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Abstract

This article presents an automated, patient-specific method for the detection of epileptic seizure onset from noninvasive elec-

troencephalography. We adopt a patient-specific approach to exploit the consistency of an individual patient�s seizure and non-

seizure electroencephalograms. Our method uses a wavelet decomposition to construct a feature vector that captures the

morphology and spatial distribution of an electroencephalographic epoch, and then determines whether that vector is representative

of a patient�s seizure or nonseizure electroencephalogram using the support vector machine classification algorithm. Our completely

automated method was tested on noninvasive electroencephalograms from 36 pediatric subjects suffering from a variety of seizure

types. It detected 131 of 139 seizure events within 8.0� 3.2 seconds of electrographic onset, and declared 15 false detections in

60 hours of clinical electroencephalography. Our patient-specific method can be used to initiate delay-sensitive clinical procedures

following seizure onset, for example, the injection of a functional imaging radiotracer.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Approximately 1% of the world�s population exhibits

symptoms of epilepsy [1], a serious disorder of the cen-

tral nervous system that predisposes those affected to

recurrent seizures. A seizure is a sudden breakdown of

the neuronal activity of the brain that is clinically
manifested by an involuntary alteration in behavior,

movement, sensation, or consciousness. These clinical

behaviors are preceded and then accompanied by elec-

troencephalographic alterations that include discharges

of monomorphic (single-frequency) waveforms; poly-

morphic (multifrequency) waveforms; spike and sharp
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wave complexes; or periods of reduced electrocerebral

activity [2,3].

More than 20% [4] of epilepsy patients suffer from

seizures that are refractory to medication. For some of

these patients a cerebral resection is an option if the

brain region giving rise to seizure activity, the epilepto-

genic focus, can be identified. Single-photon emission
computed tomography (SPECT) can aid in the locali-

zation of an epileptogenic focus [5] by revealing focal

increased perfusion in a region of the brain associated

with epileptogenic activity. For the ictal hyperperfusion

to be as localized as possible, it is essential that injection

of the radiotracer occur within a few seconds of seizure

onset. Delayed tracer injections often result in visuali-

zation of other foci of hyperperfusion away from the
primary focus which may be related to post ictal sec-

ondary activation.
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One approach to minimizing the delay between sei-
zure onset and injection of the radiotracer requires that

an experienced electroencephalographer continuously

monitor a subject�s electroencephalogram, and request

injection of the radiotracer soon after noting the earliest

electrographic signs of a seizure. Doing this is costly,

difficult, and mentally taxing and is therefore rare. In

practice, a nurse injects a dose of the radiotracer after a

caregiver near the patient observes clinical manifesta-
tions of a seizure [6]. This often results in long delays

because of the subtlety of early clinical signs and the

potential distance of the nurse from the patient. In our

experience, injections are started 30–55 seconds after the

onset of clinical indications, which often leads to poor

localization of the epileptogenic focus. Our automated

seizure onset detector provides assistance that could be

used to consistently minimize the delay between the
onset of electroencephalographic alterations and injec-

tion of the radiotracer. The detector may alert staff to

the seizure�s onset or activate a drug infusion pump that

delivers the radiotracer.

Early work in seizure detection [7,8] produced algo-

rithms that were meant to recognize seizure events, but

not necessarily their onset, in any subject. The vari-

ability of EEGs among patients limited these algorithms
to detecting the most common seizure patterns and

contributed to their high false-alarm rate. We developed

a patient-specific method to exploit the consistency of

seizure and nonseizure EEGs within patients. This

consistency also motivated our treatment of patient-

specific seizure detection as a binary classification

problem. In such problems, a classifier determines to

which of two classes an observation most likely belongs
based on a comparison of its features with the learned

features of training examples from each of the two

classes. In our case, the observation is an electroen-

cephalographic signal; its features include the morphol-

ogy and spatial distribution of waveforms on the scalp;

and it is classified as an instance of seizure or nonseizure

EEG based on training examples from these classes. We

include as part of the nonseizure class examples of
baseline, artifact, and hallmark activity from different

states of consciousness so that the detector can learn to

recognize these activities. This is in contrast to the more

usual approach of actively removing or rejecting these

signals using linear filters, adaptive filters, or blind

source separation algorithms [9–11].

We capture the morphology of EEG waveforms by

measuring their energy at different time scales using a
multiresolution wavelet decomposition, and we encode

their spatial distribution by their placement within the

vector of features passed to the classifier, a support

vector machine [12–14]. This particular classification

algorithm was chosen because it is well suited for clas-

sifying nonlinearly separable, high-dimensional feature

vectors, even when trained on imbalanced training sets.
This is crucial since our detector is expected to recog-
nize waveform morphologies with a certain spatial

distribution given an abundance of nonseizure

examples and a far smaller number of seizure training

examples.

In Section 2 we present the details of our detector.

This is followed by a detection example in Section 3, a

review of our testing methodology and results in Sec-

tions 4 and 5, a discussion of an alternate detection ar-
chitecture in Section 6, related work in Section 7, and a

summary and conclusions in Section 8.
2. Detection algorithm

2.1. Overview

The block diagram in Fig. 1 presents the architecture

of the patient-specific seizure detector. The detector

passes 2-second epochs from each of 21 bipolar EEG

channels through a feature extractor to compute fea-

tures characterizing the morphology of each channel�s
waveform. The features extracted from all the channels

are grouped into one large feature vector to capture

spatial correlations between the channels. This feature
vector is then assigned to either the seizure or nonseizure

class using a support vector machine trained on previ-

ously acquired feature vectors representing patient-spe-

cific examples of seizure and nonseizure EEGs. Seizure

onset is declared only when three consecutive 2-second

epochs are classified as members of the seizure class.

Requiring seizure activity to last for 6 seconds prior to

declaring a seizure event helps avoid false detections due
to short-time, seizure-like activity, which is commonly

observed between actual seizures.

2.2. Feature extraction

In any application of machine learning, deciding how

to extract salient features from the input data is a critical

step. In this application, the salient features of the data
are the morphology of EEG waveforms and their spatial

localization. We represent the morphology of EEG

waveforms by their allocation of energy within different

time scales. For instance, a spike-and-slow-wave pattern

is represented by a simultaneous allocation of energy

within a short-time-scale (high-frequency) ‘‘spike’’ sig-

nal and a long-time-scale (low-frequency) ‘‘wave’’ signal

as illustrated in Fig. 2. In the actual algorithm, we used
the energy in four time scales to describe the morphol-

ogy of the EEG signal. The spatial localization of the

EEG waveforms is encoded in their location within the

feature vector presented to the support vector machine

classifier. Details regarding our use of a wavelet de-

composition to extract activity at four time scales are

described in Appendix A.



Fig. 1. Detector architecture. Four features representing waveform morphology on each of 21 channels are extracted independently and then

assembled into a large feature vector that captures spatial correlations between channels. A support vector machine determines the class membership

of the feature vector. The onset of a seizure is declared only when seizure activity is detected for a duration of 6 seconds.

Fig. 2. Decomposition of spike-and-slow-wave signal. Left: Original spike-and-slow-wave pattern. Middle: Signal capturing long-time scale ‘‘wave’’

component. Right: Signal capturing short-time-scale ‘‘spike’’ component.
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2.3. Classification

In the classification stage of the detector, a newly

observed feature vector is assigned to the seizure or

nonseizure class using a support vector machine trained
on feature vectors representing seizure and nonseizure

EEGs. When used with a linear kernel, support vector

machines determine the class membership of an ob-

served feature vector based on which side of a separating

hyperplane the observation lies. The separating hyper-

plane is defined to be maximally distant from the

boundary cases of each class. These boundary cases are

called support vectors, and they carry the information
relevant to solving the classification problem. If the

classes cannot be well separated by a hyperplane, as is

the case in our application, support vector machines can

be used with more complex kernels to determine non-

linear decision boundaries.
Support vector machine classifiers are different from

neural networks, which have been used extensively for

the purpose of seizure detection. Neural networks de-

termine a decision boundary that minimizes the mis-

classification of samples in the training set, while
support vector machines maximize the margin between

the decision boundary and the most similar cases from

each class. The latter approach results in better perfor-

mance of the classifier on unseen samples. Furthermore,

support vector machines do not require a balanced

number of seizure and nonseizure training examples, as

is the case with neural networks. This is crucial given the

much greater number of nonseizure training examples
available.

As an example, Fig. 3 illustrates linear and nonlinear

decision boundaries determined by a support vector

machine trained on two-dimensional projections of 4

dimensional seizure and nonseizure feature vectors from



Fig. 3. Support vector machine linear and nonlinear decision boundaries. The linear decision boundary does not separate the seizure and nonseizure

feature vectors as effectively as the nonlinear decision boundary.
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a single EEG channel. These two-dimensional projec-

tions are used only for purposes of exposition. The
nonlinear decision boundary determined using a radial-

basis kernel better separates the training examples than

the linear decision boundary. The nonlinear boundary is

more effective as it encloses the seizure feature vectors,

which are surrounded circumferentially by nonseizure

feature vectors.

More generally, the ability of a support vector ma-

chine to discriminate between two classes is influenced
by their separability, the parameters of the chosen ker-

nel, and the class-specific penalty for determining a de-

cision boundary that misclassifies a percentage of

training examples. In the case of the radial-basis kernel,

decreasing its sole parameter r translates into increas-

ingly sophisticated boundaries that correctly classify a

higher percentage of training examples. Similarly, in-

creasing the penalty for misclassifying the training ex-
amples of a given class favors the determination of a

decision boundary that correctly classifies those exam-

ples. Extreme choices for both of these variables increase

the risk of overfitting, that is, creating a classifier that

performs well on the training set, but poorly on an un-

seen test set. The risk of overfitting can be gauged by the

percentage of training examples considered as support

vectors; the greater the percentage, the higher the risk of
overfitting. By studying our detector�s performance on a

fraction of the data, we found that its best performance

was achieved using equal class-specific penalties for the

seizure and nonseizure classes, and setting r ¼ 1.
3. Detection example

Consider detecting the electrographic onset of the

seizure in Fig. 4. This seizure�s onset is characterized by

a paroxysmal 4-Hz burst of monomorphic waves local-
izing to the right frontocentral channels (FP2-F4; F4-

C4); the right frontal and posterior channels (FP2-F8;
F8-T8; T8-P8; P8-O2), and the central channel (FZ-CZ).

The first step in the detection process is to train the

detector on two to four previous seizure onsets and on

nonseizure EEG separating these occurrences. Multiple

training seizures are necessary so that the detector can

reliably discover the channels that are consistently active

following the electrographic onset. Fig. 5 shows one of

the training seizures presented to the detector; the
training seizure is very similar to the one we hope to

detect.

When the trained detector was used, a seizure event

was declared 7 seconds following the electrographic

onset, as shown in Fig. 6. This means that the detector

could potentially initiate injection of a SPECT radio-

tracer 7 seconds following the seizure�s electrographic

onset.
The actual radiotracer injection began 56 seconds

after the electrographic onset shown in Fig. 4. At this

point in time, both the morphology and localization of

seizure activity had changed, as shown in Fig. 7. Seizure

activity localized most prominently to EEG channels on

the right side of the head at seizure onset, but at the time

of injection seizure activity localized most prominently

to the left side of the head. We suspect that reviewing the
images associated with the 7- and 56-second radiotracer

injection delays would lead to different conclusions

about the localization of the seizure focus.
4. Testing methodology

The performance of the seizure onset detector was
evaluated on 36 de-identified pediatric test subjects. A

set including two to five bipolar EEG recordings sam-

pled at 256Hz were available for each subject. Each



Fig. 5. Electrographic onset of training seizure following dashed line.

Fig. 4. Electrographic onset of test seizure following dashed line.
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recording contained a seizure event with a labeled onset

that was attached by an experienced electroencepha-
lographer, who worked backward from the observed
clinical onset to find the electrographic onset. No con-

straints regarding the types of seizure onsets were im-
posed; the data set contains focal, lateral, and



Fig. 6. Detection of seizure onset. Seizure event is declared 7 seconds after the actual seizure onset.

Fig. 7. Injection of radiotracer. Hospital staff begin injection of radiotracer at the dashed line, 56 seconds after electrographic seizure onset.
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generalized seizure onsets. Furthermore, the recordings
were made in a routine clinical environment, so non-

seizure activity and artifacts such as head/body move-

ment, chewing, blinking, early stages of sleep, and

electrode pops/movement were present. A set of re-

cordings lasted on average 35minutes for 30 subjects;

2 hours for 4 subjects; and 12 hours for 2 other subjects.

Taken together the recordings account for 60 hours of

EEG recordings and 139 seizures.
Our first set of experiments involved following a

leave-one-out cross-validation testing scheme for each

subject. In particular, the detector was given a training

set that included the seizure and nonseizure epochs from

all but one of the subject�s recordings, and was subse-

quently used to attempt to detect the seizure in the ex-

cluded recording. This was repeated until each recording

from the subject was excluded once. For each subject we
report:

• Mean detection latency: the average delay between

electrographic seizure onsets marked by the electro-

encephalographer and algorithmic seizure event dec-

laration.

• True detections: the number of test seizures declared

as seizure events.

• False detections: the number of false positives de-
clared during analysis of nonseizure EEGs.

In another set of experiments we tracked changes in

the detector�s performance when trained on one, two,

and three recordings from a given patient. Specifically,

for each subject with four EEG records (21 of the 36

subjects), we attempted to detect each seizure using a

randomly selected training set of size one, two, and

then three recordings. We noted whether or not each
seizure was detected and with what latency for each

size training set. We report the mean latency (aver-

aged across all patients) and the percentage of all

seizures detected for each training condition. The goal

of this set of experiments was to gain some insight

into how much training is needed to build an effective

detector.

Finally, we recorded the performance of our detector
when used in a non-patient-specific mode. In the non-

patient-specific mode the detector was trained on seizure

and nonseizure EEG epochs from a collection of 10

randomly selected subjects that excludes the test subject,

and was subsequently used to attempt to detect the

seizures of the excluded test subject. For each test sub-

ject we report the mean detection latency, true detec-

tions, and false detections as defined above.
5. Experimental results

Fig. 8 shows the average detection latency for each

test subject; latencies were calculated using the leave-

one-out cross-validation scheme. For most subjects, the
mean detection latency is less than 10 seconds. The de-
tection latency for a few subjects is less than 6 seconds

because of recognition of seizure activity in a 2-second

epoch that precedes, or overlaps, the onset of seizure

activity marked by the expert. The detector performed

poorly on two subjects. An artifact masking seizure

onset activity on a number of channels resulted in poor

performance on subject 33. The inconsistent seizure

onsets of subject 23 resulted in failure of the algorithm
to detect any seizures; this is indicated by the absence of

a bar for subject 23 and is discussed further below.

The preceding results can be better appreciated if the

delay incurred by starting injection of the radiotracer

using existing protocols is compared with the delay that

would be incurred provided injections were triggered

using our method. The latter injection delay corresponds

to our detector�s seizure onset detection latency. Fig. 9
illustrates this comparison for a number of subjects, and

shows that the detector, on average, would begin injec-

tion of the radiotracer more than 20 seconds before the

actual injection.

Fig. 10 shows the number of false detections declared

for each test subject under the leave-one-out cross-vali-

dation study. The detector performed well on most pa-

tients; there were no false detections for 26 of the 36
subjects. The false detections of subjects 8, 9, 29, and 36

were caused by nonphysiological artifacts. All other

false detections were caused by periodic discharges that

exceeded 6 seconds in duration, and closely resembled

seizure onset of the subject in every aspect except du-

ration. They may, in fact, have been ‘‘miniseizures.’’

These false detections can be avoided by forcing the

detector to declare a seizure event only in the presence of
seizure activity for 8 or 10 seconds. However, decreasing

false detections in this fashion will increase the detector�s
average latency.

Fig. 11 shows the true detections declared on each

test subject under the leave-one-out cross-validation

tests. No seizures were detected for subject 23 be-

cause of inconsistencies in the spatial distribution of

seizure activity present in each of the three record-
ings. In particular, one of the seizures involves ac-

tivity that is most prominent on the frontocentral

channels; the second involves activity that is most

prominent on the central channels; and the third in-

volves activity that is most prominent on central and

posterior channels.

Fig. 12 illustrates the improvement in our detector�s
average detection latency and true detection rate as a
function of the number EEG training recordings ob-

served; a training recording includes a single seizure

event as well as nonseizure activity from a given subject.

The figure shows that a detector trained on one re-

cording from a test subject is capable, on average, of

detecting 91% of that subject�s future seizures with a

mean latency of 9.5� 5.0 seconds. When an additional



Fig. 8. Patient-specific seizure onset detector latency. Each bar indicates the average latency in detecting a subject�s seizure onset. The detection

latency for the majority of subjects is below 10 seconds.

Fig. 9. Comparison of radiotracer injection delays. Black bars represent the time elapsed between electrographic onset of a seizure and injection of a

radiotracer using existing protocols. White bars represent the time that would elapse if injections were triggered by the patient-specific seizure de-

tector; this period corresponds to the detector�s seizure onset detection latency. Subject 37 was only part of the study comparing radiotracer injection

delays.
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training recording is observed, the detector identifies

96% of the subject�s future seizures with a latency of

7.6� 2.4 seconds. Observing a third recording only

slightly improves overall performance. In particular, a

detector trained on three recordings detects on average

97% of a subject�s future seizures with a mean latency of

7.1� 1.9 seconds.
Fig. 13 contrasts the performance of our detector

when used in patient-specific and generic modes.

Performance tests were conducted for patients numbered

1–34, but results from patients 4 and 29–34 are omitted

from the figure due to exceedingly poor performance by

the generic detector. In particular, the generic detector

declared an excess of 50 false detections on the EEG



Fig. 10. Patient-specific seizure onset detector false detections: Each bar indicates the number of false detections declared while processing a subject�s
EEG recordings. The majority of false detections declared by the proposed method are due to short-time, seizure-like discharges commonly observed

between a subject�s actual seizure events.

Fig. 11. Patient-specific seizure onset detector true detections. Each bar indicates the number of seizures detected per subject. The total number of

seizures available for a subject is indicated over each bar.
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recordings of these subjects due to the similarity of sei-

zure EEG from the training subjects and nonseizure

EEGs from the test subjects. These results suggest that a

generic detector always runs the risk of declaring many

false detections due to an a priori unknown similarity

between a training seizure and testing nonseizure EEG.
To verify that poor performance resulted from the

seizure EEG of training subjects matching the nonsei-

zure EEG of the test patients (4,29–34), we conducted

the following experiment: We recorded the number of

false detections for each of patients 4 and 29–34 when

the detector was trained on a single training subject at a



Fig. 12. Effect of number of training records on patient-specific detector�s performance. There is a greater improvement in performance following the

first increment in the number of training records.
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time, and then noted the training subjects resulting in 15

or more false detections. Next, we constructed a training

set for the test patients that excludes the problematic

training subjects, and verified the ability of the generic
Fig. 13. Comparison of patient-specific and generic seizure detection. Each

using both a patient-specific detector and a generic detector. On average, th

false detections. Furthermore, the generic detector runs the risk of declarin

seizure and testing nonseizure EEG. Note that patient-specific results are th
detector to process the recordings with fewer false de-

tections. Specifically, the new training sets allowed the

detector to process each of the recordings from patients

4 and 29–34 with only 2–10 false detections.
bar indicates the average latency in detecting a subject�s seizure onset

e patient-specific detector detects more seizures sooner and with fewer

g many false detections due to possible matches between the training

e same as those in Fig. 10.
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On the remaining test subjects of Fig. 13, the generic
detector exhibited a smaller number of true detections

and greater number of false detections relative to the

patient-specific detector. This is clear when comparing

the generic detector�s 76% seizure detection rate and 29

false detections with the 91% detection rate and 8 false

detections of the patient-specific detector. Furthermore,

the generic detector declared a seizure event on average

5.3� 6.6 seconds after the patient-specific detector. Fi-
nally, subject 27 is noteworthy, because the patient-

specific detector failed to detect a test seizure due to its

dissimilarity to other training seizures from the same

subject; in contrast, the generic detector successfully

detected the test seizure because it resembled a seizure

contributed by one of the many training subjects. A

similar phenomenon may explain why the generic de-

tector is able to identify one of three seizures from
subject 23, while the patient-specific detector found

none.
6. Alternate detection architecture

In addition to the detector architecture shown in

Fig. 1, we also studied the performance of a patient-
specific detector with the architecture shown in Fig. 14.

Under this alternate architecture, 2-second epochs from

each of 21 EEG channels are passed through the

wavelet-based feature extractor to compute features

characterizing the morphology of each channel�s
waveform. The four features extracted from each der-

ivation are then assembled into a distinct feature vector

and assigned to the seizure or nonseizure class inde-
pendently of other channels. This is accomplished using

a support vector machine trained only on seizure and
Fig. 14. Alternate detector architecture. Four features representing wavefor

dependently using support vector machines. Seizure onset is declared after

context of temporal and patient-specific localization constraints.
nonseizure EEGs from the feature vector�s source
channel. A final decision regarding the onset of a sei-

zure is declared after all classifications are examined in

the context of temporal and patient-specific spatial

localization constraints. These constraints amount to

requiring that seizure activity be present for 6 seconds

on half of the EEG channels in one of the groups in

Fig. 15. For each subject we automatically select the

group whose channels exhibit the greatest difference
between training seizure and nonseizure EEGs. The

separability of seizure and nonseizure EEGs on a given

channel was quantified by noting the percentage of

training samples correctly classified by the associated

support vector machine. We refer to the architecture in

Fig. 14 as the spatially independent processing (SIP)

architecture, because channels are classified indepen-

dently, and to the architecture in Fig. 1 as the spatially

dependent processing (SDP) architecture, because the

interdependence of channels is exploited during classi-

fication.

The SIP and SDP architectures differ primarily in the

stage at which patient-specific constraints on the spatial

localization of seizure waveforms are captured or en-

forced. In the case of the SIP architecture, localization

constraints are imposed using an explicit, transparent
rule in the final element of the detector. This allows for

the independent classification of activity on each chan-

nel in a low-dimensional feature space. In contrast, the

SDP architecture expresses spatial constraints through

the elements of a large feature vector summarizing in-

terrelations between channels. While this obviates the

need to explicitly enforce localization constraints, it

hides which channels are necessary for detection and
results in classification taking place in a higher-dimen-

sional feature space.
m morphology on each of 21 channels are extracted and classified in-

the classifications of all support vector machines are examined in the



Fig. 15. Groups of EEG channels. Each circle represent an EEG electrode. A line between two electrodes represents an EEG channel whose signal is

formed by taking the difference between each electrode�s potential.
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Fig. 16 compares the performance of the SDP and

SIP architectures; performance was assessed using the

leave-one-out cross-validation testing scheme. The

SDP architecture exhibits a smaller average detection

latency and a larger number of true detections relative

to the SIP architecture, but a slightly greater number
of false detections. The smaller average detection la-

tency of the SDP architecture suggests that the sup-

port vector machine, to some extent, was handicapped

by the smaller feature vectors in the SIP architecture

and is more effective when allowed to freely exploit

the interrelations of elements within larger feature

vectors.
7. Related work

Seizure detection algorithms developed can be cate-

gorized as follows: patient-specific and patient-inde-

pendent methods that rely on training a classifier to

recognize features of seizure and nonseizure EEGs, and

patient-independent methods that rely on satisfying a
criterion specific to seizure evolution. In this section we

review work from each of these categories.

Qu and Gotman [15] exploited patient specificity in

detecting seizure onsets from noninvasive EEG. Their

method required that an expert specify EEG channels

likely to exhibit seizure activity, and used one nearest-

neighbor classifier to sequentially classify time and fre-

quency domain features from each channel indepen-
dently. This is in contrast with our method, which

makes a classification within the context of activity

present on all channels using a support vector machine.

Qu and Gotman reported a 100% onset detection rate

with an average detection delay of 9.35 seconds and a

false-positive rate of 0.02 alarm/hour on a data set that
included 12 patients and 47 seizures.

Patient specificity was also the cornerstone of the

detector described by D�Alessandro et al. [16]. Their

method automatically selected both the optimal features

and the channels for a given patient. The features in-

clude lower-level features from the time domain, fre-

quency domain, wavelet domain, and fractal dimension;

and higher-level features that capture the statistical
properties of those at lower levels. The method was

designed to be used with invasive EEG, and was tested

on recordings from only four patients. The algorithm

correctly predicted the onset of 62.5% of seizures at a

false prediction rate of 0.27 false prediction/hour. We

have focused our efforts on designing a robust algorithm

for the detection of seizure onsets in noninvasive elec-

troencephalography, which is far more susceptible to
artifact contamination than invasive electroencepha-

lography. Our approach to dealing with artifacts is

based on training our detector to recognize artifacts,

rather than actively remove them using standard signal

processing techniques.

Hively and Protopopescu [17] designed a patient-

specific algorithm that predicts seizure onsets by infer-

ring from nonlinear dynamical indicators of electroen-



Fig. 16. Comparison of SIP and SDP architectures. Each bar indicates the average latency in detecting a subject�s seizure onset using both the SIP

and SDP detection architectures. The SDP architecture detects more seizures with a smaller average latency. Both architectures declare a comparable

number of false detections. Note that the SDP detection architecture results are the same as those in Fig. 10.
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cephalographic evolution the eventual transition of the

brain from an interictal to an ictal state. The nonlinear

dynamical indicators used by Hively and Protopopescu

are called phase-space dissimilarity measures. The al-

gorithm successfully predicted the onset of 87.5% of

seizures at some point in a window that precedes the

electrographic onset by 60minutes, and exhibited a false
prediction rate of 0.021 false prediction/hour on a da-

taset of 260 hours of EEG recordings from 41 patients.

The long prediction time of this algorithm probably

makes it unsuitable for the applications for which our

approach was developed.

Patient-independent seizure detection algorithms

that rely on machine learning include that of Gabor

et al. [18]. They developed a detector that uses a self-
organizing map (SOM) neural network to classify

feature vectors constructed by transforming spectro-

grams of 4-second, channel-averaged EEG epochs us-

ing a two-dimensional FFT. The channel-averaged

EEG epochs are first processed by a wavelet transform

that emphasizes time scales prominent in the training

seizure examples. This methodology differs from ours

in that channel-averaged epochs are classified, as op-
posed to the classification of a feature vector that

preserves the spatial distribution of channels. The al-

gorithm detected 52 of 62 seizures and declared

0.71� 0.79 false positive per hour. The authors did not

report on how long after electrographic seizure onset

the events were declared.
Patient-independent seizure detectors that rely on the

properties of seizure evolution include those developed

by Schindler et al. and Iasemidis et al. Schindler et al.

[19] developed a neuronal cell model, and used it to

estimate neural cell spiking rates in different regions of

the scalp from noninvasive EEGs. They demonstrated

that a persistent elevation in the model�s spiking rate
could be used to detect the onset of a seizure event. As

the model�s spiking rate depends on the derivative of the

EEG signal exceeding a threshold, it is not clear whether

or not this methodology can be used to detect seizures

characterized by high-amplitude, slow waves with small-

magnitude time derivatives. As our works shows, these

seizures are readily detected by a wavelet decomposition

that captures long-time scale activity. In a later publi-
cation, Schindler et al. [20] demonstrated on nine patients

the ability of their method to predict seizure onset

83� 91minutes before its occurrence. This method may

be useful for detecting seizure events preceded by an in-

crease in the frequency of spikes, but not those lacking

such an increase. This emphasizes the need for a patient-

specific seizure detection methodology that does not im-

pose specific requirements on the evolution of seizures.
Iasemidis et al. [21] developed an algorithm that

predicts seizure onsets by characterizing the level of

entrainment observed in spatially related channels using

the Lyapunov exponent nonlinear dynamical indicator.

Specifically, the algorithm relies on the observation

that long before seizure onset, channels surrounding the
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epileptogenic focus behave independently, but as the
brain gradually transitions toward the ictal state, the

degree of entrainment of these channels increases. When

the algorithm was tested on intracranial recordings from

five patients using fixed prediction parameter settings, it

correctly predicted 82.5% of seizures with an average

prediction time of 71.7minutes and an average false

prediction rate of 0.16 false prediction/hour. Whether or

not this entrainment is evident in noninvasive electro-
encephalography, and observable in all seizure types, is

not clear.
8. Summary and conclusions

We presented a patient-specific method that detects

the onset of epileptic seizures in noninvasive electroen-
cephalography and that can be used to initiate time-

sensitive clinical procedures such as the injection of an

imaging radiotracer immediately following seizure on-

set. Our method exploits the conservation of waveform

morphology and spatial distribution of seizure and

nonseizure activity for a given patient. It is designed to

work on a variety of seizure types and was tested on

focal, lateral, and generalized seizure onsets.
A multiresolution wavelet decomposition is used to

capture EEG waveform morphology. The decomposi-

tion and spatial distribution of the waveforms are en-

coded in feature vectors passed to a support vector

machine. The machine, which is trained on nonseizure

activity and two or more seizures, is then used to

determine whether the feature vector is representative of

the patient�s seizure activity. Nonseizure activity in-
cludes baseline, artifact, and hallmark activity from

different states of consciousness.
Fig. 17. Multilevel wavelet decomposition filter bank. The time scale of ac

analysis filters H1ðzÞ and H0ðzÞ and the iteration level producing it. Generally

time-scale activity, while those produced by lower iteration levels capture sh
Our method was tested on noninvasive EEGs from 36
pediatric subjects suffering from a variety of seizure

types. It exhibited an average latency of 8.0� 3.2 sec-

onds while identifying 131 of 139 seizure events and

declared 15 false detections in 60 hours of clinical EEG

recordings. We believe our detector can be used to

consistently ensure prompt infusion of an imaging ra-

diotracer following seizure onset in a clinical setting, and

consequently enhance noninvasive localization of epi-
leptogenic foci using functional imaging modalities.
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Appendix A. Wavelet decomposition

A multiresolution wavelet decomposition extracts

subband signals containing activity at different time

scales by passing the EEG signal through an iterated

filterbank structure like that shown in Fig. 17. The time

scale or frequency of activity resolved by a particular
subband signal is determined by the iteration level

producing it and the choice of analysis filters H1ðzÞ and
H0ðzÞ. The time scale resolved by a subband signal in-

creases with its iteration level, which is equivalent to a

decrease in the frequency of the resolved activity.

In the case of the detection algorithm, H1ðzÞ and

H0ðzÞ were chosen to be the filters associated with the
tivity captured within each subband signal depends on the choice of

, the subband signals produced by higher iteration levels capture long

orter time-scale activity.



Fig. 18. Effective impulse and frequency responses of wavelet filter bank. Lowest-level subband signal is associated with the shortest time-scale

impulse response and widest bandwidth frequency response. Highest-level subband signal is associated with the longest time-scale impulse response

and narrowest bandwidth frequency response.
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fourth member of the Daubechies wavelet family [22],
as those filters exhibit a maximally flat response in their

passband as well as little spectral leakage in their

stopbands. Furthermore, only the subband signals

{d4½n� d5½n� d6½n� d7½n�} are computed because collec-

tively they represent activity at time scales corre-

sponding to frequencies from 0.5 to 25Hz, which is a

frequency that captures seizure onsets of various

electrographic manifestations [7]. The remaining sub-
band signals primarily resolve activity of no clinical

relevance to this application. In particular, the subband

signal a7½n� captures slow baseline variations like those

caused by sweating, while the subband signals {d1½n�
d2½n� d3½n�} capture high-frequency artifacts similar to

those resulting from muscular contractions. The de-

tector learns the morphology and spatial distribution of

artifacts with energy in the subband signals {d4½n� d5½n�
d6½n� d7½n�} by their inclusion in the training exam-

ples.

The time scales and frequencies captured within each

of the subband signals {d4½n� d5½n� d6½n� d7½n�} can be

appreciated by examining the impulse and frequency

response of the cascade of filters producing each, as

shown in Fig. 18. The lowest-level subband signal d4½n�
is associated with the shortest-time-scale impulse re-
sponse and widest bandwidth frequency response; while

the highest-level subband signal d7½n� is associated with

the longest-time-scale impulse response and narrowest

bandwidth frequency response.

The subband signals {d4½n� d5½n� d6½n� d7½n�} are not

used directly as entries of the feature vector. Using such

a direct representation of the EEG waveform is too

sensitive to noise and slight variations in morphology.
Instead, the energy in each of the subband signals

{d4½n� d5½n� d6½n� d7½n�} is used. An explicit representa-

tion of the four features computed for each EEG

channel i ¼ 1 . . . 21 is:
Xi;1

Xi;2

Xi;3

Xi;4

2
664

3
775 ¼

logð
P

n jdi;4ðnÞjÞ
logð

P
n jdi;5ðnÞjÞ

logð
P

n jdi;6ðnÞjÞ
logð

P
n jdi;7ðnÞjÞ
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