
0 (xR,yR)

+2κ
[∗]
1 (xL,yL)κ

[∗]
1 (xR,yR)

κ
[n]
3 (X ′, Y ′) =

n∏
i=1

eλ(δxi,yi
+1)

1 κ
[∗]
3 (x,y) = κ

[∗]
3 (xL,yL)κ

[∗]
3 (xR,yR)

As described in the above, the new mapping kernels K0 and

K1, which are derived from partitionable kernels of higher

hidden degree, can be efficiently computed.

With respect to the predictive performance of the kernels,

Table III shows the averages of AUC-of-ROC-Curve, F-

Score and Accuracy values obtained from the test over 10

training-test dataset pairs. “Ki (norm)” indicates that we ran

the test with normalized kernel values. The figures in bold

font face indicate the greatest values in their columns.

At a glance of the table, K0, K1 and K2 appear

more appropriate than the others for colon-cancer,

leukemia and cystic, respectively. Also, K3 is effective

to leukemia, although it is not the best.

Table IV, V and VI are for further investigation of this

observation, and show p-values of the paired T test of AUC-

of-ROC-Curve, F-Score and Accuracy values over the ten

runs of test performed for each combination of a tree kernel

and a dataset. In the tables, the p-values smaller than 0.01
are highlighted.

Table IV and VI exhibit clear patterns.

colon-cancer: Superiority of the method of using

normalized kernel values (that is, Ki (normal) for i =
0, 1, 2, 3) over the method of using kernel values as they are

is evident. We can deny the corresponding null hypotheses

with the sufficiently small significance level of 1%. By

contrast, we cannot conclude that any of Ki (normal) is

better than the others without committing risk of error.

leukemia: K2, K2 (norm) and K3 show evident

inferiority to the other kernels. Also, the p-values in Table VI

indicate that the evidences we have obtained from the

experiments are insufficient to deny the null hypotheses that

the other five are mutually comparable.

On the other hand, the pattern that we can observe in

Table V is less clear.

cystic: Without too much risk of error, for i =
0, 1, 2, we could conclude that K3 is inferior to K0, K1

and K2, no matter whether it is used with normalization.

On the other hand, although we can perceive that the use

of normalized Ki values always yields better results than

the use of Ki values as they are, we have to use a large

significance level to draw this conclusion.

Although the datasets and the mapping kernel examples

used in the experiments were limited, at least, we can

conclude that partitionable kernels of higher hidden degrees

have potential to yield practically efficient mapping kernels

with good predictive performance.

IV. CONCLUSION

We have introduced the notions of pretty decomposability

and partitionable string kernels, and have proved that, if

the mapping system is pretty decomposable and the sub-

kernel is partitionable, there exists a set of recursive formulas

to compute the resulting mapping kernel efficiently. Also,

we have showed we could introduce an invariant called

652

Table III
AVERAGES OF MEASUREMENTS OVER 10 PAIRS OF TRAINING AND TEST DATASETS

colon-cancer cystic leukemia

Kernels AUC F Score Accuracy AUC F Score Accuracy AUC F Score Accuracy

K0 0.88977 0.87245 0.82090 0.78194 0.78008 0.735 0.95999 0.87345 0.93258
K0 (norm) 0.93375 0.91573 0.88955 0.76622 0.73308 0.7025 0.97168 0.88397 0.93370
K1 0.88003 0.83706 0.75373 0.79329 0.78226 0.74125 0.97090 0.87083 0.93034
K1 (norm) 0.93504 0.91482 0.88806 0.77438 0.74043 0.7075 0.97216 0.88215 0.93483
K2 0.88586 0.82541 0.72985 0.79322 0.78700 0.74375 0.93242 0.71954 0.87087
K2 (norm) 0.93193 0.90653 0.87612 0.77846 0.74155 0.70875 0.83973 0.74488 0.85843
K3 0.79819 0.77757 0.63731 0.71489 0.63478 0.530 0.90198 0.19990 0.74719
K3 (norm) 0.91241 0.87466 0.82836 0.73285 0.70893 0.66625 0.96323 0.88284 0.93483

Table IV
P-VALUES OF PAIRED T-TEST FOR COLON-CANCER DATASET

Upper triangle: AUC, Lower triangle: F-Score

K0 K0 (norm) K1 K1 (norm) K2 K2 (norm) K3 K3 (norm)

K0 – 0.00035 0.25434 0.00017 0.39651 0.00111 0.02296 0.38339
K0 (norm) 0.04518 – 0.00100 0.47732 0.00047 0.61081 0.00276 0.29781
K1 0.04480 0.00957 – 0.00067 0.56539 0.00166 0.03143 0.24360
K1 (norm) 0.04449 0.80264 0.00845 – 0.00025 0.26707 0.00291 0.29424
K2 0.06331 0.00771 0.63102 0.01003 – 0.00169 0.03872 0.32506
K2 (norm) 0.04897 0.17572 0.00647 0.10286 0.00903 – 0.00304 0.36786
K3 0.00008 0.00001 0.00651 0.00001 0.01892 0.00000 – 0.00420
K3 (norm) 0.81095 0.02136 0.03258 0.02062 0.04436 0.01589 0.00001 –

Accuracy

K0 K0 (norm) K1 K1 (norm) K2 K2 (norm) K3 K3 (norm)

K0 – 0.05912 0.04648 0.06063 0.05177 0.07338 0.00005 0.64072
K0 (norm) – – 0.00997 0.72632 0.00627 0.12123 0.00000 0.02070
K1 – – – 0.00918 0.60768 0.00821 0.00602 0.03157
K1 (norm) – – – – 0.00801 0.08684 0.00000 0.02132
K2 – – – – – 0.00737 0.01742 0.03049
K2 (norm) – – – – – – 0.00000 0.01993
K3 – – – – – – – 0.00000
K3 (norm) – – – – – – – –

Table V
P-VALUES OF PAIRED T-TEST FOR CYSTIC DATASET

Upper Triangle: AUC; Lower Triangle: F-Score

K0 K0 (norm) K1 K1 (norm) K2 K2 (norm) K3 K3 (norm)

K0 – 0.08847 0.05479 0.37188 0.09695 0.67457 0.11480 0.00343
K0 (norm) 0.00393 – 0.02422 0.01846 0.04169 0.01002 0.22090 0.01934
K1 0.73600 0.00937 – 0.08078 0.97035 0.14178 0.06449 0.00123
K1 (norm) 0.02739 0.30529 0.3861 – 0.12245 0.11927 0.14794 0.00712
K2 0.47997 0.01294 0.48571 0.04057 – 0.19847 0.06975 0.00197
K2 (norm) 0.02797 0.30766 0.04290 0.75020 0.04035 – 0.11749 0.00266
K3 0.05528 0.20194 0.05661 0.20022 0.04582 0.19149 – 0.59184
K3 (norm) 0.00155 0.12043 0.00299 0.01360 0.00333 0.00382 0.36126 –

Accuracy

K0 K0 (norm) K1 K1 (norm) K2 K2 (norm) K3 K3 (norm)

K0 – 0.03606 0.13818 0.09095 0.38156 0.11320 0.00000 0.00164
K0 (norm) – – 0.03312 0.39936 0.05908 0.44016 0.00005 0.01619
K1 – – – 0.07060 0.71634 0.08492 0.00000 0.00155
K1 (norm) – – – – 0.10107 0.72631 0.00009 0.00294
K2 – – – – – 0.11076 0.00000 0.00372
K2 (norm) – – – – – – 0.00006 0.00056
K3 – – – – – – – 0.00039
K3 (norm) – – – – – – – –

653

Table VI
P-VALUES OF PAIRED T-TEST FOR LEUKEMIA DATASET

Upper Triangle: AUC; Lower Triangle: F-Score

K0 K0 (norm) K1 K1 (norm) K2 K2 (norm) K3 K3 (norm)

K0 – 0.03938 0.02851 0.09467 0.00033 0.00007 0.00002 0.48853
K0 (norm) 0.23557 – 0.89573 0.86997 0.00000 0.00001 0.00000 0.01608
K1 0.64166 0.04423 – 0.84300 0.00010 0.00009 0.00001 0.20138
K1 (norm) 0.29866 0.84837 0.20154 – 0.00002 0.00002 0.00000 0.12343
K2 0.00010 0.00002 0.00004 0.00009 – 0.00023 0.00024 0.00001
K2 (norm) 0.00015 0.00002 0.00010 0.00011 0.31038 – 0.00481 0.00003
K3 0.00004 0.00004 0.00005 0.00005 0.00039 0.00027 – 0.00000
K3 (norm) 0.47065 0.92085 0.27984 0.95203 0.00005 0.00029 0.00005 –

Accuracy

K0 K0 (norm) K1 K1 (norm) K2 K2 (norm) K3 K3 (norm)

K0 – 0.81137 0.44333 0.59105 0.00004 0.00008 0.00001 0.72631
K0 (norm) – – 0.34344 0.82265 0.00000 0.00001 0.00001 0.85892
K1 – – – 0.30923 0.00001 0.00003 0.00001 0.39936
K1 (norm) – – – – 0.00006 0.00003 0.00002 1.00000
K2 – – – – – 0.27021 0.00045 0.00001
K2 (norm) – – – – – – 0.00199 0.00010
K3 – – – – – – – 0.00002
K3 (norm) – – – – – – – –

hidden degree to partitionable kernels. The hidden degree

of a partitionable kernel linearly affects the time complexity

of the mapping kernel derived from the partitionable kernel.

In addition, the string kernels of the product type turn

out to be characterized as partitionable kernels of hidden

degree one. Although we know that any partitionable kernel

of hidden degree two can be reduced one of the three

normalized forms, we know only little about partitionable

kernels of hidden degree higher than two. Also, whether

any partitionable kernel is character-wise symmetric is an

open problem. If this were proved affirmatively, we would

not have to pay much attention to converting mappings from

structures to strings any more.

REFERENCES

[1] T. Gärtner, “A survey of kernels for structured data.” SIGKDD
Explorations, vol. 5, no. 1, pp. 49–58, 2003.

[2] D. Haussler, “Convolution kernels on discrete structures,” Dept.
of Computer Science, University of California at Santa Cruz,
UCSC-CRL 99-10, 1999.

[3] K. Shin and T. Kuboyama, “Generalization of haussler’s con-
volution kernel - mapping kernel and its application to tree
kernels,” J. Comput. Sci. Technol, vol. 25(5):, pp. 1040–1054,
2010.

[4] K. C. Taı̈, “The tree-to-tree correction problem,” JACM,
vol. 26, no. 3, pp. 422–433, Jul. 1979.

[5] M. Collins and N. Duffy, “Convolution kernels for natural
language,” in Advances in Neural Information Processing
Systems 14 [Neural Information Processing Systems: Natural
and Synthetic, NIPS 2001]. MIT Press, 2001, pp. 625–632.

[6] K. Shin and T. Kuboyama, “A generalization of Haussler’s
convolution kernel - mapping kernel,” in ICML 2008, 2008.

[7] E. D. Demaine, S. Mozes, B. Rossman, and O. Weimann, “An
optimal decomposition algorithm for tree edit distance,” in The
34th International Colloquium on Automata, languages and
Programming (ICALP), 2007.

[8] K. Shin, M. Cuturi, and T. Kuboyama, “Mapping kernels for
trees,” in ICML 2011, 2011.

[9] K. Hashimoto, S. Goto, S. Kawano, K. F. Aoki-Kinoshita,
and N. Ueda, “Kegg as a glycome informatics resource,”
Glycobiology, vol. 16, pp. 63R – 70R, 2006.

654

