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Correspondence

Universal Linear Least Squares Prediction: not exist a sequential algorithm that can outperform the best predictor
Upper and Lower Bounds from this class for all sequences. In this correspondence, we present an
algorithm for which this regret is at most® In(n) and also demon-
Andrew C. SingerMember, IEEE Suleyman S. Kozat, and strate that there is a lower bound.4f lu(r) — G for any sequential
Meir Feder Fellow, IEEE algorithm, and for some consta6t This algorithm was first shown

by Vovk [4], and later by Azoury and Warmuth [2]. Our approach is

) o o based on sequential probability assignment, and is motivated by recent
Abstract—We consider the problem of sequential Ilnear_ predlctlon_ results in the universal source coding literature [5]-[11].
of real-valued sequences under the square-error loss function. For this

problem, a prediction algorithm has been demonstrated [1]-[3] whose Ve then consider the class pth-order linear predicators,ﬁsuch that
accumulated squared prediction error, for every bounded sequence, is the competing class of predictafs= R* has element$z, & € RP,

asymptotically as small as the best fixed linear predictor for that sequence, which form predictions as a linear function of the pasamples, i.e.,
taken from the class of all linear predictors of a given order p. The

redundancy, or excess prediction error above that of the best predictor P
for that sequence, is upper-bounded byA*p In(n)/n, where n is the Zgn] = Z wrz[n — k.
data length and the sequence is assumed to be bounded by soe In =1

this correspondence, we provide an alternative proof of this result by
connecting it with universal probability assignment. We then show that \We again permit the parameter vectorto be selected based on ob-
this predictor is optimal in a min-max sense, by deriving a corresponding - going the entire sequeneé in advance. We will show an algorithm
lower bound, such that no sequential predictor can ever do better than a ; . . 5 1
redundancy of A%p In(n) /n. for which the regret in (1) is at most™p In(n). We then demonstrate
that there exists a corresponding lower bound of the fafm In(n) —

G for any sequential algorithm.

In [1], Vovk considers the regret in (1) for the problem of linear
regression. That is, for

Index Terms—Min-max, prediction, sequential probability assignment,
universal algorithms.

|. INTRODUCTION )
In this correspondence, we consider the problem of predicting a se- Jt] = Z wrrE[t]
quencex™ = {x[t]};=, as well as the best linear predictor out of a k=1

large, continuous class of linear predictors. The real-valued sequence .
o . " “wherey[t] andF[t] are bounded scalar and vector sequences, respec-
z" is assumed to be bounded, in thalt]| < A for somed < oo,

and for all£. Rather than assuming a statistical ensemble of sequen tively. He demonstrates corresponding upper and lower bounds to those

ces,”. s . - .

and attempting to achieve good expected performance, the goal of {f}tloéalned in t_hls correspondence for linear prediction, for linear regres-
. - . sion. Specifically, for

game is to predict the sequence as well as the best predictor out of a

large class of predictors for every possible sequericeAs such, we

o . k[t A, and |y[t A
seek to minimize the following form of regret: el < A o]l < Ay

" N he presents an algorithm for which (1) is upper-bounded by approx-
sup {Z(‘”[t] — alt])? — int Z(‘r[t] _ :ﬁc[t])z} o) imately A2p ln(1 + nA2 /), f_or some constart{. He then demo_n-
P et cel strates a stochastic construction of sequen@ész[¢] such that (1) is
lower-bounded in expectation by approximatéy— e)AZ In(n) —
wherei,[#] is the prediction at time of a sequential algorithm and épA; — C, for suitable constantsandC', and for anye. As discussed
#.[t] is the prediction at timeof a predictor in the clagdof predictors. later in this correspondence, this stochastic construction implies a form
We first consider the class of first-order linear predictors, such that min—-max optimality. While our upper bounds for linear prediction
the competing class of predictafs= R has elements € R, which can be derived as corollaries of those obtained in [1], we show that
form predictions a$..[t] = wz[t — 1] for each sample of the sequencéhere are a number of important differences between the regression and
=™, For linear predictors, we assume predictiGng1] = 0, i.e., that prediction problems. The requirement that the samples and the labels
z[t] = 0, fort < 0. While this class of predictors is rather limited inmust satisfyc [t] = y[t — k] turns out to be particularly strong. For ex-
forecasting ability, we permit the constanto be selected based on ob-ample, the prediction algorithm presented here will produce bounded
serving the entire sequeneé in advance. As we will show, there doespredictions for a bounded input, however, the algorithm in [1] will not
necessarily produce bounded regressions. Further, the lower bounds for
regression in [1] cannot be applied to the linear prediction problem. We
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wheret, [t] is the prediction at timeof any sequential algorithm. That A. Outline of Proof of Theorem 1

is, we wish to obtain a sequential predictor that can predict every S€The proof of the theorem is based on sequential probability assign-

quencer” as We_” as the b?St f')fed linear predictor for_ that SEQUENCRyant. Given a continuum of predictors, each with a different value of
even when the linear predictor is selected by observing the entire ffs parametew, denotedg,, [f] = wz[t — 1], then for each of the pre-

quence |_n_advarjll(:e. R . ., dictors, a measure of their sequential prediction performance, or loss,
Minimizing >\, («[t] — wa[t — 1])° for a specific sequence” s ~onstructed

yields the well-known equation for the least squares optimal parameter

", @) =Y (aft] —walt —1])°
t=1

> aft]eft — 1]
wln] = fﬁ]n— (2)  Also, define a function of the loss, namely the “probability”
S aft - 1J2 )
=1 P,(z") =exp <——l(;c", 2, )
Ry, [-1] "
= m (3)  which can be viewed as a probability assignment of the predictor with
parameters to the dataz™ induced by performance of on the se-
where guence. We refer to such exponential functions of the loss as probabil-
N ities in analogy to problems in sequential data compression. We con-
Ryy[m] = Z al[n]b[n + m]. struct a universal estimate of the probability of the sequeficas ara
n=1 priori weighted combination, or mixture, among all of the probabilities
Note thatw[n] this is a function of the entire sequence, and cannot be P,(z") = /m p(w) Py (2") dw 4
obtained until the whole sequence has been observed. —oo
A slightly more general loss function which often arises in manwherep(w) is ana priori weighting assigned to the parameter
signal processing problems is Since the assigned probabilities for the square-error loss are
n Gaussian in form, the Gaussian prior enables the integration of
min Y (a[t] — walt = 1)) + 6(w — wo)® probabilities assigned to the sequence. We let
=1 p(w) = exp{—w?/20°}/(V270).

whereé > 0, andwy is given. Choosing = 0 yields the original least
squares expression. Hereis typically used to incorporate additiona

a priori knowledge concerning [12]. In this correspondence, we will form. . . . . e
assume that, = 0, which could also be obtained through a suitable As shown in the Appendix, this universal probability is as large as the

change of variables. The minimizing value offor this problem is probability assigned to the sequence by the predictor with the smallest
prediction error, i.e., the largest probability among the continuum of

| The universal probability assignment can thus be obtained in closed

given by ., probabilitiesP,, (=™ ). We now must relate this universal probability to
Z w[t]z[t — 1] N an actual prediction. We note that the universal probability is Gaussian,
w*[n] = 2=2 = fj;f[_l] . but not in the form of an assigned probability, i.e., with the loss of
S aft =12 +6 R[]+ 6 a particular predictor in the exponent. As such, we then &indther
=1 Gaussian, expressed in predictor form whidaigerthan the universal

We next describe a universal prediction algorithm whose accumrobability, for all sequences of interest. Taking the negative logarithm
lated average square error is as small, to within a negligible term, @fghis probability then provides the loss of this universal predictor and
that of a linear predictor that was preset to the best value given the éempletes the proof of the theorem.

guence in advance. We can write o
B. Bounded Predictions
Fuln] = wuln = efn = 1] One interesting difference between the prediction and regression

where problems relates to the performance of the universal algorithm on
R [=1] bounded data.

Rz.[0] 4+ 6 Theorem 2: Let ™ be a bounded, real-valued arbitrary sequence,
such thatz[t]| < A. Then the predictot, [¢] also satisfiesr. [t]| < A.

wyln] =

andé > 0 is a constant.
The following theorem, which is proven in the Appendix relates the This theorem is proven in the Appendix. We also note that when

performance of the universal predictor applied to the regression problem, as in [1], the corresponding uni-
n versal regression algorithm does not share this property. In the Ap-
1", &) = Z (xft] — &u[t])? pendix, we also provide an example of bounded sequefitendy”
t=1 for which the associated universal regression algorithm does not pro-
to that of the best batch predictor. duce bounded regressions.

Theorem 1: Let =™ be a bounded, real-valued arbitrary sequence,
such thaf«[t]| < A, for all+. Thenl(x", i) satisfies

Ill. L oweER BOUND

1 1 42 42 In this section, we will demonstrate that the predictor described in
(", #%) < = min {l(w”, )+ b’wz} + 2 In <1 + ”_> . Theorem lis nearly optimal in that no sequential predictor can do much
" o n g better, in a min—-max sense. This is made precise in the following the-

- orem.
Theorem 1 states that the average squared prediction error of the un?—
versal predictor is withit(» " 1n(n)) of the best batch scalar linear Theorem 3: Let 2™ be a bounded, real-valued arbitrary sequence
prediction algorithm, uniformly, for every individual sequence such that|z[t]] < A for all ¢. Let &, be the predictions from any
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sequential prediction algorithm. Then, for any> 0, there exists a Thus,
constants such that (z", 27, ) satisfies

Talt] = E[(20 — V)aft — 1]|2[t — 1], ..., 2[1]]
igf sup{l(d:", 2y) - 116121@ & “,)} > M—_d In(n) — G =t — 1|E[(20 — L)|«[t — 1], ..., =[1]] (7)
a nn w n n
T ) _ To evaluateE'[f|«[t — 1], ..., z[1]], we compute
where A is the class of all sequential predictors. el — 1 ) - plalt =11, ... 2[1]]6)p(6)
Theorem 3 states that for any sequential algorithm, there exists a se- P T pleft=1], ..., z[1])

quen_c1e such that the time-average squared prediction error is at l%ﬁ%ne the probability of any sequenaé lig equal to
O(n~" In(n)) worse than the best fixed linear predictor for that se-
quence. plaft=1], ..., = z[1]]0) = K(1 — 9)3—29'5 2—F;_»

whereF;_, is the total number of transitions between the two states in

A. Proof of Theorem 3 a sequence of lengtft — 1) and K is a constant. Given, Ff is a

We begin by noting that for any distribution art binomial random variable with parametér— ¢) and sizg¢ — 2). The
noany - constant is the probability ofx[1].
Jnf, s (l( &) —inf 102", ”1)> We obtain
. _ ! o _1 '(20)
- _ AT , t—1y I Fy _o4C—1,/t—2—F; o4+C—1
> (111612 Ezn (l( , &) 1nf I(a", w)) P (7" ) — /020 K(1—9)f-2 0 2 ) a8

whereE.,- (+) is an expectation taken with respect to the distributioand
onx". Thus, it is enough to lower-bound (1= g)FeetClgim2=FrotC—1

. - / p(Ble[t—1],...,2[1]) = — g\ arO-igi—iF, s40-1 g5’
L(n)2 inf E,» (l(a:“,;frZ)—iﬁl(;v”,;%{j,)) ) Joo(1=0)

Thus, the conditional expectation is given by,

to obtain a lower bound on the total regret. fo1 (1 — g)Fe-atC=1gi=1=Fiz+C=1 g
=0\

We proceed by considering the following distribution éh. Letf  glg|x[t —1],...,«[1]] = 2% i :
be a random variable drawn from a beta distribution with parameters Jomo (1 = ) FemztClgrm2mfuet =l dg
(C, €), such that Due to the well-known properties of the beta distribution, the preceding
. T(2C . . expectation becomes
P(H,):¥9( - D(Fy_5+C)D(t—1=Fy_5+C
re)re) (I"y_2+C)I'( 1—2+C)

T(Iy_o+CHt—1—-TIy_2+C)

whereC' > ( is a constant anfl(-) is the gamma function. Generate Elfleft = 1. ... ¢l]l = 57 roras—r L70)
the sequence™ having only two valuesA and— A, such that:[t] = F(Foa kO =2=F 240
z[t — 1] with probability ¢ andz[t] = —z[t — 1] with probability _t=2-F_>+C

(1 — 6). Thus, giver¥, any sequence™ forms a two-state Markov T t—-242C

chain with transition probabilitf1 — ¢). We selectz[t] = A and By this result, the MMSE prediction (7) is given by

x[t] = —A in the two corresponding states of the Markov chain. Note t—2—F Wt C

that givend, each transition is independent from any other transition [t] = < <W) - 1) z[t — 1]
in the chain. By assuming that' is a segment of a stationary Markov '

sequence, generated frorrco to oo, we avoid any subtleties induced _t= 2—2F_» oft — 1]

by initialization att = 1. t—242C F )

Given this distribution, we now compute a lower bound for (5). Byhus, for the first term in the lower bound in (5), we have
the linearity of the expectation, (5) becomes n
> (aft] - i’A[t])z} ;

L(n) = inf Elia", &)~ E [inf I(z", ;e;;)] 6 EUET E)l=F s
where we drop the explicit” -dependence of the expectations to sim- i t—2-2F _, 2
plify notation. =E|Y <«f[t] - <m alt — 1])) :
t=1

Each term in (6) can now be calculated separately. ] ) ] ] ]
This expectation can then be expanded and is evaluated in the following

B. infaca E[l(2", 27)] lemma.
For the square-error loss functiomf.c 4 E[l(z", 27 )] is mini- Lemma 1:
mlze_d with _the well known minimum mean-squared error (MMSE) t_9 )
predictor, given by [13] uuellf(‘E Z < (20 TG 2520) A
Ealt] = Ele[t]|x[t — 1], ..., 2[1]]. . 2 <(t 92 , 2 ‘. 2))) |
By expanding the expectation (t—2+20)2 \20+1  2C+1
#alt] = E[E[et]e]t — 1], +.., <[], 6]jaft — 1], ... «[1]]. Proof: Given in the Appendix.

C. Efinf,, I(2", #7)]

For the second term in (6), we need to calculate the following expec-
tation:

Since the underlying process is a two state Markov chain
2 alt] = E[E[z[t]|=[t — 1], 0]|[t — 1], ..., =[1]].
Givenz[t — 1] and$

E[mf W(z", &) ] =
Elz[t]|x[t—1], 8] = 2[t—1]+(1—0)(—2[t—1]) = (20 = D)x[t—1].

F mfz (z[t] — Zw[t]) :|
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The variablei., [#] is the best (in terms of square-error loss) first-order”; = S°7_, «[k]Z[k]. WhenRZ; = S°7_, Z[k]Z[k]" is singular,
linear predictor which has access to the whole sequericeWith the solution is no longer unique, however a suitable choice can often
square-error loss, this is a well-known least squares problem. T made using, e.g., pseudoinverses.
desired predictor is given by We will also consider the more general least squares (ridge regres-
n sion) problem
2 eftelt = 1] . . n .

= @ [n] = argmin {I(2", #3) + 8| I }

n—1 o

t; [t][t] [R%: + 61

which is highly nonlinear and for which it is hard to calculate an exwvherel(«", %) is the running total squared prediction error for a
pectation for a general sequencé. Nevertheless, with the selectionlinear predictor with coefficients’.

Twlt] = x[t — 1]

of our special distribution, the corresponding terms become We now construct a universpth-order linear predictor using a mix-
n—1 ture over all predictorgi. The following theorem extends Theorem 1
Z z[t]z[t] = (n — 1)A> using a vector version of the mixture approach.
=1 Let &.,[n] be the output of ath-order linear predictor with param-
and eter vectord, andi(z", #7;) be the running total squared prediction

Zw[t]:lc[t —1]=(n—2F,) 4% -
=1 iu[n] = @un — 1" 2[n]
As before,F;, is the number of transitions between the two states ingnere
sequence of size. This yields a simple form for the predictor

error. Define a universal predictér, [n] as

— LFu n| = BnJrl + 74 -t I?;_'
Tolt] = n= sl 21;” z[t — 1] [1] [ ] ’
n — . .
which enables evaluation of the second term in (6) as described in ﬁ1nedé > Vs a positive constant.
following lemma. Theorem 4: Letz" be a bounded, but otherwise arbitrary sequence,

such thatz[t]| < A for all ¢. Then the total squared prediction error of

remma 2 5 5 the pth-order universal predictor satisfies
‘ A A®
et o) Z < ? < * ) I(z", &) < Imn (", #3) A? In|T + Riz6~"
[+ =% 01 - i | |
A? < n? 20N )) and therefore,
+ S +
(n—1)2\2C+1 2C+1 %1(177'753) Sm;n%{l " a4 ol }+A N <1+ 4671).

Proof: Given in the Appendix.

Theorem 4 tells us that the average squared prediction error of
the pth-order universal predictor is withi®(p In(n)/n) of the best
batch pth-order linear prediction algorithm, for every individual

Thus, using.emmas Jand2, the overall lower bound.(n) can be
computed and is given by the following lemma.

Lemma 3: sequencer[n]. This result can be compared with Foster's result
n 20 1 for binary data and predictors in the simpl@i a; = 1, yielding
2 g .
Lin)=A Z{QC T1i-24 20} + O(1). regret of[2 + plog(p(n+1))]/n [14]. Foré = . our bound yields
t=1 (2||al|? + A2plog(1+ AZn/2))/n, which for AI = 1,i.e., data on
Proof: Given in the Appendix. an interval of lengttl, yields, (2||a||*> + (p/4) 10g(1—|—n/8))/n. The

oof of Theorem 4 follows that of Theorem 1, with vector extensions

By lower-bounding the harmonic series with its integral, and setti : . . . .
y 9 9 the Gaussian mixture and is omitted for brevity.

G = In(2C — 1), then for any, we can find a constarit such that

inf sup x[t] — 2a[t])? — inf (2[t] — waft — 1])*

a€A yn {;( ] 2 weff; & [ ] The lower bound obtained for first-order linear prediction can be
> A%(1—e) ln(n) =G (8) generalized to theth-order linear prediction case as described in the
- following theorem.

A. Lower Bound fopth-Order Linear Prediction

completing the proof.
Theorem 5: Let " be a bounded, real-valued arbitrary sequence

such thafjz[t]] < A for all ¢. Let Z,[n] be the predictions from any

] ] ] ) o _sequential prediction algorithm. Then for ang 0 there exists a con-
In this section, we consider the problem of linear prediction with &ant such that(x", ") satisfies

predictor of fixed-ordep. The predictor is now parameterized by the p(1—0) G
vectora = [ul, ..., wp]”, and the predicted value can be written inf sup {](r i) — inf 1(2" g)} > 2 P79 In(n) — —
#g[n] = @7 #[n], where I[n] [e[n — 1], ..., a[n — p]]". If the  *€* =" weRP " n
parameter vectoi is selected such that the total squared predictionhereA is the class of all sequential predictors.

error is minimized over a batch of data of lengtithen the coefficients
are given by

IV. pth-ORDER LINEAR PREDICTION

We again focus on the lower bound
n ) A N LAy LA
z- L(n)= auelf4 E, |:l(¢ , Iy) ﬁlél}t;]) W(a", 3% ):| 9)

W, = argmin Z (r[k] — mrrit’[k])
Y= to get a lower bound on the total regret.
The weII known least squares solution to this problem is gived by= We consider the following distribution o, which is constructed
(Ri:)~'rls, whenR%: = S°7_, #[k]#[k]" is invertible and where by interleavingp first-order Markov sequences. First, independently
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drawp random variableg;,i = 1, ..., p, from abeta distribution. For Combining this result with those for scalar prediction, we obtain the
eachd;, the corresponding two-state Markov chains are interleaved,ltwer bound as
create the sequenagn]. Thus, for anyr, z[n] andz[n — p] are from

the same original two-state Markov chain. L(n) > i { <A2 _ 9 t*—2 42
With the expectation taken over this distribution, we can proceedto =~ < 20+ 1)(t* - 2420C)
calculate the lower bound. Since each Markov chainis independent, the 42 (+ —2)? 20 .
derivations follow the first-order case. The MMSE prediction is given + t —2420) < 25011 MEYs Tl (t" = 2)))
by ’
. 1 ;
_(42_ 42
. t* —2—2F < 20 +1 )}
taAlt] = ——5 5~ [t — p] n
tr—242C _422{1_9 (" —242C)
wheret* is the largest integer satisfying < (¢/p). With this, the first &= T 20+ 1)(tr =2+ 20)?
sum in the lower bound becomes 4C (" — 24202
n n o + (2C+1)(t* — 24 2C) + (2C+1)(t* —2+42C)?
) (4] — 2 ’ 2 _ A2 _« T - A/Q y * ¢ A2
E(Z(r[t] Ealt]) ) Z(A 2 GeT D — 2320 2 L AC(r—2420) e |
t=1 ' t=1 e o0 2C+D)(#*—242C)2  (2C+1)(t* =2+ 20)2
4” t* - y * < * <
+(t*—9+902<(2C‘+2)L toer _Q)))' 200 -2-20) | act
2+20) : : 2C+ D)t —2+20)2 " 2C+ D)t —2+20)?
For the second term in (9), we need to calculate — 14+ 1
20+1 7

n

iuf > (] - mﬂf} . —a 3 2 e OO

— 2041t —-2+42C

E [igf W™, 30 ] —E

'I_'he sequepcfég is thg best set (in terms of square error)ath‘-orc_ier Thus, after replacing™ with its definition, we conclude that for any
linear predictions which has access to the whole sequehc&Vith givene, there exists a consta6t such that

square error loss, this predictor is the well-known least squares pre-
dictor. However, the expected loss for this predictor is difficult to com- X . .
pute, even for our distribution. The following inequality will prove inf sup {Z(l’[t] = &4[t])” - A > (alt] -t FHt - 1])'}
useful in this regard: e t=1 t=1

>A*(1-epln(n) -G

Ey |Enpo

inf > (alt] - ‘f’ﬁ)[t])“” completing the proof of the theorem.
t=1

> () - da [f])2” APPENDIX
t=1
A. Proof of Theorem 1

The universal probability assignment can be obtained in closed form;
integrating (4)

< Ep |inf E,np

whereE .~y is the conditional expectation conditioned orallalues
of 8. Therefore, the lower bound in (9) is lower-bounded by

Ln) > inf Eolla", &) - Ey [héf Bl ;z»g)]]. 10 o 1

, VOTIRET0] 4+ 1
The terminf g E»o[L(2", 23)] is the MMSE and given by [13] £ 01+
n n—1 n _ no[_ 2
. eXp {_ 1 <R.TT, [O]Rr7 [O] + 6R.7::r [0] (R.T‘JT[ 1]) )} (11)

inf Epnppll(a”, x3)] = o> — k'R 'k, o REST0] + 6
wheres? = A? is the variance of the sequence given@llk = whereé = h/o”.
E[x[t]Z[t — 1]|0] is the cross-correlation vector, aftl = F[Z[t — We would like to have the universal probability be as large as the

1]&" [t — 1])9] is the correlation matrix. Since the interleaved Markoyrobability assigned to the sequence by the predictor with
chains are independent
w”[n] = argmin {I(z", 37,) + (511)2} .
[0, ..., 0, E[z[t]«[t — p]|6]]" w
[0,...,0, (26, — 1)A%]"] For this value ofw = w*[n], after comparing with (4) and after some
algebra, we obtain

E:
E:

andR = A”I wherel is ap-dimensional identity matrix, wheig, =
#, mod p. This results in —2h ln(Pu(z"))
, : = min {I(z", &) + 6w’} + h In(1+ R,[0]671). (12
lIlf Exn‘g[l(l‘rn./ l':%)] — ‘42 _ (2017 _ 1)2‘42. H}ll'n{ (E s Ly ) +ow }+ ¢ Il( + RJ/.T/ [O] ) ( )

We now have a method of assigning a universal probability to the
sequence that achieves, to first order in the exponent, the same sequen-
: W ) ) tial probability as the best predictor. We now must relate this universal
Eo [I{%f Epnjo[l(z", 23 ]] =4 -se g probability to an actual prediction.

The second term in (10) yields




IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 8, AUGUST 2002

2359

Since each of the predictors assigns a probability that is exponential(x,, |+™ ). This would ensure that the loss of the predictofn]
in the prediction error for that predictor, we look to the exponent afatisfies Theorem 1.

P,(z™) for the predictor. Specifically, we have

Pw (T'n

2" ) = OXp{—% (x[n] — waln — 1])2}

relating the prediction error at timeto the probabilityP,, (., |+™ ).

Similarly, we expect to obtain an expression of this form fo

P, (z.|z"™"). From (11), we obtain
, Ry°0] + 6 -1 <R",i2[o] + o’)
Pu T /’n 1 _ - T
(enfe"") = T { 2h \ R (0] + 6
n—1 2
. <r[n] _ R[] x[n — 1]) }

Ry?0]+ 6
Although Gaussian (quadratic exponentidh),(z,|z" ') cannot be
expressed in the same form Bs (x,, |+™*
tial in the loss at timer.

However, after some algebra, we see that it is almost in this form

)= [E o [ (T
.<;c[n] % 2ln 1])2}
:“Xp{wl“ RI V1] [n—l])z}
31 el = 'l = el = 1)}

<.L[IL] 7]221_2[ T
= exp{ﬁ

o = (100 + )/ (B2 (0] + ).

where

If we could findanotherGaussian, which were expressed in the form

Z—)u (41: n

) = ew{ 5 Gl - 200D

>mp{ a®(z[n] — w [n—l]x[n—l])g}

for the sequences of interest, i.e., fofn]| < A, then we would have
(z", 2y) < —2h In P,(2")

completing the proof of the theorem.
ComparingP, (z,|z"~") and P, (z,|2"~"), we obtain

Pefenla) =aesp{ = 3 a?(elu] - ulul

= exp{‘% (efe] = iu[n]f}

for #,[n] = w*[n — 1]2[n — 1], and for some:, [n]. Note that these

), i.e., quadratic exponen-

The locations of the crossover points for the two Gaussianand
x,, whereP, = P,, are obtained by setting,[n] = ~i.[n] and
solving, yielding the equation shown at the bottom of the page. Note
that the size of the regiofr;, x,] over whichP, > P, grows with
increasingh. We would like to select. as small as possible, since it
appears as a constant multiplier of the redundancy, or excess prediction
Error of the universal predictor. Since we require tRat> P, for all
x[n] € [-A, A], the smallest value df can be selected only when the
region[z;, =.] is centered about[n] = 0. This can be achieved only
by the choicey = o. For this choice ofy, we have

") = exp{% (z[n] = i’u[”])Q}

where the prediction is given by

Pu (-Tn

Fu[n] =’ w*[n — 1zn — 1]
n—11__
= 375_1171] z[n —1].
R [0]+6

Note thatz, [n] can be viewed as using*[n]z[rn — 1] where we as-
sume that:[n] = 0 to updateR”,[—1] (which remains aR”, '[—1])
andR”; ' [0] accordingly before computing*[n].

Now we can select themallestvalue of i so that the region
[-A4, A] C [7, x,], i€,

\/9h In(a)(a? — 1) + @&y [n]?(1 — a?)

o)
A2(1 = a?) = a?i,[n)?
hz -2 ln(a)

which must hold for all values af.. [n] € [-A, A]. Therefore,

2 (1=a?)
hz4 -2 111((1)

wherea < 1. Note that for) < « < 1 the function

(1-a?)
< ——=«<1
< —2lna <

which implies that we must have
h> A?

to ensure thaP, > P.. In fact, since this bound on the value iof
depends upon the value afandz.[n], and is only tight forx — 1,
andi,[n] = 0, then the restriction thdt:[n]| < A can actually be
occasionally violated, as long &% > P, still holds, and Theorem 1
will remain valid.

Our “probability” assignment algorithm had two free constants to be
set, ando?. Now that we have selected a range for the congtatite
constantr? can be chosen such that= /02 is an arbitrary positive
constant which does not depend on knowitgn advance. It is worth

are two Gaussians, with different means and different variances. Wating that while the parametérappears in the upper bound on the

would like to select an appropriate meaanr(gL 2"~ 1), i.e.,duln],

excess prediction error (via (12)), itis independent of the algorithm. As

such that over the ranggn] € [—A, A], P, (z.|2"") islargerthan a result, while the excess prediction error will depend on the smallest
] = #o[n](a® =) " V—2&u[n]2va2 + 202 In(a)h + a2d4[n]292 — 2 In(a)h + a2d, [n]
= (a® — 1) (a? —1)
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value of for which the theorem holds, this value bf and therefore C. Proof of Lemma 1
A, need not be known in advance.

’ ‘ We calculate each term of the quadratic sum separately. First, the
This leads to the following result:

cross term

I(z", &,) < min {i(a", &3) + 6|w|2} +A%In (1+ R:f;l[O]&_l) B |:r[7‘] <t —2—-2F_» ) 2t — 1]:|

t—242C
or t—2 2
= —— Elz|tlz[t—1]] - ————= E[Fi—qz[t]z[t — 1
1 1 . ) e ELlHlel—11) = s ElFaalilels 1]
PR CIY 4 - . omoan 12 ‘_ nA~ 2
A", &) < - min {Ua", &)+ 8lwl” } + —In <1+ 5 ) :—mE[Fz—zar[t]x[lf—l]]

implying that the universal predictor performs as well as the best pahere the second line follows from
rameterw to within a parameter redundancy term@flu(n)/n). . .
/) Elz[t]a]t — 1]] = E[E[0A” + (1 — 8)(—A)|6]]

B. Proof of Theorem 2 =E[(260 —1)A%] = 0. (13)
This can be shown in the scalar case using the Schwarz inequalisx . . . . .
gain, using conditional expectations, we obtain
n—1
> afk]elk — 1] E[F,_sx[t]eft — 1]]
Fuln] = S an - 1] = E[E|E[F_sx[tle[t — 1]|0, =[t]le[t — 1]]|[t], «[t — 1]]].
> a[k]e[k] 4+ 6
k=1 Givend, «[t], andz[t — 1], F;_» is still a binomial random variable
“2_:1 ]k = 1] with parameter$l — #) and sizgt — 2). Thus,
~ k=1
|Zuln]| < | 2[n — 1] E[F._s|8, z[t], [t — 1] = (t — 2)(1 — 6).
"j By this
> wlk]e[k — 1] f_9_9p
k=1 T — t—2 [+ —
<A = E|:< P ST )Lz,[t]iL[t 1]:|
kz;l x[k]x[k] )
=—1T3320 E[(t — 2)(1 = O)x[t]xt — 1]]
Using the vector notation;} = [2[1]z[2] - - - z[n]]”, we have
2(t — 2)
=——"" "2 E[(1-0)x[t]xlt — 1]]
n—1\1 n—1 t— 2+2C’
N |:(;L’2 ) 0] (arl ) .
|zu[n]] <A T = _ 2(t — 2) B A*
|17 (5 T Ti—2420 \ 220+
2 _ t=2 42
. (EXl (2C +1)(t -2 —20C)
<4 |7 22 where the third line follows from
<A
- Elbz[t]z[t — 1]] = E[E[0x[t]z[t — 1]]6]]
completing the proof. = E[0 E[z[t]x[t — 1]|0]]
For the regression problem, the corresponding universal regression 9 A2
§[12] would be given by =Ep(26-1)47] = 2020+ 1)
= ol and E[z[t]z[t — 1]] = 0.
i ] ,;::1 w[kly[k] o] For evaluating the square term, we expand the term
Yu|N| = —————— x|n|.
x[k]x[k] + 6 o« 2
&, el pl(f=2=2b= g
t—2+42C
For a sequences 42 )
= ———— — E[(t-2)°—4(t—2)F » +4F,].
2PV VB VB AT and gt = (A, ..., AT (t=2+20C)
o Since,E[Fi_2] = E[E[Fi—2]0]] = E[(1 —6)(t —2)] = (t — 2)/2,
this yields, only E[F?_,] is unknown. Since
Gun] = (L DVEA® Var(Fi_s|0) = E[F?_,16] = (E[Fi—o|6])?
" (n—1)6+A%2+6

‘ and noting the variance of a binomial-distributed random variable, we
which, forn > (A% + V6A)/ (VA — §), yields,|§.[n]| > A, i.e., have

a prediction outside the range A, A]. Note that for this sequence,
juln] — A”/V/8, which can be made arbitrarily large by adjusting (- 2) (1 —6) — (1 —6)*) = E[F?,|6] — (t — 2)*(1 — )"
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Taking the expectation of both sides, and rearranging the terms

EFL]=E[t-2)((1-6)—(1-6)")+(t—-2)%(1-6)]
_Ct—-2)  (C+1)(t—2)
T 2(2C0+1) 2(2C + 1)
This yields
t—2—2F_, ?
E <W‘”[t_””
B A? 2, (t—2)
_(t—2+2C‘)2<(f_2) T
, (=20 (C+D)(t-2)
+42(20+1)+4 2(2C' +1) )
B A? (t —2)? 2C
_(t—2+20)2<20+1 +20+1”_2))

Thus, the first sum in (5) of Lemma 1 becomes

- - 2 - 2 t—2 5
;W] —aal)’ =3 <A “2acyna—z2+20)

N A? (-2 2C t—2)
(t—2+202\20+1 " 20+1 '

D. Proof of Lemma 2

After expanding the sum, we obtain

<.r[t] - "n__Qf ot — 1])2}

221 - 20 2 1) 4 <” — 2%
n —

1 n—1

For calculation of the cross term, we obtain

E{ — — 25y x[t—l]x[f]}

— _m E[F, z[t]=[t — 1]]]

= - i 1 E[E[E[Fpx[tlx[t=1]|0, z[t]x[t—
2
Th—1

The inner expectation is given by

Jfft], 2t =1]]]

E[E[z[t]z[t—1|E[F.|0, x[t]=[t—1]]|=[t], z[t—1]]].

eft — 1]}

BFu|6, alt]alt — 1] = (n — 1)(1 — 8) + 210 = -

This equality follows, since, giver|t] andx[t —
additional transition ife[t] # «[t — 1]. The cross term yields

E {"n__zf " et — l]w[t]}

= 2 - E {x[t]z[t—l] <(n—1>(1—9) + Wﬂ

=-——7 |:E[l[t]r[t —1](1 = 0)(n—1)]
{ et — 1] |z[t] —2;;[15 - 1]|” .

Since these equations are analogous with the ones carried out for the
, 2%)], the derivations will follow along

calculation ofinf,ec.4 E[I(2"
the same lines. From (13)
42

Elz[t]e[t - 1)(1 - 0)] = _m

zft — 1])2} .

1], there remains only
n — 1 possible transitions between each sample and there is also an
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and
E [m[t]x[t 1) W} = B[(1 - 6)(—A%)] = —A%/2.
Thus, we obtain

E {”7:_2? ot - l]x[t]}

5 42 42
e — - 1 (n—l)—A—
n—1\ 22C+1) 2

A? A?
R ToE
The square term is given by

n —2F, 2 A , ,
F [( — x[t — 1]) } = o1p E[n” —4nF, + 4F;].
b before L] = /2 aELF] = sty + 53225 The

square term then becomes

n—2F, 2 A? 2Cn n?
E -1 | = .
[( a1 ])} (n—1)2<20+1+20+1)

By this, the second term in the (5) can be evaluated as

ZE(ll—vu[tH—Z(*‘?(c nf1>

=1
2Cn
2C+1 ’

After combining results of Lemmas 1 and 2, the overall lower bound
L(n) is given by

BE=ASN (20+1)(t—2+20)
A? (t—2)° 2C .
T —2r20) <(20+1)+20+1(t_2)>>
A? A? A?
— (4% -2 :
<2C’+l+n—l>+(n—l)2
) n? n 2Cn
2C + 1

1))}

=2 4C
= A2
;{QC—I— 17 e+ 1)(t—2+2C)

(n—l <2€—|—1

E. Proof of Lemma 3

n

(t—2)2 2C(t — 2)
tecHi—24202 T RCT ) =24207
2 2 n?
taeri T i1 T et -1y

_ 2Cn
(2C 4+ 1)(n —1)2

‘ 4 t—2+20)°
=43 < b 220
— 20+ D(E-2+420)  (2C+1)(t-2420)?

4C(t =24 2C) 4c*
20+ D)(t—2+420)2 T 20+ 1)(t—2+20)?
20(t— 2+ 20) 4C*
(2C+1)(t—2+20)2 (2C+1)(t—2+2C)?
2 (n—1)? 2(n—1)
n—1 @2C+1)m-12 @2C+1)n-1)

_ 1 _ 2Cn
2C+1)(n—-1)2 (2C+1)(n—-1)

2C 1
=47 1).
;{20—1—1 t—2+2C‘}+O( )
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|. INTRODUCTION

where the infimum is taken over all measurable functiondR? —
{0, 1}. The infimum is achieved by the Bayes rule

6" (x) = I{E(Y|X = 2) > 1/2}

which can be deduced from the joint distribution(df, Y'). A com-
prehensive treatment of probabilistic pattern recognition can be found
in [6], [13].

Histogram classification rules are defined by partitioning the space
IR of the covariates into disjoint regions, and then assigning a class
label to each region. Binary classification trees, also known as decision
trees, are a widely used family of histogram rules. A binary classifica-
tion tree is described by a labeled binary tree, each of whose leaves
corresponds to a unique cell of a partitionIBf'. The tree structure
makes computation of the corresponding classification rule fast, and
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