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Andrew C. Singer, Member, IEEE, Suleyman S. Kozat, and
Meir Feder, Fellow, IEEE

Abstract—We consider the problem of sequential linear prediction
of real-valued sequences under the square-error loss function. For this
problem, a prediction algorithm has been demonstrated [1]–[3] whose
accumulated squared prediction error, for every bounded sequence, is
asymptotically as small as the best fixed linear predictor for that sequence,
taken from the class of all linear predictors of a given order . The
redundancy, or excess prediction error above that of the best predictor
for that sequence, is upper-bounded by ln( ) , where is the
data length and the sequence is assumed to be bounded by some. In
this correspondence, we provide an alternative proof of this result by
connecting it with universal probability assignment. We then show that
this predictor is optimal in a min–max sense, by deriving a corresponding
lower bound, such that no sequential predictor can ever do better than a
redundancy of ln( ) .

Index Terms—Min–max, prediction, sequential probability assignment,
universal algorithms.

I. INTRODUCTION

In this correspondence, we consider the problem of predicting a se-
quencexn = fx[t]gnt=1 as well as the best linear predictor out of a
large, continuous class of linear predictors. The real-valued sequence
x
n is assumed to be bounded, in thatjx[t]j < A for someA < 1,

and for allt. Rather than assuming a statistical ensemble of sequences,
and attempting to achieve good expected performance, the goal of this
game is to predict the sequence as well as the best predictor out of a
large class of predictors for every possible sequencex

n. As such, we
seek to minimize the following form of regret:

sup
x

n

t=1

(x[t] � x̂a[t])
2 � inf

c2C

n

t=1

(x[t] � x̂c[t])
2 (1)

wherex̂a[t] is the prediction at timet of a sequential algorithm and
x̂c[t] is the prediction at timet of a predictor in the classC of predictors.

We first consider the class of first-order linear predictors, such that
the competing class of predictorsC = R has elementsw 2 R, which
form predictions aŝxw[t] = wx[t�1] for each sample of the sequence
x
n. For linear predictors, we assume predictionsx̂w[1] = 0, i.e., that
x[t] = 0, for t � 0. While this class of predictors is rather limited in
forecasting ability, we permit the constantw to be selected based on ob-
serving the entire sequencexn in advance. As we will show, there does
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not exist a sequential algorithm that can outperform the best predictor
from this class for all sequences. In this correspondence, we present an
algorithm for which this regret is at mostA2 ln(n) and also demon-
strate that there is a lower bound ofA2 ln(n)� G for any sequential
algorithm, and for some constantG. This algorithm was first shown
by Vovk [4], and later by Azoury and Warmuth [2]. Our approach is
based on sequential probability assignment, and is motivated by recent
results in the universal source coding literature [5]–[11].

We then consider the class ofpth-order linear predictors, such that
the competing class of predictorsC = Rp has elementŝx~w , ~w 2 Rp,
which form predictions as a linear function of the pastp samples, i.e.,

x̂~w[n] =

p

k=1

wkx[n� k]:

We again permit the parameter vector~w to be selected based on ob-
serving the entire sequencexn in advance. We will show an algorithm
for which the regret in (1) is at mostA2p ln(n). We then demonstrate
that there exists a corresponding lower bound of the formA2p ln(n)�
G for any sequential algorithm.

In [1], Vovk considers the regret in (1) for the problem of linear
regression. That is, for

ŷ[t] =

p

k=1

wkxk[t]

wherey[t] and~x[t] are bounded scalar and vector sequences, respec-
tively. He demonstrates corresponding upper and lower bounds to those
obtained in this correspondence for linear prediction, for linear regres-
sion. Specifically, for

jxk[t]j < Ax and jy[t]j < Ay

he presents an algorithm for which (1) is upper-bounded by approx-
imatelyA2

yp ln(1 + nA2

x=�), for some constant�. He then demon-
strates a stochastic construction of sequencesy[t], ~x[t] such that (1) is
lower-bounded in expectation by approximately(p � �)A2

y ln(n) �
�pA2

y �C, for suitable constants� andC, and for any�. As discussed
later in this correspondence, this stochastic construction implies a form
of min–max optimality. While our upper bounds for linear prediction
can be derived as corollaries of those obtained in [1], we show that
there are a number of important differences between the regression and
prediction problems. The requirement that the samples and the labels
must satisfyxk[t] = y[t�k] turns out to be particularly strong. For ex-
ample, the prediction algorithm presented here will produce bounded
predictions for a bounded input, however, the algorithm in [1] will not
necessarily produce bounded regressions. Further, the lower bounds for
regression in [1] cannot be applied to the linear prediction problem. We
therefore build upon the results of [1], and extend them to the specific
problem of linear prediction.

II. SCALAR LINEAR PREDICTORS

We begin with the class of scalar linear predictors and seek to mini-
mize the following regret:

sup
x

n

t=1

(x[t] � x̂a[t])
2 � inf

w2R

n

t=1

(x[t] � wx[t� 1])2
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wherex̂a[t] is the prediction at timet of any sequential algorithm. That
is, we wish to obtain a sequential predictor that can predict every se-
quencexn as well as the best fixed linear predictor for that sequence,
even when the linear predictor is selected by observing the entire se-
quence in advance.

Minimizing n

t=1
(x[t] � wx[t � 1])2 for a specific sequencexn

yields the well-known equation for the least squares optimal parameter

w[n] =

n

t=1

x[t]x[t � 1]

n

t=1

x[t� 1]2
(2)

=
Rn

xx[�1]

Rn�1
xx [0]

(3)

where

RN

ab[m] =

N

n=1

a[n]b[n +m]:

Note thatw[n] this is a function of the entire sequence, and cannot be
obtained until the whole sequence has been observed.

A slightly more general loss function which often arises in many
signal processing problems is

min
w

n

t=1

(x[t]� wx[t� 1])2 + �(w � w0)
2

where� � 0, andw0 is given. Choosing� = 0 yields the original least
squares expression. Here,� is typically used to incorporate additional
a priori knowledge concerningw [12]. In this correspondence, we will
assume thatw0 = 0, which could also be obtained through a suitable
change of variables. The minimizing value ofw for this problem is
given by

w�[n] =

n

t=1

x[t]x[t � 1]

n

t=1

x[t� 1]2 + �

=
Rn

xx[�1]

Rn�1
xx [0] + �

:

We next describe a universal prediction algorithm whose accumu-
lated average square error is as small, to within a negligible term, as
that of a linear predictor that was preset to the best value given the se-
quence in advance. We can write

~xu[n] = wu[n� 1]x[n � 1]

where

wu[n] =
Rn

xx[�1]

Rn
xx[0] + �

and� > 0 is a constant.
The following theorem, which is proven in the Appendix relates the

performance of the universal predictor

l(xn; ~xnu) =

n

t=1

(x[t] � ~xu[t])
2

to that of the best batch predictor.

Theorem 1: Let xn be a bounded, real-valued arbitrary sequence,
such thatjx[t]j < A, for all t. Thenl(xn; ~xnu) satisfies

1

n
l(xn; ~xnu) � 1

n
min
w

l(xn; x̂nw) + �w2 +
A2

n
ln 1 +

nA2

�
:

Theorem 1 states that the average squared prediction error of the uni-
versal predictor is withinO(n�1 ln(n)) of the best batch scalar linear
prediction algorithm, uniformly, for every individual sequencexn.

A. Outline of Proof of Theorem 1

The proof of the theorem is based on sequential probability assign-
ment. Given a continuum of predictors, each with a different value of
the parameterw, denoted,̂xw[t] = wx[t�1], then for each of the pre-
dictors, a measure of their sequential prediction performance, or loss,
is constructed

l(xn; x̂nw) =

n

t=1

(x[t] � wx[t� 1])2

Also, define a function of the loss, namely the “probability”

Pw(x
n) = exp � 1

2h
l(xn; x̂nw)

which can be viewed as a probability assignment of the predictor with
parameterw to the dataxn induced by performance ofw on the se-
quence. We refer to such exponential functions of the loss as probabil-
ities in analogy to problems in sequential data compression. We con-
struct a universal estimate of the probability of the sequencexn, as ana
priori weighted combination, or mixture, among all of the probabilities

Pu(x
n) =

1

�1

p(w)Pw(x
n)dw (4)

wherep(w) is ana priori weighting assigned to the parameterw.
Since the assigned probabilities for the square-error loss are

Gaussian in form, the Gaussian prior enables the integration of
probabilities assigned to the sequence. We let

p(w) = expf�w2=2�2g=(
p
2��):

The universal probability assignment can thus be obtained in closed
form.

As shown in the Appendix, this universal probability is as large as the
probability assigned to the sequence by the predictor with the smallest
prediction error, i.e., the largest probability among the continuum of
probabilitiesPw(xn). We now must relate this universal probability to
an actual prediction. We note that the universal probability is Gaussian,
but not in the form of an assigned probability, i.e., with the loss of
a particular predictor in the exponent. As such, we then findanother
Gaussian, expressed in predictor form which islarger than the universal
probability, for all sequences of interest. Taking the negative logarithm
of this probability then provides the loss of this universal predictor and
completes the proof of the theorem.

B. Bounded Predictions

One interesting difference between the prediction and regression
problems relates to the performance of the universal algorithm on
bounded data.

Theorem 2: Let xn be a bounded, real-valued arbitrary sequence,
such thatjx[t]j<A. Then the predictor~xu[t] also satisfiesj~xu[t]j<A:

This theorem is proven in the Appendix. We also note that when
applied to the regression problem, as in [1], the corresponding uni-
versal regression algorithm does not share this property. In the Ap-
pendix, we also provide an example of bounded sequences~xn andyn

for which the associated universal regression algorithm does not pro-
duce bounded regressions.

III. L OWER BOUND

In this section, we will demonstrate that the predictor described in
Theorem 1 is nearly optimal in that no sequential predictor can do much
better, in a min–max sense. This is made precise in the following the-
orem.

Theorem 3: Let xn be a bounded, real-valued arbitrary sequence
such thatjx[t]j < A for all t. Let x̂na be the predictions from any
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sequential prediction algorithm. Then, for any� > 0, there exists a
constantG such thatl(xn; x̂na ) satisfies

inf
a2A

sup
x

l(xn; x̂na )� inf
w2R

l(xn; x̂nw) �
A2(1� �)

n
ln(n)�

G

n

whereA is the class of all sequential predictors.

Theorem 3 states that for any sequential algorithm, there exists a se-
quence such that the time-average squared prediction error is at least
O(n�1 ln(n)) worse than the best fixed linear predictor for that se-
quence.

A. Proof of Theorem 3

We begin by noting that for any distribution onxn

inf
a2A

sup
x

l(xn; x̂na )� inf
w

l(xn; x̂nw)

� inf
a2A

Ex l(xn; x̂na )� inf
w

l(xn; x̂nw)

whereEx (�) is an expectation taken with respect to the distribution
onxn. Thus, it is enough to lower-bound

L(n)
�
= inf

a2A
Ex l(xn; x̂na )� inf

w

l(xn; x̂nw) (5)

to obtain a lower bound on the total regret.
We proceed by considering the following distribution onxn. Let �

be a random variable drawn from a beta distribution with parameters
(C; C), such that

p(�) =
�(2C)

�(C)�(C)
�
C�1(1� �)C�1

whereC > 0 is a constant and�(�) is the gamma function. Generate
the sequencexn having only two values,A and�A, such thatx[t] =
x[t � 1] with probability � andx[t] = �x[t � 1] with probability
(1 � �). Thus, given�, any sequencexn forms a two-state Markov
chain with transition probability(1 � �). We selectx[t] = A and
x[t] = �A in the two corresponding states of the Markov chain. Note
that given�, each transition is independent from any other transition
in the chain. By assuming thatxn is a segment of a stationary Markov
sequence, generated from�1 to1, we avoid any subtleties induced
by initialization att = 1.

Given this distribution, we now compute a lower bound for (5). By
the linearity of the expectation, (5) becomes

L(n) = inf
a2A

E[l(xn; x̂na )]� E inf
w

l(xn; x̂nw) (6)

where we drop the explicitxn-dependence of the expectations to sim-
plify notation.

Each term in (6) can now be calculated separately.

B. infa2AE[l(xn; x̂na )]

For the square-error loss function,infa2AE[l(xn; x̂na )] is mini-
mized with the well known minimum mean-squared error (MMSE)
predictor, given by [13]

x̂A[t] = E[x[t]jx[t � 1]; . . . ; x[1]]:

By expanding the expectation

x̂A[t] = E[E[x[t]jx[t � 1]; . . . ; x[1]; �]jx[t � 1]; . . . ; x[1]]:

Since the underlying process is a two state Markov chain

x̂A[t] = E[E[x[t]jx[t � 1]; �]jx[t � 1]; . . . ; x[1]]:

Givenx[t � 1] and�

E[x[t]jx[t�1]; �] = �x[t�1]+(1��)(�x[t�1]) = (2��1)x[t�1]:

Thus,

x̂A[t] =E[(2�� 1)x[t� 1]jx[t � 1]; . . . ; x[1]]

=x[t � 1]E[(2� � 1)jx[t� 1]; . . . ; x[1]]: (7)

To evaluateE[�jx[t � 1]; . . . ; x[1]], we compute

p(�jx[t� 1]; . . . ; x[1]) =
p(x[t� 1]; . . . ; x[1]j�)p(�)

p(x[t� 1]; . . . ; x[1])
:

Given�, the probability of any sequencext�1 is equal to

p(x[t� 1]; . . . ; x[1]j�) = K(1� �)F �
t�2�F

whereFt�2 is the total number of transitions between the two states in
a sequence of length(t � 1) andK is a constant. Given�, Ft�2 is a
binomial random variable with parameter(1��) and size(t�2). The
constantK is the probability ofx[1].

We obtain

p x
t�1 =

1

�=0

K(1� �)F +C�1
�
t�2�F +C�1 �(2C)

�2(C)
d�

and

p(�jx[t�1]; . . . ; x[1]) =
(1� �)F +C�1�t�2�F +C�1

1

�=0
(1� �)F +C�1�t�2�F +C�1 d�

:

Thus, the conditional expectation is given by,

E[�jx[t� 1]; . . . ; x[1]]=

1

�=0
(1� �)F +C�1�t�1�F +C�1 d�

1

�=0
(1� �)F +C�1�t�2�F +C�1 d�

:

Due to the well-known properties of the beta distribution, the preceding
expectation becomes

E[�jx[t � 1]; . . . ; x[1]] =

�(F +C)�(t�1�F +C)

�(F +C+t�1�F +C)

�(F +C)�(t�2�F +C)

�(F +C+t�2�F +C)

=
t� 2� Ft�2 + C

t� 2 + 2C
:

By this result, the MMSE prediction (7) is given by

x̂A[t] = 2
t� 2� Ft�2 + C

t� 2 + 2C
� 1 x[t � 1]

=
t� 2� 2Ft�2
t� 2 + 2C

x[t� 1]:

Thus, for the first term in the lower bound in (5), we have

inf
a2A

E[l(xn; x̂na )] =E

n

t=1

(x[t] � x̂A[t])
2

;

=E

n

t=1

x[t] �
t� 2� 2Ft�2
t� 2 + 2C

x[t� 1]
2

:

This expectation can then be expanded and is evaluated in the following
lemma.

Lemma 1:

inf
a2A

E[l(xn; x̂na )] =

n

t=1

A
2 � 2

t� 2

(2C + 1)(t� 2 + 2C)
A
2

+
A2

(t� 2 + 2C)2
(t� 2)2

2C + 1
+

2C

2C + 1
(t� 2) :

Proof: Given in the Appendix.

C. E[infw l(x
n; x̂nw)]

For the second term in (6), we need to calculate the following expec-
tation:

E inf
w

l(xn; x̂nw) = E inf
w

n

t=1

(x[t] � x̂w[t])
2

:
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The variablêxw[t] is the best (in terms of square-error loss) first-order
linear predictor which has access to the whole sequencexn. With
square-error loss, this is a well-known least squares problem. The
desired predictor is given by

x̂w[t] =

n

t=1

x[t]x[t � 1]

n�1

t=1

x[t]x[t]

x[t� 1]

which is highly nonlinear and for which it is hard to calculate an ex-
pectation for a general sequencexn. Nevertheless, with the selection
of our special distribution, the corresponding terms become

n�1

t=1

x[t]x[t] = (n� 1)A2

and
n

t=1

x[t]x[t � 1] = (n� 2Fn)A
2:

As before,Fn is the number of transitions between the two states in a
sequence of sizen. This yields a simple form for the predictor

x̂w[t] =
n� 2Fn
n� 1

x[t � 1]

which enables evaluation of the second term in (6) as described in the
following lemma.

Lemma 2:

E inf
w

l(xn; x̂nw) =

n

t=1

A2 � 2
A2

2C + 1
+

A2

n� 1

+
A2

(n� 1)2
n2

2C + 1
+

2Cn

2C + 1
:

Proof: Given in the Appendix.

Thus, usingLemmas 1and2, the overall lower boundL(n) can be
computed and is given by the following lemma.

Lemma 3:

L(n) = A2
n

t=1

2C

2C + 1

1

t� 2 + 2C
+O(1):

Proof: Given in the Appendix.

By lower-bounding the harmonic series with its integral, and setting
G = ln(2C � 1), then for any�, we can find a constantC such that

inf
a2A

sup
x

n

t=1

(x[t] � x̂A[t])
2 � inf

w2R

n

t=1

(x[t] � wx[t� 1])2

� A2(1� �) ln(n)�G (8)

completing the proof.

IV. pth-ORDER LINEAR PREDICTION

In this section, we consider the problem of linear prediction with a
predictor of fixed-orderp. The predictor is now parameterized by the
vector ~w = [w1; . . . ; wp]

T , and the predicted value can be written
x̂~w[n] = ~w T~x[n], where,~x[n] = [x[n � 1]; . . . ; x[n � p]]T . If the
parameter vector~w is selected such that the total squared prediction
error is minimized over a batch of data of lengthn, then the coefficients
are given by

~wn = argmin
~w

n

k=1

x[k]� ~w T ~x[k]
2

:

The well-known least squares solution to this problem is given by~wn =
(Rn

~x~x)
�1rnx~x, whenRn

~x~x = n

k=1
~x[k]~x[k]T is invertible and where

rnx~x = n

k=1 x[k]~x[k]. WhenRn
~x~x = n

k=1 ~x[k]~x[k]
T is singular,

the solution is no longer unique, however a suitable choice can often
be made using, e.g., pseudoinverses.

We will also consider the more general least squares (ridge regres-
sion) problem

~w �[n] = argmin
~w

l(xn; x̂n~w) + �j~wj2

= [Rn
~x~x + �I]�1 rnx~x;

where l(xn; x̂n~w) is the running total squared prediction error for a
linear predictor with coefficients~w.

We now construct a universalpth-order linear predictor using a mix-
ture over all predictors~w. The following theorem extends Theorem 1
using a vector version of the mixture approach.

Let x̂w[n] be the output of apth-order linear predictor with param-
eter vector~w, andl(xn; x̂n~w) be the running total squared prediction
error. Define a universal predictor~xu[n] as

~xu[n] = ~wu[n � 1]T ~x[n]

where

~wu[n] = Rn+1
~x~x + �I

�1
rnx~x

and� > 0 is a positive constant.

Theorem 4: Letxn be a bounded, but otherwise arbitrary sequence,
such thatjx[t]j < A for all t. Then the total squared prediction error of
thepth-order universal predictor satisfies

l(xn; ~xnu) � min
~w

l(xn; x̂n~w) + �k~wk2 +A2 ln I +Rn
~x~x�

�1

and therefore,

1

n
l(xn; ~xnu) � min

~w

1

n
l(xn; x̂n~w) + �k~wk2 +

A2p

n
ln 1 +

A2n

�
:

Theorem 4 tells us that the average squared prediction error of
the pth-order universal predictor is withinO(p ln(n)=n) of the best
batch pth-order linear prediction algorithm, for every individual
sequencex[n]. This result can be compared with Foster’s result
for binary data and predictors in the simplex

i
ai = 1, yielding

regret of[2+p log(p(n+1))]=n [14]. For � = 2, our bound yields
(2kak2+A2xp log(1+A2xn=2))=n, which forAx = 1

2
, i.e., data on

an interval of length1, yields,(2kak2+(p=4) log(1+n=8))=n. The
proof of Theorem 4 follows that of Theorem 1, with vector extensions
of the Gaussian mixture and is omitted for brevity.

A. Lower Bound forpth-Order Linear Prediction

The lower bound obtained for first-order linear prediction can be
generalized to thepth-order linear prediction case as described in the
following theorem.

Theorem 5: Let xn be a bounded, real-valued arbitrary sequence
such thatjx[t]j < A for all t. Let x̂a[n] be the predictions from any
sequential prediction algorithm. Then for any� > 0 there exists a con-
stantG such thatl(xn; x̂na ) satisfies

inf
a2A

sup
x

l(xn; x̂na )� inf
~w2R

l(xn; x̂n~w) �
A2p(1��)

n
ln(n)�

G

n

whereA is the class of all sequential predictors.

We again focus on the lower bound

L(n)
�
= inf

a2A
Ex l(xn; x̂na )� inf

~w2R
l(xn; x̂n~w) (9)

to get a lower bound on the total regret.
We consider the following distribution onxn, which is constructed

by interleavingp first-order Markov sequences. First, independently
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drawp random variables�i, i = 1; . . . ; p, from a beta distribution. For
each�i, the corresponding two-state Markov chains are interleaved, to
create the sequencex[n]. Thus, for anyn, x[n] andx[n � p] are from
the same original two-state Markov chain.

With the expectation taken over this distribution, we can proceed to
calculate the lower bound. Since each Markov chain is independent, the
derivations follow the first-order case. The MMSE prediction is given
by

x̂A[t] =
t� � 2� 2Ft �2

t� � 2 + 2C
x[t� p]

wheret� is the largest integer satisfyingt� � (t=p). With this, the first
sum in the lower bound becomes

E

n

t=1

(x[t]�x̂A[t])
2 =

n

t=1

A2�2
t� � 2

(2C + 1)(t� � 2 + 2C)
A2

+
A2

(t� � 2 + 2C)2
(t� � 2)2

2C + 1
+

2C

2C + 1
(t� � 2) :

For the second term in (9), we need to calculate

E inf
~w

l(xn; x̂n~w) = E inf
~w

n

t=1

(x[t] � x̂~w[t])
2 :

The sequencêxn~w is the best set (in terms of square error) ofpth-order
linear predictions which has access to the whole sequencexn. With
square error loss, this predictor is the well-known least squares pre-
dictor. However, the expected loss for this predictor is difficult to com-
pute, even for our distribution. The following inequality will prove
useful in this regard:

E� Ex j� inf
~w

n

t=1

(x[t]� x̂~w[t])
2

� E� inf
~w

Ex j�

n

t=1

(x[t] � x̂~w[t])
2

whereEx j� is the conditional expectation conditioned on allp values
of �. Therefore, the lower bound in (9) is lower-bounded by

L(n) � inf
a2A

Ex [l(xn; x̂na )]� E� inf
~w

Ex j�[l(x
n; x̂n~w)] : (10)

The terminf~w Ex j�[L(x
n; xn~w)] is the MMSE and given by [13]

inf
~w

Ex j�[l(x
n; xn~w)] = �2 � kTR�1k;

where�2 = A2 is the variance of the sequence given all�i, k =
E[x[t]~x[t � 1]j�] is the cross-correlation vector, andR = E[~x[t �
1]~xT [t � 1]j�] is the correlation matrix. Since the interleaved Markov
chains are independent

k = [0; . . . ; 0; E[x[t]x[t � p]j�]]T

k = [0; . . . ; 0; (2�p � 1)A2]T ]

andR = A2I whereI is ap-dimensional identity matrix, where�p =
�n mod p. This results in

inf
~w

Ex j�[l(x
n; xn~w)] = A2 � (2�p � 1)2A2:

The second term in (10) yields

E� inf
~w

Ex j�[l(x
n; xn~w)] = A2 �

1

2C + 1
A2:

Combining this result with those for scalar prediction, we obtain the
lower bound as

L(n) �

n

t=1

A2 � 2
t� � 2

(2C + 1)(t� � 2 + 2C)
A2

+
A2

(t� � 2 + 2C)2
(t� � 2)2

2C + 1
+

2C

2C + 1
(t� � 2)

� A2 �
1

2C + 1
A2 ;

=A2

n

t=1

1� 2
(t� � 2 + 2C)

(2C + 1)(t� � 2 + 2C)2

+
4C

(2C + 1)(t� � 2 + 2C)
+

(t� � 2 + 2C)2

(2C + 1)(t� � 2 + 2C)2

�
4C(t� � 2 + 2C)

(2C + 1)(t� � 2 + 2C)2
+

4C2

(2C + 1)(t� � 2 + 2C)2

+
2C(t� � 2� 2C)

(2C + 1)(t� � 2 + 2C)2
+

4C2

(2C + 1)(t� � 2 + 2C)2

� 1 +
1

2C + 1
;

=A2

n

t=1

2C

2C + 1

1

t� � 2 + 2C
+O(1):

Thus, after replacingt� with its definition, we conclude that for any
given�, there exists a constantG such that

inf
a2A

sup
x

n

t=1

(x[t] � x̂a[t])
2 � inf

~w2R

n

t=1

(x[t] � ~w T~x[t� 1])2

� A2(1� �)p ln(n)�G

completing the proof of the theorem.

APPENDIX

A. Proof of Theorem 1

The universal probability assignment can be obtained in closed form;
integrating (4)

Pu(x
n) =

1

��1Rn�1
xx [0] + 1

� exp �
1

2h

Rn
xx[0]R

n�1
xx [0] + �Rn

xx[0]�(Rn
xx[�1])2

Rn�1
xx [0] + �

(11)

where� = h=�2.
We would like to have the universal probability be as large as the

probability assigned to the sequence by the predictor with

w�[n] = argmin
w

l(xn; x̂nw) + �w2 :

For this value ofw = w�[n], after comparing with (4) and after some
algebra, we obtain

�2h ln(Pu(x
n))

= min
w

l(xn; x̂nw) + �w2 + h ln 1 +Rn�1
xx [0]��1 : (12)

We now have a method of assigning a universal probability to the
sequence that achieves, to first order in the exponent, the same sequen-
tial probability as the best predictor. We now must relate this universal
probability to an actual prediction.
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Since each of the predictors assigns a probability that is exponential
in the prediction error for that predictor, we look to the exponent of
Pu(x

n) for the predictor. Specifically, we have

Pw xn xn�1 = exp �
1

2h
(x[n]� wx[n� 1])2

relating the prediction error at timen to the probabilityPw(xnjxn�1).
Similarly, we expect to obtain an expression of this form for
Pu(xnjx

n�1). From (11), we obtain

Pu xn xn�1 =
Rn�2

xx [0] + �

Rn�1

xx [0] + �
exp

�1

2h

Rn�2

xx [0] + �

Rn�1

xx [0] + �

� x[n] �
Rn�1

xx [�1]

Rn�2

xx [0] + �
x[n � 1]

2

:

Although Gaussian (quadratic exponential),Pu(xnjx
n�1) cannot be

expressed in the same form asPw(xnjxn�1), i.e., quadratic exponen-
tial in the loss at timen.

However, after some algebra, we see that it is almost in this form

Pu xn xn�1 =
Rn�2

xx [0] + �

Rn�1

xx [0] + �
exp

�1

2h

Rn�2

xx [0] + �

Rn�1

xx [0] + �

� x[n] �
Rn�1

xx [�1]

Rn�2

xx [0] + �
x[n � 1]

2

=� exp
�1

2h
�2 x[n]�

Rn�1

xx [�1]

Rn�2

xx [0] + �
x[n � 1]

2

=� exp
�1

2h
�2 (x[n] � w�[n � 1]x[n � 1])

2

where

� = (Rn�2

xx [0] + �)=(Rn�1

xx [0] + �):

If we could findanotherGaussian, which were expressed in the form

~Pu xn xn�1 = exp
�1

2h
(x[n] � ~xu[n])

2

�� exp
�1

2h
�2(x[n] � w�[n� 1]x[n � 1])2

for the sequences of interest, i.e., forjx[n]j � A, then we would have

l(xn; ~xnu) � �2h lnPu(x
n)

completing the proof of the theorem.
Comparing~Pu(xnjxn�1) andPu(xnjxn�1), we obtain

Pu xn xn�1 =� exp �
1

2h
�2(x[n] � x̂u[n])

2

� exp �
1

2h
(x[n] � ~xu[n])

2

for x̂u[n] = w�[n � 1]x[n � 1], and for some~xu[n]. Note that these
are two Gaussians, with different means and different variances. We
would like to select an appropriate mean for~Pu(xnjx

n�1), i.e.,~xu[n],
such that over the rangex[n] 2 [�A; A], ~Pu(xnjx

n�1) is larger than

Pu(xnjx
n�1). This would ensure that the loss of the predictor~xu[n]

satisfies Theorem 1.
The locations of the crossover points for the two Gaussians,xl and

xr , where ~Pu = Pu, are obtained by setting~xu[n] = 
x̂u[n] and
solving, yielding the equation shown at the bottom of the page. Note
that the size of the region[xl; xr] over which ~Pu � Pu grows with
increasingh. We would like to selecth as small as possible, since it
appears as a constant multiplier of the redundancy, or excess prediction
error of the universal predictor. Since we require that~Pu � Pu for all
x[n] 2 [�A; A], the smallest value ofh can be selected only when the
region[xl; xr] is centered aboutx[n] = 0. This can be achieved only
by the choice
 = �2. For this choice of
, we have

~Pu xn xn�1 = exp
�1

2h
(x[n] � ~xu[n])

2

where the prediction is given by

~xu[n] =�2w�[n� 1]x[n � 1]

=
Rn�1

xx [�1]

Rn�1

xx [0] + �
x[n � 1]:

Note that~xu[n] can be viewed as usingw�[n]x[n�1] where we as-
sume thatx[n] = 0 to updateRn

xx[�1] (which remains atRn�1

xx [�1])
andRn�1

xx [0] accordingly before computingw�[n].
Now we can select thesmallestvalue of h so that the region

[�A; A] � [xl; xr], i.e.,

A �
2h ln(�)(�2 � 1) + �2x̂u[n]2(1 � �2)

(1� �2)

h �
A2(1� �2)� �2x̂u[n]

2

�2 ln(�)

which must hold for all values of̂xu[n] 2 [�A; A]. Therefore,

h � A2 (1� �2)

�2 ln(�)

where� < 1. Note that for0 < � < 1 the function

0 <
(1� �2)

�2 ln�
< 1

which implies that we must have

h � A2

to ensure that~Pu � Pu. In fact, since this bound on the value ofh
depends upon the value of� andx̂u[n], and is only tight for� ! 1,
and x̂u[n] = 0, then the restriction thatjx[n]j < A can actually be
occasionally violated, as long as~Pu � Pu still holds, and Theorem 1
will remain valid.

Our “probability” assignment algorithm had two free constants to be
set,h and�2. Now that we have selected a range for the constanth, the
constant�2 can be chosen such that� = h=�2 is an arbitrary positive
constant which does not depend on knowingA in advance. It is worth
noting that while the parameterh appears in the upper bound on the
excess prediction error (via (12)), it is independent of the algorithm. As
a result, while the excess prediction error will depend on the smallest

x[n] =
x̂u[n](�

2 � 
)

(�2 � 1)
�

�2x̂u[n]2
�2 + 2�2 ln(�)h+ �2x̂u[n]2
2 � 2 ln(�)h+ �2x̂u[n]2

(�2 � 1)
:



2360 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 8, AUGUST 2002

value ofh for which the theorem holds, this value ofh, and therefore
A, need not be known in advance.

This leads to the following result:

l(xn; ~xnu) � min
w

l(xn; x̂nw) + �jwj2 + A2 ln 1 +Rn�1

xx [0]��1

or

1

n
l(xn; ~xnu) � 1

n
min
w

l(xn; x̂nw) + �jwj2 +
A2

n
ln 1 +

nA2

�

implying that the universal predictor performs as well as the best pa-
rameterw to within a parameter redundancy term ofO(ln(n)=n).

B. Proof of Theorem 2

This can be shown in the scalar case using the Schwarz inequality

~xu[n] =

n�1

k=1

x[k]x[k � 1]

n�1

k=1

x[k]x[k] + �

x[n � 1]

j~xu[n]j �

n�1

k=1

x[k]x[k � 1]

n�1

k=1

x[k]x[k]

x[n � 1]

�A

n�1

k=1

x[k]x[k � 1]

n�1

k=1

x[k]x[k]

:

Using the vector notation,xn1 = [x[1]x[2] � � � x[n]]T , we have

j~xu[n]j �A
xn�1
2

T

0 xn�1
1

xn�1
1

T

xn�1
1

�A

xn�1
2

0
xn�1
1

kxn�1
1

k2
�A

completing the proof.
For the regression problem, the corresponding universal regression

ŷu[n] would be given by

~yu[n] =

n�1

k=1

x[k]y[k]

n

k=1

x[k]x[k] + �
x[n]:

For a sequences

xn�11 = [
p
�; . . . ;

p
�; A]T and yn1 = [A; . . . ; A]T

this yields,

~yu[n] =
(n� 1)

p
�A2

(n� 1)� + A2 + �

which, forn > (A2 +
p
�A)=(

p
�A � �), yields,j~yu[n]j > A, i.e.,

a prediction outside the range[�A; A]. Note that for this sequence,
~yu[n] ! A2=

p
�, which can be made arbitrarily large by adjusting�.

C. Proof of Lemma 1

We calculate each term of the quadratic sum separately. First, the
cross term

E x[t]
t� 2� 2Ft�2
t� 2 + 2C

x[t� 1]

=
t� 2

t� 2 + 2C
E[x[t]x[t�1]] � 2

t� 2 + 2C
E[Ft�2x[t]x[t � 1]]

= � 2

t� 2 + 2C
E[Ft�2x[t]x[t � 1]]

where the second line follows from

E[x[t]x[t � 1]] =E[E[�A2 + (1� �)(�A2)j�]]
=E[(2�� 1)A2] = 0: (13)

Again, using conditional expectations, we obtain

E[Ft�2x[t]x[t � 1]]

= E[E[E[Ft�2x[t]x[t � 1]j�; x[t]x[t � 1]]jx[t]; x[t� 1]]]:

Given�, x[t], andx[t � 1], Ft�2 is still a binomial random variable
with parameters(1� �) and size(t� 2). Thus,

E[Ft�2j�; x[t]; x[t� 1]] = (t� 2)(1� �):

By this

E
t� 2� 2Ft�2
t� 2 + 2C

x[t]x[t � 1]

= � 2

t� 2 + 2C
E[(t� 2)(1� �)x[t]x[t � 1]]

= � 2(t� 2)

t� 2 + 2C
E[(1� �)x[t]x[t � 1]]

= � 2(t� 2)

t� 2 + 2C
� A2

2(2C + 1)

=
t� 2

(2C + 1)(t� 2� 2C)
A2

where the third line follows from

E[�x[t]x[t � 1]] =E[E[�x[t]x[t � 1]j�]]
=E[�E[x[t]x[t � 1]j�]]
=E[�(2�� 1)A2] =

A2

2(2C + 1)

andE[x[t]x[t � 1]] = 0.
For evaluating the square term, we expand the term

E
t� 2� 2Ft�2
t� 2 + 2C

x[t� 1]
2

=
A2

(t� 2 + 2C)2
E (t� 2)2 � 4(t� 2)Ft�2 + 4F 2

t�2 :

Since,E[Ft�2] = E[E[Ft�2j�]] = E[(1� �)(t� 2)] = (t � 2)=2,
only E[F 2

t�2] is unknown. Since

Var(Ft�2j�) = E[F 2

t�2j�]� (E[Ft�2j�])2

and noting the variance of a binomial-distributed random variable, we
have

(t� 2) (1� �)� (1� �)2 = E[F 2

t�2j�]� (t� 2)2(1� �)2:
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Taking the expectation of both sides, and rearranging the terms

E[F 2
t�2] =E (t� 2) (1� �)� (1� �)2 + (t� 2)2(1� �)2

=
C(t� 2)

2(2C + 1)
+

(C + 1)(t� 2)2

2(2C + 1)
:

This yields

E
t� 2� 2Ft�2
t� 2 + 2C

x[t� 1]
2

=
A2

(t� 2 + 2C)2
(t� 2)2 � 4

(t� 2)2

2

+ 4
(t� 2)C

2(2C + 1)
+ 4

(C + 1)(t� 2)2

2(2C + 1)
;

=
A2

(t� 2 + 2C)2
(t� 2)2

2C + 1
+

2C

2C + 1
(t� 2) :

Thus, the first sum in (5) of Lemma 1 becomes
n

t=1

(x[t] � x̂A[t])
2 =

n

t=1

A2 � 2
t� 2

(2C + 1)(t� 2 + 2C)
A2

+
A2

(t� 2 + 2C)2
(t� 2)2

2C + 1
+

2C

2C + 1
(t� 2) :

D. Proof of Lemma 2

After expanding the sum, we obtain

E x[t] �
n� 2Fn
n� 1

x[t� 1]
2

= E x2[t] � 2x[t]
n� 2Fn
n� 1

x[t� 1] +
n� 2Fn
n� 1

x[t� 1]
2

:

For calculation of the cross term, we obtain

E
n� 2Fn
n� 1

x[t � 1]x[t]

= �
2

n� 1
E[Fnx[t]x[t � 1]]]

= �
2

n� 1
E[E[E[Fnx[t]x[t�1]j�; x[t]x[t�1]]jx[t]; x[t�1]]]

= �
2

n� 1
E[E[x[t]x[t�1]E[Fnj�; x[t]x[t�1]]jx[t]; x[t�1]]]:

The inner expectation is given by

E[Fnj�; x[t]x[t � 1]] = (n� 1)(1� �) +
jx[t] � x[t� 1]j

2A
:

This equality follows, since, givenx[t] andx[t�1], there remains only
n � 1 possible transitions between each sample and there is also an
additional transition ifx[t] 6= x[t � 1]. The cross term yields

E
n� 2Fn
n� 1

x[t� 1]x[t]

= �
2

n� 1
E x[t]x[t�1] (n�1)(1��)+

jx[t] � x[t�1]j

2A

= �
2

n� 1
E[x[t]x[t � 1](1� �)(n� 1)]

+ E x[t]x[t � 1]
jx[t] � x[t � 1]j

2A
:

Since these equations are analogous with the ones carried out for the
calculation ofinfa2AE[l(xn; x̂na )], the derivations will follow along
the same lines. From (13)

E[x[t]x[t � 1](1� �)] = �
A2

2(2C + 1)

and

E x[t]x[t � 1]
jx[t] � x[t� 1]j

2A
= E[(1� �)(�A2)] = �A2=2:

Thus, we obtain

E
n� 2Fn
n� 1

x[t� 1]x[t]

= �
2

n� 1
�

A2

2(2C + 1)
(n� 1)�

A2

2

=
A2

2C + 1
+

A2

n� 1
:

The square term is given by

E
n� 2Fn
n� 1

x[t� 1]
2

=
A2

(n� 1)2
E[n2 � 4nFn + 4F 2

n]:

As before,E[Fn] = n=2 andE[F 2
n] = Cn

2(2C+1)
+ (C+1)n

2(2C+1)
. The

square term then becomes

E
n� 2Fn
n� 1

x[t� 1]
2

=
A2

(n� 1)2
2Cn

2C + 1
+

n2

2C + 1
:

By this, the second term in the (5) can be evaluated as
n

t=1

E[(x[t] � x̂a[t])
2] =

n

t=1

A2 � 2
A2

2C + 1
+

A2

n� 1

+
A2

(n� 1)2
n2

2C + 1
+

2Cn

2C + 1
:

E. Proof of Lemma 3

After combining results of Lemmas 1 and 2, the overall lower bound
L(n) is given by

=

n

t=1

A2 � 2
t� 2

(2C + 1)(t� 2 + 2C)
A2

+
A2

(t� 2 + 2C)2
(t� 2)2

(2C + 1)
+

2C

2C + 1
(t� 2)

� A2 � 2
A2

2C + 1
+

A2

n� 1
+

A2

(n� 1)2

�
n2

2C + 1
+

2Cn

2C + 1

=A2
n

t=1

�2

2C + 1
+

4C

(2C + 1)(t� 2 + 2C)

+
(t� 2)2

(2C + 1)(t� 2 + 2C)2
+

2C(t� 2)

(2C + 1)(t� 2 + 2C)2

+
2

2C + 1
+

2

n� 1
�

n2

(2C + 1)(n� 1)2

�
2Cn

(2C + 1)(n� 1)2

=A2
n

t=1

4C

(2C + 1)(t� 2 + 2C)
+

(t� 2 + 2C)2

(2C + 1)(t� 2 + 2C)2

�
4C(t� 2 + 2C)

(2C + 1)(t� 2 + 2C)2
+

4C2

(2C + 1)(t� 2 + 2C)2

+
2C(t� 2 + 2C)

(2C + 1)(t� 2 + 2C)2
�

4C2

(2C + 1)(t� 2 + 2C)2

+
2

n� 1
�

(n� 1)2

(2C + 1)(n� 1)2
�

2(n� 1)

(2C + 1)(n� 1)2

�
1

(2C + 1)(n� 1)2
�

2Cn

(2C + 1)(n� 1)2

=A2
n

t=1

2C

2C + 1

1

t� 2 + 2C
+O(1):
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Analysis of a Complexity-Based Pruning Scheme for
Classification Trees

Andrew B. Nobel, Member, IEEE

Abstract—A complexity-based pruning procedure for classification trees
is described, and bounds on its finite sample performance are established.
The procedure selects a subtree of a (possibly random) initial tree in order
to minimize a complexity penalized measure of empirical risk. The com-
plexity assigned to a subtree is proportional to the square root of its size.
Two cases are considered. In the first, the growing and pruning data sets
are identical, and in the second, they are independent. Using the perfor-
mance bound, the Bayes risk consistency of pruned trees obtained via the
procedure is established when the sequence of initial trees satisfies suitable
geometric and structural constraints. The pruning method and its analysis
are motivated by work on adaptive model selection using complexity regu-
larization.

Index Terms—Bayes risk consistency, classification trees, complexity reg-
ularization, pruning, tree structured partitions.

I. INTRODUCTION

Let (X; Y ) 2 IRd � f0; 1g be a jointly distributed pair of random
variables, where the covariate vectorX contains the outcomes of a se-
quence of experiments, and the binary response variableY is an associ-
ated class label of interest. For example,X may contain the results ofd
diagnostic tests performed on a patient, andY might indicate whether
or not the patient has a particular disease. A classification rule is a de-
terministic map�: IRd ! f0; 1g that assigns a class label to each
possible value ofX. The performance of� is measured by its proba-
bility of error, or risk

R(�) = IPf�(X) 6= Y g:

(We assume throughout this correspondence that classes zero and one
have equal prior probabilities and identical misclassification costs.)
The best achievable risk of any prediction rule is given by the Bayes
probability of error

R� = inf
�
R(�)

where the infimum is taken over all measurable functions�: IRd !
f0; 1g. The infimum is achieved by the Bayes rule

��(x) = IfE(Y jX = x) > 1=2g

which can be deduced from the joint distribution of(X; Y ). A com-
prehensive treatment of probabilistic pattern recognition can be found
in [6], [13].

Histogram classification rules are defined by partitioning the space
IRd of the covariates into disjoint regions, and then assigning a class
label to each region. Binary classification trees, also known as decision
trees, are a widely used family of histogram rules. A binary classifica-
tion tree is described by a labeled binary tree, each of whose leaves
corresponds to a unique cell of a partition ofIRd. The tree structure
makes computation of the corresponding classification rule fast, and
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