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Let B be a Banach space and (H, ‖ · ‖H) be a dense, imbedded subspace. For a ∈ B,
its distance to the ball of H with radius R (denoted as I(a, R)) tends to zero when R
tends to infinity. We are interested in the rate of this convergence. This approximation
problem arose from the study of learning theory, where B is the L2 space and H is a
reproducing kernel Hilbert space.

The class of elements having I(a, R) = O(R−r) with r > 0 is an interpolation
space of the couple (B,H). The rate of convergence can often be realized by linear
operators. In particular, this is the case when H is the range of a compact, symmetric, and
strictly positive definite linear operator on a separable Hilbert space B. For the kernel
approximation studied in Learning Theory, the rate depends on the regularity of the
kernel function. This yields error estimates for the approximation by reproducing kernel
Hilbert spaces. When the kernel is smooth, the convergence is slow and a logarithmic
convergence rate is presented for analytic kernels in this paper. The purpose of our results

is to provide some theoretical estimates, including the constants, for the approximation
error required for the learning theory.

Keywords: Learning theory; approximation error; reproducing kernel Hilbert space; ker-
nel machine learning; interpolation space; logarithmic rate of convergence.

1. Introduction

In the recent study of learning theory [3], the following approximation problem
arose:

Let (B, ‖ · ‖) be a Banach space and (H, ‖ · ‖H) be a dense subspace with
‖b‖ ≤ ‖b‖H for b ∈ H. Given a ∈ B, what is the convergence rate of the function

I(a, R) := inf
‖b‖H≤R

{‖a− b‖} , R > 0 , (1.1)

as R → +∞?
A typical setting used in learning theory (see Sec. 2 for more details) is the

kernel representation: B is L2(X), the space of square integrable functions over
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a bounded domain X , and H is the range of an integral operator LK : L2(X) →
L2(X) given by

LKf(x) =
∫

X

K(x, t)f(t)dt .

The norm for b ∈ H is ‖b‖H = ‖L−1
K b‖L2(X), that is, ‖LKf‖H = ‖f‖L2(X) for

f ∈ L2(X).
We illustrate the solution to the approximation problem by the following exam-

ple concerning the Gaussian kernel.

Proposition 1.1. If a ∈ L2([0, 1]n) is not C∞, then for any ε > 0,

I(a, R) := inf
‖b‖L2([0,1]n)≤R



∥∥∥∥∥a(x) −

∫
[0,1]n

e−
|x−t|2

2 b(t)dt

∥∥∥∥∥
L2([0,1]n)


 6= O(R−ε) .

Conversely, if σ > 0 and a ∈ Hσ([0, 1]n), then for R > C1, there holds

I(a, R) ≤


(√

2π
ln 2

√
n

)σ/2

+ 64
√

n

(
8
π

)n

 ‖a‖σ,2

(
1

ln R

)σ/4

,

where the constant C1 will be determined explicitly in Example 6.2.

The first statement in Proposition 1.1 holds for the kernel approximation with
other C∞ kernels. Then we see that the decay of I(a, R) can not be polynomially
fast, if a is not C∞. This is the case for most functions studied in learning theory.
For example, for some applications with support vector machines, characteristic
functions are used as models for target functions [5, 9, 12]. But these are not in
Hn/2+ε(ε > 0).

The second statement in Proposition 1.1 tells us that for approximated functions
in Sobolev spaces, the approximation error I(a, R) decays logarithmically. This is
the case for most analytic kernels. Hence the approximation error extensively
studied in [3] often has logarithmic convergence rate for regression functions in
Sobolev spaces. This slow convergence is not misleading for learning theory, because
the sample error with analytic kernels increases more slowly than that with Sobolev
smooth kernels. The numbers of samples we need for the same error and confidence
are close for analytic and Sobolev smooth kernels. The detailed analysis for this
bias-variance problem is given in Sec. 2.

When the approximated functions have some analytic properties, we may have
polynomial decays for the approximation error. The following result deals with
kernel representations. The proof will be given in Sec. 4.

Theorem 1.1. Let A be a compact, symmetric, and strictly positive definite linear
operator on a separable Hilbert space B. Then for 0 < σ < s, there holds

inf
‖A−sb‖≤R

‖a − b‖ ≤
(

1
R

) σ
s−σ

‖A−σa‖ s
s−σ . (1.2)
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On the other hand, if the kernel function is not smooth, I(a, R) may take poly-
nomial decays for approximated functions in Sobolev spaces. This includes the stan-
dard case of Sobolev interpolation spaces. It turns out that for r > 0, the elements
a that satisfy I(a, R) = O(R−r) form exactly the interpolation space (B,H) r

1+r
,∞.

This relation has been studied in the interpolation community, see [2], as pointed
out to us by Ron DeVore. This is a nice connection. However, except for some
well–known function spaces, the K-functional used for defining interpolation spaces
(see Sec. 3) may be as hard to estimate as the approximation error. Our analysis
also provides the constant in the estimate which plays an important role in learning
theory. Let us provide one example to show this situation.

Take X to be an open subset (domain) of R
n, and B = L2(X). With s ∈ Z+,

take H to be the Sobolev space Hs(X) consisting of all functions f in L2(X) with

‖f‖Hs(X) :=
∑
|α|≤s

∥∥∥∥∂αf

∂xα

∥∥∥∥
L2(X)

< ∞ .

When the boundary of X is minimally smooth (for definition, see Stein [11]), Hs(X)
can be continuously extended to Hs(Rn). Hence, by [2], for 0 < r < s, Hr(X) is
imbedded in (L2(X), Hs(X))r/s,∞. Here when r is not an integer, say r = m + µ

with m ∈ Z+ and 0 < µ < 1, Hr(X) consists of all functions f in L2(X) such that
the Hr(X) norm is finite:

‖f‖Hr(X) := ‖f‖Hm(X) +
∑

|α|=m

∫
|y|<1

(∫
x,x+y∈X

∣∣∣∣Dαf(x + y)

− Dαf(x)
∣∣∣∣
2

dx|y|−2µ−ndy

)1/2

.

The following convergence rate follows from the characterization given in Theorem
in Sec. 3.

Proposition 1.2. Let 0 < r < s and X be an open subset of R
n with minimally

smooth boundary. Then for a ∈ Hr(X), we have

inf
‖b‖Hs(X)≤R

{‖a − b‖L2(X)

} ≤
(

1
R

) r
s−r (

CX‖a‖Hr(X)

) s
s−r .

Here CX is a constant depending only on the domain X, which comes from the
imbedding property: ‖a‖r/s,∞ ≤ CX‖a‖r. When X is the whole space R

n, CX can
be taken as 2(s + 1)n.

In Sec. 3, we characterize elements with polynomially decaying approximation
errors in terms of interpolation spaces. This type of convergence rate for I(a, R)
can often be realized by elements b depending linearly on a, as shown in Sec. 4.
In particular, this is the case when H is the range of a compact, symmetric, and
strictly positive definite linear operator on a separable Hilbert space B, as shown
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in Theorem 1.2. Sections 5 and 6 are devoted to a special setting, kernel approxi-
mation, where H will be the range of a Hilbert–Schmidt operator. It turns out that
the rate of convergence in this case depends on the regularity of the kernel. When
the kernel is analytic (its Fourier transform decays exponentially), we usually have
a logarithmic convergence rate.

2. Analysis for Learning Theory

The objective of Learning Theory is to find an unknown function f : X → Y from
random samples (xi, yi)m

i=1.
Suppose that a probability measure ρ on Z := X × Y governs the random

sampling. Let X be a compact subset of R
n and Y = R. If we define the (least

square) error of f as

E(f) =
∫

X×Y

(f(x) − y)2dρ , (2.1)

then the function that minimizes the error is the regression function fρ:

fρ(x) =
∫

R

ydρ(y|x) , x ∈ X .

Here ρ(y|x) is the conditional probability measure on R.
As the probability measure ρ is unknown, neither fρ nor E(f) is computable.

All we have in hand are the samples z := (xi, yi)m
i=1. In Learning Theory, one

approximates fρ by the function minimizing the empirical error Ez with respect
to the sample z:

Ez(f) =
1
m

m∑
i=1

(f(xi) − yi)2 . (2.2)

This minimization is taken over functions from a hypothesis space. In kernel
machine learning, this hypothesis space is often taken to be a ball of a reproducing
kernel Hilbert space.

Let K : X × X → R be continuous, symmetric, and positive definite, i.e., for
any finite set {x1, . . . , xm} ⊂ X , the matrix (K(xi, xj))m

i,j=1 is a positive definite
matrix. We call K a Mercer kernel.

The Reproducing Kernel Hilbert Space HK associated with the kernel K is
defined (see [1]) to be the closure of the linear span of the set of functions {Kx :=
K(x, ·) : x ∈ X} with the inner product satisfying

〈Kx, f〉HK = f(x) , ∀x ∈ X, f ∈ HK . (2.3)

An equivalent definition can be given by means of the square root of a Hilbert–
Schmidt operator associated with the kernel K. Let µ be a Borel measure on X .
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Define the integral operator LK as

LKf(x) =
∫

X

K(x, t)f(t)dµ(t) , x ∈ X, f ∈ L2
µ(X) . (2.4)

Then LK is a positive, compact operator and its range lies in C(X).
If we denote {λj}∞j=1 as the nonincreasing sequence of eigenvalues of LK and

let {φj} be the corresponding eigenfunctions, then

K(x, t) =
∞∑

j=1

λjφj(x)φj(t) , (2.5)

where the series converges uniformly and absolutely.
Take L

1/2
K to be the linear operator on L2

µ(X) satisfying L
1/2
K L

1/2
K = LK ,

that is, L
1/2
K (φj) =

√
λjφj for each j. Then HK = L

1/2
K (L2

µ(X)), and ‖f‖K =

‖(L1/2
K )−1f‖L2

µ(X). This space can be imbedded into C(X), and we denote the in-
clusion as IK : HK → C(X).

Let R > 0 and BR be the ball of HK with radius R:

BR := {f ∈ HK : ‖f‖K ≤ R} .

Then IK(BR) is a subset of C(X). Denote its closure in C(X) as IK(BR). Then it
is a compact subset of C(X), and we take it as our hypothesis space. For these
facts, see [3].

The procedure of regularized empirical minimization in kernel machine learning
is as follows.

Given the random samples z := (xi, yi)m
i=1, we choose some R > 0 and take the

hypothesis space as IK(BR). Then the function fz that minimizes the empirical
error (2.2) is

fz(x) =
m∑

j=1

cjK(x, xj) ,

where the coefficients (cj)m
j=1 is solved by the linear system:

m∑
j=1

K(xi, xj)cj = yi , i = 1, . . . , m .

Take fz as an approximation of the regression function fρ.
The main question for the above learning procedure is:
How many samples do we need to draw to assert, with a confidence greater than

1 − δ, that
∫

X(fz − fρ)2 is not more than ε?
To answer the above question, we decompose the error into two parts: the ap-

proximation error and the sample error. Note that [3]∫
X

(fz − fρ)2 = E(fz) − E(fρ) .

We only need to analyze E(fz) − E(fρ).
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Since IK(BR) is compact, by [3] there is a function fR, called the target func-
tion in IK(BR), minimizing the error E(f) over f ∈ IK(BR), i.e., an optimizer of

min
f∈IK(BR)

∫
X×Y

(f(x) − y)2dρ = inf
f∈BR

∫
X×Y

(f(x) − y)2dρ .

The approximation error is defined as E(fR) and is equal to

E(fR) =
∫

X

(fR − fρ)2 + E(fρ) .

The approximation error decreases as R becomes larger, and E(fρ) is a
fixed constant.

The sample error of a function f in IK(BR) is defined as

ER(f) := E(f) − E(fR) .

Thus, the error
∫

X(fz − fρ)2 can be decomposed as∫
X

(fz − fρ)2 = E(fz) − E(fρ) = ER(fz) +
∫

X

(fR − fρ)2 .

The sample error has been extensively investigated in statistical learning theory
[3, 6, 9, 12]. In our situation, we apply the estimate presented by Cucker and Smale
[3, Theorem C*] and obtain

Probz∈Zm{ER(fz) ≤ ε} ≥ 1 −N
(
IK(BR),

ε

24M

)
e−

mε
288M2 , ∀ε > 0 , (2.6)

if |f(x) − y| ≤ M a.e. for all f ∈ IK(BR). Here N (IK(BR), ε
24M ) is the covering

number, i.e., the minimal integer l such that there exist l disks with radius ε/(24M)
covering the compact set IK(BR).

The approximation error can be derived from our analysis for the ker-
nel approximation. Recall that∫

X

(fR − fρ)2 = inf
‖f‖K≤R

‖fρ − f‖2
L2 = inf

‖L
−1/2
K f‖L2≤R

‖fρ − f‖2
L2 .

Then the approximation error can be analyzed from kernel approximation by the
following general result with σ = 1/2, s = 1.

Theorem 2.1. Let A be a compact, symmetric, and strictly positive definite linear
operator on a separable Hilbert space B. Let 0 < σ < s and 0 6= a ∈ B. Then for
all R > 0, there holds

inf
‖A−σb‖≤R

‖a − b‖ ≤ inf
‖A−sc‖≤2− s

2σ ‖a‖σ−s
σ R

s
σ

‖a − c‖ . (2.7)
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Proof. Let {νj}∞j=1 be the non-increasing sequence of eigenvalues of A correspond-
ing to orthonormal eigenvectors {uj}. Then {uj}∞j=1 forms an orthonormal basis of

B, and each a ∈ B can be represented as a =
∑∞

j=1 ajuj with ‖a‖ =
√∑∞

j=1 |aj |2.
For s > 0,

‖A−sa‖ =

∥∥∥∥∥∥
∞∑

j=1

ajν
−s
j uj

∥∥∥∥∥∥ =


 ∞∑

j=1

ν−2s
j |aj |2




1/2

.

For R > 0, we choose n ∈ N such that

ν1 ≥ ν2 ≥ · · · ≥ νn−1 ≥ (
√

2‖a‖/R)1/σ > νn ≥ νn+1 ≥ · · ·

(Choose n = 1 if (
√

2‖a‖/R)1/σ > ν1).
For c =

∑∞
j=1 cjuj ∈ B with ‖A−sc‖ ≤ 2−s/(2σ)‖a‖(σ−s)/σRs/σ, we set

b =
n−1∑
j=1

ajuj +
∞∑

j=n

cjuj .

Then

‖a − b‖ =

∥∥∥∥∥∥
∞∑

j=n

ajuj −
∞∑

j=n

cjuj

∥∥∥∥∥∥ ≤ ‖a − c‖

and

‖A−σb‖ ≤
(

(
√

2‖a‖/R)(1/σ)(−2σ)
n−1∑
j=1

|aj |2

+(
√

2‖a‖/R)(1/σ)2(s−σ)
∞∑

j=n

ν−2s
j |cj |2

)1/2

≤ R .

Therefore, by taking the infimum over c, we have

inf
‖A−σb‖≤R

‖a − b‖ ≤ inf
‖A−sc‖≤2−s/(2σ)‖a‖(σ−s)/σRs/σ

‖a − c‖ .

This proves (2.7) and Theorem 2.1.

Now we can explain the bias-variance problem for choosing the parameter R.
Here we assume that X = [0, 1]n and the marginal probability measure ρX of ρ on
X is the Lebesgue measure.

Suppose fρ ∈ Hσ(X) for some σ > 0. To find an optimal value for the parameter
R, we require that∫

X

(fR − fρ)2 ≤ ε/2 and ER(fz) ≤ ε/2 .
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When we use the Gaussian kernel with k(x) = e|x|
2/2, the above first requirement

is satisfied for sufficiently small ε if we choose

R =
√

2‖fρ‖2 exp




1
2


√

2‖fρ‖σ,2√
ε



(√

2π
ln 2

√
n

)σ/2

+ 64
√

n

(
8
π

)n





4/σ

 .

This follows from Proposition 1.1 and Theorem 2.1 with a = fρ, A = LK .
With this choice, we can apply (2.6) to find m. To this end, we need the estimate

for the covering number from [14, Proposition 1.1]:

lnN (IK(BR), η) ≤ 4n(6n + 2)
(

ln
R

η

)n+1

.

This, in connection with (2.6), tells us that ER(fz) ≤ ε/2 holds with a confidence
at least

1 − exp

{
4n(6n + 2)

(
ln

48MR

ε

)n+1
}

e−
mε

576M2 .

Therefore, to assert, with a confidence greater than 1 − δ, that
∫

X(fz − fρ)2 ≤ ε,
we only need m samples with

m ≥ 576M2

ε

{
4n(6n + 2)

(
1
2

(√
2‖fρ‖σ,2

{(√
2π

ln 2
√

n

)σ/2

+ 64
√

n

(
8
π

)n})4/σ

ε−
2
σ

+ ln(1/ε) + ln
(

48M
√

2‖fρ‖2

))n+1

− ln δ

}
.

Thus, when we use the Gaussian kernel, the number of samples we need to draw is

O

((
1
ε

) 2n+2
σ +1

)
.

Now if we use a Mercer kernel K(x, t) = k(x − t) with k ∈ Ch−n and

k̂(ξ) ≥ C0(|ξ| + 1)−h ,

where C0 is a constant and h > max{n, 2σ}, then Theorem 2.1 in connection with
our analysis for kernel approximation tells us that

inf
f∈BR

‖fρ − f‖2 ≤ ChR
2(n−h)σ

h(h+θn,σ) .

Here Ch is a constant independent of R, and

θn,σ :=
{

n/2 − σ, if σ > n/2,
0, if σ < n/2 .

Therefore, in order that
∫

X
(fR − fρ)2 ≤ ε/2, it is sufficient to choose

R =
(

2C2
h

ε

)h(h+θn,σ)
4(h−n)σ

.
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The covering number for this kernel can be bounded as

lnN (IK(BR), η) ≤ C′
h

(
R

η

)2n/(h−n)

for a constants C′
h > 0 independent of R, η. Then by (2.6), ER(fz) ≤ ε/2 holds with

a confidence at least

1 − exp
{

C′
h

(
48MR

ε

)2n/(h−n)}
e−

mε
576M2 .

Then in the same way, to assert, with a confidence greater than 1− δ, that
∫

X
(fz−

fρ)2 ≤ ε, we only need m samples with

m ≥ 576M2

ε

{
C′

h

(
48M

(
2C2

h

)h(h+θn,σ)
4(h−n)σ

)2n/(h−n)(
1/ε

)n(h(h+θn,σ)+4(h−n)σ)

2(h−n)2σ − ln δ

}
.

Thus, the number m of samples we need to draw is

O

((
1
ε

)n(h(h+θn,σ)+4(h−n)σ)

2(h−n)2σ
+1)

.

We have seen that the numbers of samples we need to draw would be close
when we use Gaussian or other Sobolev smooth kernels, though the intermediate
parameter R used has totally different orders.

3. Approximation Error and Interpolation Spaces

The elements with polynomially decaying approximation errors can be character-
ized by interpolation spaces. This was verified in the interpolation community [2].
For completeness, we state this result (Theorem 3.1) and give a detailed proof here.
More general structures were considered in [8] where two or more error criteria were
controlled simultaneously; and properties of optimal elements were discussed.

The interpolation spaces are defined by means of the K-functional. The K-
functional of the couple (B,H) is defined by Peetre [10] for a ∈ B as

K(a, t) := inf
b∈H

{‖a− b‖ + t‖b‖H} , t > 0 . (3.1)

It can be easily seen that for the fixed a ∈ B, the function K(a, t) is continuous,
non-decreasing, bounded by ‖a‖, and tends to zero as t → 0. The interpolation
spaces are defined according to the convergence rate of this function. For 0 < θ < 1
and 1 ≤ p ≤ ∞, the interpolation space (B,H)θ,p consists of all the elements a ∈ B

such that the norm

‖a‖θ,p :=




supt>0{K(a, t)/tθ}, if p = ∞{∫ ∞

0

(
K(a, t)/tθ

)p

dt/t

}1/p

, if 1 ≤ p < ∞

is finite. As the norm ‖a‖θ,p is equivalent to the lp-norm of the sequence
{K(a, 2j)/2jθ}j∈Z, we know that (B,H)θ,p is imbedded in (B,H)θ,∞.
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With the concept of interpolation spaces, the statement about the polynomial
decay of the approximation error (see [2]) can be stated as follows.

Theorem 3.1. Let (B, ‖ · ‖) be a Banach space and (H, ‖ · ‖H) be a dense subspace
with ‖b‖ ≤ ‖b‖H for b ∈ H. Let 0 < θ < 1. If a ∈ (B,H)θ,∞, then

I(a, R) = inf
‖b‖H≤R

{‖a− b‖} ≤
(

1
R

) θ
1−θ
(
‖a‖θ,∞

) 1
1−θ

. (3.2)

Conversely, if I(a, R) ≤ C(1/R)θ/(1−θ) for all R > 0, then a ∈ (B,H)θ,∞ and

‖a‖θ,∞ ≤ 2C1−θ .

Proof. Consider the function f(t) := K(a, t)/t. It is continuous on (0, +∞).
As K(a, t) ≤ ‖a‖ (by taking b = 0), inft>0{f(t)} = 0.

Fix R > 0. Let us first prove (3.2) under the assumption that

sup
t>0

{f(t)} ≥ R .

In this case, for any 0 < ε < 1 there exists some tR,ε ∈ (0, +∞) such that

f(tR,ε) =
K(a, tR,ε)

tR,ε
= (1 − ε)R .

By the definition of the K-functional, we can find bε ∈ H such that

‖a− bε‖ + tR,ε‖bε‖H ≤ K(a, tR,ε)/(1 − ε) .

It follows that

‖bε‖H ≤ K(a, tR,ε)
(1 − ε)tR,ε

= R

and

‖a− bε‖ ≤ K(a, tR,ε)
1 − ε

.

Observe that

K(a, tR,ε)
tθR,ε

≤ ‖a‖θ,∞ .

Then

‖a − bε‖ ≤
[

K(a, tR,ε)
(1 − ε)tR,ε

] −θ
1−θ
[

K(a, tR,ε)
(1 − ε)tθR,ε

] 1
1−θ

≤ R
−θ
1−θ

(
1

1 − ε

) 1
1−θ
(
‖a‖θ,∞

) 1
1−θ

.
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Thus,

I(a, R) ≤ inf
0<ε<1

{‖a− bε‖} ≤
(

1
R

) θ
1−θ
(
‖a‖θ,∞

) 1
1−θ

,

i.e., (3.2) holds under the assumption (3.3).
Turn to the case when (3.3) is not true. Then for any 0 < ε < 1 −

supu>0{f(u)}/R and any t > 0, there exists some bt,ε ∈ H such that

‖a − bt,ε‖ + t‖bt,ε‖H ≤ K(a, t)/(1 − ε) .

This implies that

‖bt,ε‖H ≤ K(a, t)
(1 − ε)t

≤ 1
1 − ε

sup
u>0

{f(u)} < R

and

‖a − bt,ε‖ ≤ K(a, t)
1 − ε

.

Hence

I(a, R) ≤ inf
t>0

{‖a− bt,ε‖} ≤ inf
t>0

{K(a, t)}/(1− ε) = 0 .

This proves (3.2) when (3.3) does not hold. Therefore, (3.2) is always valid.
Conversely, suppose that I(a, R) ≤ C(1/R)θ/(1−θ) for R > 0. Let t > 0.

Choose Rt = (C/t)1−θ. Then for any ε > 0 we can find bt,ε ∈ H such that

‖bt,ε‖H ≤ Rt and ‖a − bt,ε‖ ≤ C(1/Rt)θ/(1−θ)(1 + ε) .

It follows that

K(a, t) ≤ ‖a − bt,ε‖ + t‖bt,ε‖H ≤ C(1/Rt)θ/(1−θ)(1 + ε) + tRt ≤ 2(1 + ε)C1−θtθ .

Since ε can be arbitrarily small, we have

K(a, t) ≤ 2C1−θtθ .

Thus,

‖a‖θ,∞ = sup
t>0

{K(a, t)/tθ} ≤ 2C1−θ < ∞ .

The proof of Theorem 3.1 is complete.

Remark 3.1. The above proof shows that if a ∈ H, then I(a, R) = 0 for R > ‖a‖H.

Also, I(a, R) = O((1/R)θ/(1−θ)) if and only if a ∈ (B,H)θ,∞.
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4. Linear Realization

The approximation error (3.2) can often be realized by linear operators in many
circumstances. To see this, let us first give the proof of Theorem 1.2.

Proof of Theorem 1. Let {νj}, {uj} be as in the proof of Theorem 2.1. Set H =
AsB and ‖Asa‖H = ‖a‖, i.e., ‖b‖H = ‖A−sb‖ for b ∈ H.

We define a sequence of linear operators as the orthogonal projections {Pn}:

Pn

( ∞∑
j=1

ajuj

)
=

n∑
j=1

ajuj .

Let R > 0 and 0 6= a ∈ B such that ‖A−σa‖ < ∞. Then there exists some n ∈ N

such that

νσ−s
n ‖A−σa‖ ≤ R < νσ−s

n+1‖A−σa‖ .

(Set n = 0 and P0a := 0 when R < νσ−s
1 ‖A−σa‖.)

By the properties of the orthogonal projections, we see that

‖a− Pna‖ =

√√√√ ∞∑
j=n+1

|aj |2 ≤ νσ
n+1

√√√√ ∞∑
j=n+1

ν−2σ
j |aj |2 ≤ νσ

n+1‖A−σa‖

and

‖Pna‖H =

√√√√ n∑
j=1

ν−2s
j |aj|2 ≤ νσ−s

n ‖A−σa‖ .

Therefore, ‖A−sPna‖ = ‖Pna‖H ≤ R, and

‖a − Pna‖ ≤
(‖A−σa‖

R

) σ
s−σ

‖A−σa‖ =
(

1
R

) σ
s−σ

‖A−σa‖ s
s−σ .

This proves that (1.2) holds when we choose b to be the orthogonal projection Pna.
From the above proof, we can see that the approximation error stated in

Theorem 1.2 is realized by the linear operators: orthogonal projections. To establish
this for more general linear operators, we need Jackson and Bernstein inequalities.

Let {Ln}n∈N be a sequence of linear operators on B (into H), and {λn}n∈N be a
non-increasing sequence of positive numbers tending to zero. With a fixed constant
C > 0, the Jackson inequality takes the form

‖Lnb − b‖ ≤ Cλn+1‖b‖H, ∀b ∈ H . (4.1)

The Bernstein inequality we need is

‖Lna‖H ≤
{

Cλ−1
n ‖a‖, if a ∈ B ,

C‖a‖H, if a ∈ H .
(4.2)

When the Jackson and Bernstein inequalities hold, the approximation error (3.2)
can be realized by the linear operators {Ln} (up to a constant). The following result
is derived from techniques in approximation theory, e.g., [4].
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Theorem 4.1. Let C > 0 and {λn}n∈N be a non-increasing sequence of positive
numbers tending to zero. Suppose that a sequence of linear operators {Ln} on B

satisfies (4.1) and (4.2), and ‖Ln‖ ≤ C. Let 0 < θ < 1 and a ∈ (B,H)θ,∞. Then
for R ≥ Cλθ−1

1 ‖a‖θ,∞, there exists some n ∈ N such that

‖Lna‖H ≤ R

and

‖Lna − a‖ ≤ (C + 1)Cθ/(1−θ)(1/R)θ/(1−θ)‖a‖1/(1−θ)
θ,∞ .

Proof. Let a ∈ (B,H)θ,∞ and b ∈ H. By the Jackson inequality (4.1), for n ∈ N,

‖Lna − a‖ ≤ ‖Ln(a − b)‖ + ‖Lnb − b‖ + ‖a − b‖ ≤ (C + 1){‖a − b‖ + λn+1‖b‖H} .

Taking the infimum over b ∈ H, we obtain

‖Lna − a‖ ≤ (C + 1)K(a, λn+1) ≤ (C + 1)λθ
n+1‖a‖θ,∞ .

In the same way, by the Bernstein inequality,

‖Lna‖H ≤ ‖Ln(a − b)‖H + ‖Lnb‖H ≤ Cλ−1
n {‖a− b‖ + λn‖b‖H} .

Taking the infimum again, we have

‖Lna‖H ≤ Cλ−1
n K(a, λn) ≤ Cλθ−1

n ‖a‖θ,∞ .

Now let R ≥ Cλθ−1
1 ‖a‖θ,∞, then there exists some n ∈ N such that

Cλθ−1
n ‖a‖θ,∞ ≤ R < Cλθ−1

n+1‖a‖θ,∞ .

For this n, there holds

‖Lna‖H ≤ Cλθ−1
n ‖a‖θ,∞ ≤ R .

Moreover, λn+1 ≤
(

C‖a‖θ,∞
R

) 1
1−θ

. Hence

‖Lna − a‖ ≤ (C + 1)λθ
n+1‖a‖θ,∞ ≤ (C + 1)Cθ/(1−θ)(1/R)θ/(1−θ)‖a‖1/(1−θ)

θ,∞ .

Thus, Theorem 4.1 is true.

Notice that the orthogonal projections {Pn} in the proof of Theorem 1.2 satisfy
the Jackson and Bernstein inequalities with λn = νs

n and C = 1. Hence Theorem 4.1
would yield the desired rate of convergence in Theorem 1.2. But to see our exact
estimate with the constant 1, we need more refined analysis as given before.
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5. Kernel Approximation

Good algorithms generated by kernels play an important role in the learning theory
[3, 5, 9, 12]. Let us investigate kernel approximation in what follows.

Let X be a complete metric space and µ be a Borel measure on X . Denote L2
µ(X)

as the Hilbert space of (real) square integrable functions with the inner product

〈f, g〉 =
∫

X

f(x)g(x)dµ(x) .

Suppose that K : X × X → R is symmetric and positive definite, i.e.,(
K(xi, xj)

)m

i,j=1
is a positive definite matrix for any finite set {x1, . . . , xm} ⊂ X .

Assume that K ∈ L2
µ×µ, i.e.,

∫
X

∫
X |K(x, t)|2dµ(x)dµ(t) < ∞. Then the Hilbert–

Schmidt linear operator LK : L2
µ(X) → L2

µ(X) defined by

LKf(x) =
∫

X

K(x, t)f(t)dµ(t)

is symmetric, compact, and positive definite.
As we saw in Section 2, Learning Theory raises the problem of estimating

I(a, R), where B = L2
µ(X),H = LK(L2

µ(X)) and ‖LKf‖H = ‖f‖ = ‖L−1
K (LKf)‖.

In particular, we want to know whether I(a, R) = O((1/R)θ/(1−θ)) for some θ > 0
when a is the characteristic function of a regular domain. For this purpose, we
need to understand the interpolation space (B,H)θ,∞, and see whether it contains
characteristic functions.

It turns out that the problem is deeply involved with the regularity of the
kernel K. To see this, let us compare the interpolation spaces with some well–
known function spaces (Besov, Sobolev spaces).

Theorem 5.1. Let (W, ‖·‖W ) be a Banach space of functions over X. Suppose that

‖K‖W×µ :=
{∫

X

‖K(·, t)‖2
Wdµ(t)

}1/2

< ∞ .

Then for f ∈ L2
µ(X),

‖LKf‖W ≤ ‖K‖W×µ‖f‖ = ‖K‖W×µ‖LKf‖H .

Hence H is imbedded in W, and for 0 < θ < 1, (B,H)θ,∞ ⊂ (B, W )θ,∞.

Proof. By the property of a norm, we have

‖LKf‖W ≤
∫

X

|f(t)| ‖K(·, t)‖Wdµ(t) .

Then the desired inequality follows from the Schwartz inequality:

‖LKf‖W ≤
√∫

X

|f(t)|2dµ(t)

√∫
X

‖K(·, t)‖2
Wdµ(t) = ‖K‖W×µ‖f‖ .

Since H = LK(L2
µ(X)) and ‖LKf‖H = ‖f‖, the imbedding property follows.
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As a corollary, we choose µ to be the Lebesgue measure over a domain X ⊂ R
n,

and let W be the Sobolev space Hs(X). Combining Theorem 5 with Theorem 3,
we obtain.

Corollary 5.1. Let s > 0, K : X × X → R be symmetric and positive definite
such that

‖K‖Hs×L2 :=
{∫

X

‖K(·, t)‖2
Hs(X)dt

}1/2

< ∞ .

If 0 < θ < 1, and a ∈ L2(X) satisfies

I(a, R) = inf
‖f‖L2(X)≤R

{‖a− LKf‖L2(X)} = O

((
1
R

) θ
1−θ
)

(R → ∞) ,

then a ∈ (L2(X), Hs(X))θ,∞.

When X has a minimally smooth boundary, (L2(X), Hs(X))θ,∞ ⊂ Hsθ−η(X)
for any η > 0.

Let’s turn to the examples studied in [3] for the learning theory. Consider only
X = [0, 1]n.

Assume that k : [−1, 1]n → R is C∞ and symmetric about the origin. Set

K(x, t) = k(x − t), x, t ∈ [0, 1]n .

Special examples of this kind include the Gaussian k(x) = e−
|x|2
c2 , and k(x) =

(c2 + |x|2)−α with c > 0, α > 0.
Choose s to be a positive integer. Then

‖K‖Hs([0,1]n)×L2 =
{∫

[0,1]n
‖k(· − t)‖2

Hs([0,1]n)dt

}1/2

≤ ‖k‖Hs([−1,1]n) < ∞ .

It follows from Corollary 1 that I(a, R) = O(R−r) implies a ∈ (L2, Hs) r
1+r

,∞ which
is imbedded in H

rs
1+r −η([0, 1]n) for any η > 0. Thus, if a ∈ L2([0, 1]n) is not C∞,

then for any ε, η > 0, we can choose some s ∈ N such that a 6∈ H
εs

1+ε−η([0, 1]n),
hence I(a, R) 6= O(R−ε). As a corollary, we have proved the first statement of
Proposition 1.1.

Consider the characteristic function of a proper rectangular subset Πn
j=1[cj , dj ].

Its Fourier transform is Πn
j=1{[e−icjξj − e−idjξj ]/(iξj)}. Hence it lies in Hσ(Rn)

and then in Hσ([0, 1]n) with 0 < σ < 1/2, but not in H1/2([0, 1]n). Therefore, for
any r > 0, I(a, R) 6= O(R−r). This is a negative result. In Sec. 6, positive results
providing estimates for the decay of I(a, R) will be presented.

Thus we see that the kernel approximation is slow when the kernel function is
smooth. Things are different when the kernel function is not smooth.

Example 5.1. Let k be the characteristic function of the cube [−1/2, 1/2]n.

Then for f ∈ L2([0, 1]n),

LKf(x) =
∫

[0,1]n
χ[− 1

2 , 12 ]n(x − t)f(t)dt =
∫

I(x1)

· · ·
∫

I(xn)

f(t1, . . . , tn)dt1 · · · dtn ,
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where x = (x1, . . . , xn) ∈ [0, 1]n, and for xj ∈ [0, 1],

I(xj) =




[
0, xj +

1
2

]
, if xj ∈

[
0,

1
2

]
,[

xj − 1
2
, 1
]

, if xj ∈
(

1
2
, 1
]

.

It follows that ‖ ∂n

∂x1···∂xn
(LKf)‖L2([0,1]n) = ‖f‖L2([0,1]n), and for each j = 1, . . . , n,

there holds ‖ ∂
∂xj

(LKf)‖L2([0,1]n) ≤ ‖f‖L2([0,1]n). Thus, ‖g‖H1([0,1]n) ≤ (n + 1)‖g‖H
for any g ∈ H = LK(L2([0, 1]n)), and ‖g‖H ≤ ‖g‖Hn([0,1]n) for any g ∈
Hn([0, 1]n). It tells that for 0 < θ < 1, I(a, R) = O(R−θ/(1−θ)) implies
a ∈ (L2([0, 1]n), H1([0, 1]n))θ,∞; while a ∈ (L2([0, 1]n), Hn([0, 1]n))θ,∞ implies
I(a, R) = O(R−θ/(1−θ)).

In particular, in the univariate case, I(a, R) = O(R−θ/(1−θ)) if and only
if a ∈ (L2([0, 1]), H1([0, 1]))θ,∞. Also, if a is the characteristic function of a
proper rectangular subset Πn

j=1[cj , dj ], then I(a, R) = O(R−r/(2n−1)) for any
0 < r < 1. By taking higher order splines or compactly supported positive def-
inite radial basis functions with high regularity, we can get examples for which
I(a, R) = O(R−θ/(1−θ)) when a ∈ (L2([0, 1]n), Hs([0, 1]n))θ,∞.

6. Logarithmic Rate for Kernel Approximation

In the last section, it is shown that the convergence of kernel approximation is slow
when the kernel is smooth. In this section, we give a method for estimating the
convergence rate for this case. By our approach, a typical convergence rate will be
logarithmic. This is the case for most analytic kernels.

The Sobolev space Hσ(Rn) has an equivalent norm (fractional Sobolev
space norm):

‖f‖σ,2 =
(

1
(2π)n

∫
Rn

(|ξ|2 + 1)σ|f̂(ξ)|2dξ

)1/2

< ∞ .

The corresponding seminorm is

|f |σ,2 :=
(

1
(2π)n

∫
Rn

|ξ|2σ|f̂(ξ)|2dξ

)1/2

.

Let X = [0, 1]n. Given a kernel k ∈ L2(Rn), we consider the linear operator LK :
L2(X) → L2(X) defined by

LKf(x) = k∗f(x) =
∫

X

k(x − t)f(t)dt, x ∈ X, f ∈ L2(X) . (6.1)

Assume that k is a symmetric function and k̂(ξ) > 0 on R
n. Then LK is sym-

metric, compact, and positive definite. We are interested in the convergence rate of
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the function

I(a, R) := inf
‖L−1

K b‖L2(X)≤R
{‖a − b‖L2(X)} = inf

‖b‖L2(X)≤R
{‖a− LKb‖L2(X)} , (6.2)

where R > 0 and a ∈ L2(X).
To state our main result here, we need the following function (with a parameter

σ ≥ 0) measuring the decay of k̂:

λk,σ(r) :=
{

inf
|ξ|≤r

{(|ξ|2 + 1)σ k̂(ξ)}
}−1

, r > 0 . (6.3)

We also need the following quantity involving the regularity of the kernel k:

εk(N) := supx∈X

{
inf
{

k(0) − 2
∑

j∈{1,...,N−1}n

wjk(x − j/N)

+
∑

j,l∈{1,...,N−1}n

wjk

(
j − l

N

)
wl : wj ∈ R

}}
.

(6.4)

This quantity was employed in the study of radial basis functions and variational
principle in multivariate approximation theory [7, 13]. By approximating k with its
Taylor polynomials, we can see that εk(N) = O(N−m), if k ∈ Cm(X). When k is
analytic, εk(N) usually decays exponentially.

As an example, if k is the Gaussian kernel: k(x) = e−|x|2/2, then for sufficiently
large r and N , λk,σ(r) = (

√
2π)n(r2 + 1)−σer2/2; and εk(N) ≤ const e−δN with

some fixed constant δ > 0.
Similar to λk,σ , Λk,σ denotes the following increasing function (hence its inverse

function Λ−1
k,σ is well defined over (0, +∞)):

Λk,σ(r) :=
{

inf
|ξ|≤r

k̂(ξ)
}−1(∫ r

0

(ρ2 + 1)−σnρn−1dρ

)1/2

, r > 0 . (6.5)

Using these functions measuring the regularity of the kernel function, our esti-
mate is given as follows. Denote [x] as the integer part of x > 0.

Theorem 6.1. Let σ > 0, a ∈ Hσ(Rn) and LK be given as above. Then for R ≥
8n‖a‖σ,2Λk,σ(

√
nπ), there holds

I(a, R) ≤ ‖a‖σ,2 inf
0<R′≤πNR

{(
1
R′

)σ

+ 2n

(
εk(NR)λk,σ(R′)

)1/2}
, (6.6)

where

NR =
[

1√
nπ

Λ−1
k,σ

(
R

8n‖a‖σ,2

)]
.

Proof. Define a band-limited function f as

f̂(ξ) =
{

â(ξ) , if |ξ| ≤ R′ ,
0 , otherwise ,
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where the band width R′ > 0 will be determined later. Then

‖a − f‖L2(X) ≤ ‖a − f‖L2(Rn)

≤
{

(2π)−n

∫
|ξ|>R′

|â(ξ)|2dξ

}1/2

≤ |a|σ,2

(
1
R′

)σ

. (6.7)

We shall use the samples (f(j/N)) of the function f with a suitable integer
N ∈ N to define the function b realizing the error estimate in (6.6). Here N satisfies
Nπ ≥ R′ and will be determined later.

To define b, we need a function ϕ(x) := Πn
j=1ϕ0(xj) on R

n, where

ϕ0(t) =


1 − 3

2
|t| + 1

2
|t|3 , if |t| < 1 ,

0 , otherwise .

Then ϕ is symmetric, supported on [−1, 1]n, and positive definite on R
n:

ϕ̂(ξ) = Πn
j=1

3
ξ2
j

{
1 − 2 sin ξj

ξj
+

2(1 − cos ξj)
ξ2
j

}
> 0 .

A simple computation shows that ϕ̂(ξ) > 4−n for ξ ∈ [−π, π]n.
The function b realizing the error for a is given by

b(t) =
∑
j∈J

djϕ(Nt − j) . (6.8)

Here J is the index set J := {1, 2, . . . , N − 1}n, and {dj}j∈J is a set of coefficients
depending on f . With this form, b is supported on X . This implies that

LKb(x) =
∫

Rn

k(x − t)
∑
j∈J

djϕ(Nt − j)dt =
∑
j∈J

djΦ
(

x − j

N

)
.

Here

Φ(x) = k∗ϕ(N ·)(x) =
∫

k(x − t)ϕ(Nt)dt

is symmetric, positive definite, and

Φ̂(ξ) = N−nk̂(ξ)ϕ̂(ξ/N) > 0 .

Since Φ is positive definite, the matrix

AN :=
(

Φ
(

j

N
− l

N

))
j,l∈J

is positive definite. The coefficient vector d := (dj)j∈J is uniquely determined by
the linear system:

ANd = (f(j/N))j∈J . (6.9)
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That is,

∑
l∈J

Φ
(

j

N
− l

N

)
dl = f

(
j

N

)
, j ∈ J .

Thus, b has been defined, by means of N and (f(j/N)). To find the norm ‖b‖2,
we notice that ϕ is supported on [−1, 1]n and 0 ≤ ϕ(t) ≤ 1. Then, by the definition
(6.8), for t ∈ l/N + y/N with l ∈ {0, . . . , N − 1}n, y ∈ [0, 1)n,

|b(t)|2 =
∣∣∣∣ ∑

j∈J∩(l+{0,1}n)

djϕ(l + y − j)
∣∣∣∣
2

≤ 2n
∑

j∈J∩(l+{0,1}n)

|dj |2 .

Hence ∫
l/N+[0,1)n/N

|b(t)|2dt ≤ 2n

{ ∑
j∈J∩(l+{0,1}n)

|dj |2
}

N−n .

It follows that

‖b‖2
L2(X) =

∑
l∈{0,...,N−1}n

∫
l/N+[0,1)n/N

|b(t)|2dt ≤ 4nN−n
∑
j∈J

|dj |2 .

Thus,

‖b‖L2(X) ≤ 2nN−n/2‖{dj}j∈J‖l2 .

To bound the discrete norm ‖d‖l2 , we take inner products of d with both sides
of (6.9) and obtain

dT ANd =
∑
j,l∈J

djΦ
(

j − l

N

)
dl =

∑
j∈J

djf

(
j

N

)
.

On the left side, we use the inverse Fourier transform,

dT ANd = (2π)−n

∫
Rn

Φ̂(ξ)
∣∣∣∣∑

j∈J

dje
i j

N ·ξ
∣∣∣∣
2

dξ ≥ 4−n

{
inf

ξ∈[−Nπ,Nπ]n
k̂(ξ)

}
‖d‖2

l2 .

On the right side, by the Schwartz inequality,

∑
j∈J

djf

(
j

N

)
≤ ‖d‖l2N

n/2‖f‖∞ .

Combining the above two estimates, we have

‖d‖l2 ≤ 4n

{
inf

ξ∈[−Nπ,Nπ]n
k̂(ξ)

}−1

Nn/2‖f‖∞ .

It follows that

‖b‖L2(X) ≤ 8n

{
inf

ξ∈[−Nπ,Nπ]n
k̂(ξ)

}−1

‖f‖∞ .
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The support of f̂ tells us that

‖f‖∞ ≤ ‖a‖σ,2

{
(2π)−n

∫
|ξ|≤R′

(
|ξ|2 + 1

)−σ

dξ

}1/2

≤ ‖a‖σ,2

(∫ R′

0

(r2 + 1)−σnrn−1dr

)1/2

.

Therefore, with the definition (6.5), if R′ ≤ Nπ, the norm ‖b‖2 can be bounded as

‖b‖L2(X) ≤
{

inf |ξ|≤√
nNπ k̂(ξ)

}−1

8n‖a‖σ,2

(∫ R′

0
(r2 + 1)−σnrn−1dr

)1/2

≤ 8n‖a‖σ,2Λk,σ(
√

nNπ) .

(6.10)

We turn to the estimate of the error ‖a−LKb‖ ≤ ‖a−f‖+‖f−LKb‖. Note that
the matrix AN is symmetric, so is its inverse A−1

N = (A−1
N )j,l∈J . Define a set of nodal

functions {uj(x)}j∈J by

uj(x) =
∑
l∈J

(A−1
N )j,lΦ

(
x − l

N

)
, j ∈ J .

This, in connection with the construction of LKb, implies

LKb(x) =
∑
j∈J

{∑
l∈J

(
A−1

N

)
j,l

f(l/N)
}

Φ
(

x − j

N

)

=
∑
l∈J

f(l/N)
{∑

j∈J

(
A−1

N

)
l,j

Φ
(

x − j

N

)}
=
∑
l∈J

f(l/N)ul(x) .

By the inverse Fourier transform,

f(x) − LKb(x) = (2π)−n

∫
Rn

f̂(ξ)
{

eix·ξ −
∑
l∈J

ul(x)ei l
N ·ξ
}

dξ .

Since f is band-limited, we have

|f(x) − LKb(x)| ≤
{

(2π)−n

∫
Rn

|f̂(ξ)|2
Φ̂(ξ)

dξ

}1/2

×
{

(2π)−n

∫
Rn

Φ̂(ξ)
∣∣∣∣eix·ξ −

∑
l∈J

ul(x)ei l
N ·ξ
∣∣∣∣
2

dξ

}1/2

.

As Φ is symmetric,

(2π)−n

∫
Rn

Φ̂(ξ)
∣∣∣∣eix·ξ −

∑
l∈J

ul(x)ei l
N ·ξ
∣∣∣∣
2

dξ

= Φ(0) − 2
∑
l∈J

ul(x)Φ
(

x − l

N

)
+
∑
j,l∈J

uj(x)Φ
(

j

N
− l

N

)
ul(x) .
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Let x ∈ X be fixed. The quadratic function

Q((wj)j∈J ) := Φ(0) − 2
∑
l∈J

wlΦ
(

x − l

N

)
+
∑
j,l∈J

wjΦ
(

j

N
− l

N

)
wl

over R
J takes the minimum at (uj(x))j∈J . For any (wj) ∈ R

J , we have

Q((uj(x))) ≤ Q((wj)) = (2π)−n

∫
Rn

Φ̂(ξ)
∣∣∣∣eix·ξ −

∑
l∈J

wle
i l

N ·ξ
∣∣∣∣
2

dξ

≤ N−n(2π)−n

∫
Rn

k̂(ξ)
∣∣∣∣eix·ξ −

∑
l∈J

wle
i l

N ·ξ
∣∣∣∣
2

dξ

= N−n

{
k(0) − 2

∑
l∈J

wlk

(
x − l

N

)
+
∑
j,l∈J

wjk

(
j

N
− l

N

)
wl

}
.

Taking the infimum over (wj) ∈ R
J , we know from the definition (6.4) that for any

x ∈ X ,

Q((uj(x))) ≤ N−nεk(N) .

It follows that

‖f − LKb‖L2(X) ≤ {N−nεk(N)}1/2‖a‖σ,2

{
inf

|ξ|≤R′
(|ξ|2 + 1)σΦ̂(ξ)

}−1/2

.

Therefore, concerning the error, as R′ ≤ Nπ, we obtain the following estimate:

‖f − LKb‖L2(X) ≤ 2n‖a‖σ,2

(
εk(N)λk,σ(R′)

)1/2

. (6.11)

We are in a position to prove our conclusion, using the estimate (6.10), for ‖b‖,
the error estimate (6.11) and ‖a − f‖. Let R ≥ 8n‖a‖σ,2Λk,σ(

√
nπ). Since Λk,σ is

increasing, there exists a positive integer N such that

8n‖a‖σ,2Λk,σ(
√

nNπ) ≤ R ,

that is,

N ≤ 1√
nπ

Λ−1
k,σ

(
R

8n‖a‖σ,2

)
.

But limr→∞ Λk,σ(r) = +∞. The largest integer satisfying this condition is NR.
Then choose N = NR. By (6.10),

‖b‖L2(X) ≤ R .

The conclusion (6.6) follows from the error bounds (6.7) and (6.11) by taking the
infimum over 0 < R′ ≤ πNR. The proof of Theorem 6.1 is complete.

The proof of Theorem 6.1 also provides a way to find the element b for achieving
the approximation error.
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To see how to handle the functions measuring the regularity of the kernel, and
then to estimate the approximation error, we turn to the example of Gaussian
kernels stated in the introduction. Denote pn := max{1/(4

√
n), 2−n}, and for σ > 0,

Cσ,n :=




2σ/(2σ − n) , if σ > n/2 ,
1 + n , if σ = n/2 ,
n/(n − 2σ) , if 0 < σ < n/2 .

Example 6.1. Let c > 0 and

k(x) = e−
|x|2
c2 , x ∈ R

n .

If a ∈ Hσ(Rn) and

R ≥ max
{(

8n‖a‖σ,2

√
Cσ,n max

{
c−

3
2 nemax{ c2

2 ,8n2}, c−nnn/4e
c2nπ2

4

})2

,

enπ2c2(80n ln 2/c2+3)2 ,

(
2σ

√
nπc

− ln pn

)4}
,

(6.12)

then

I(a, R) = inf
‖b‖L2([0,1]n)≤R

{‖a − LKb‖L2([0,1]n)} ≤ ‖a‖σ,2

{(−2 ln pn

c3
√

nπ

)−σ/2

+2n

(
32n

√
e +

4n+1

c
√

π

)
p−1

n (c
√

π)−n

}(
1

ln R

)σ/4

.

Proof. It is well known that

k̂(ξ) = (c
√

π)ne−
c2|ξ|2

4 .

Hence k̂(ξ) > 0 for any ξ ∈ R
n. Then

λk,σ(r) ≤ (c
√

π)−ne
c2r2

4 .

By a simple computation,

∫ r

0

(ρ2 + 1)−σnρn−1dρ ≤



Cσ,n , if σ > n/2 ,
Cσ,n(1 + ln r) , if σ = n/2 , r ≥ 1 ,
Cσ,nrn−2σ , if 0 < σ < n/2 , r ≥ 1 .

Then for r ≥ 1,(∫ 1

0

(ρ2 + 1)−σnρn−1dρ

)1/2

(c
√

π)−ne
c2r2

4 ≤ Λk,σ(r) ≤ (c
√

π)−n
√

Cσ,nrn/2e
c2r2

4 .

It follows that for r ≥ max{4n/c, 1},

Λk,σ(r) ≤ (c
√

π)−n
√

Cσ,n

(
4
c2

)n/4

e
c2r2

2 ≤ c−
3
2n
√

Cσ,ne
c2r2

2 .
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Hence for r ≥ c−
3
2n
√

Cσ,nemax{ c2
2 ,8n2},

Λ−1
k,σ(r) ≥

√
2

c

√
ln r +

3
2
n ln c − 1

2
ln Cσ,n .

Let

R ≥ 8n‖a‖σ,2

√
Cσ,n max

{
c−

3
2nemax{ c2

2 ,8n2}, c−nnn/4e
c2nπ2

4

}
.

Under this restriction, (6.6) holds, and NR ≥ [N ′
R] ≥ 1, where

N ′
R :=

√
2√

nπc

√
ln R +

3
2
n ln c − ln(8n‖a‖σ,2) − 1

2
ln Cσ,n .

To get the desired constant, we cite the estimate for εk(N) from [14, Example 3]:

εk(N) ≤ 2
√

e

(
1

16n

)(N−2)/2

+
4

c
√

π
2−n(N−2), when N ≥ 80n ln 2

c2
+ 2 .

Then restrict R further such that N ′
R ≥ 80n ln 2

c2 + 3. We have

εk(NR) ≤
(

32n
√

e +
4n+1

c
√

π

)(
max

{
1

4
√

n
,

1
2n

})NR

≤
(

32n
√

e +
4n+1

c
√

π

)
p−1

n p
N ′

R
n .

Now under the restriction

R ≥ max
{(

8n‖a‖σ,2

√
Cσ,nc−

3
2n
)2

, enπ2c2(80n ln 2/c2+3)2
}

,

we know that (6.6) holds and

N ′
R ≥ 1√

nπc

√
ln R ≥ 80n ln 2

c2
+ 3 .

Finally, we choose

R′ =

√
−2 lnpn

c3
√

nπ

(
ln R

)1/4

> 0 .

It can be easily checked that R′ ≤ √
ln R/(

√
nπc) ≤ πNR.

We can see that all the above restrictions on R hold when (6.12) is valid. There-
fore, with (6.12), (6.6) tells us that

I(a, R) ≤ ‖a‖σ,2

{(−2 ln pn

c3
√

nπ

√
ln R

)−σ/2

+2n

((
32n

√
e +

4n+1

c
√

π

)
p−1

n (c
√

π)−np

√
ln R

2
√

nπc
n

)1/2}
.

The choice R ≥
(

2σ
√

nπc
− ln pn

)4

implies that

p

√
ln R

2
√

nπc
n ≤ (ln R)−σ/4 .
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Hence

I(a, R) ≤ ‖a‖σ,2

{(−2 ln pn

c3
√

nπ

)−σ/2

+2n

(
32n

√
e+

4n+1

c
√

π

)
p−1

n (c
√

π)−n

}(
ln R

)−σ
4

.

This yields the desired approximation error for the Gaussian kernels.

By taking c =
√

2, the second statement of Proposition 1.1 follows from the
estimates in Example 6.2.

The next example deals with multiquadric kernels which are C∞ kernels.

Example 6.2. Let c > 0, α > n, and

k(x) = (c2 + |x|2)−α/2, x ∈ R
n .

If σ > 0 and a ∈ Hσ(Rn), then

I(a, R) = inf
‖b‖L2([0,1]n)≤R

{‖a− LKb‖L2([0,1]n)} = O

((
1

ln R

)σ)
.

Proof. For any ε > 0, there are positive constants C1, C2 such that

C1e
−(c+ε)|ξ| ≤ k̂(ξ) ≤ C2e

−c|ξ| ∀ξ ∈ R
n .

Then

λk,σ(r) ≤ 1
C1

e(c+ε)r

and for r ≥ 1,√
Cσ,n

1
C2

ecr ≤ Λk,σ(r) ≤√Cσ,nrn/2 1
C1

e(c+ε)r ≤ C′
1e

(c+2ε)r.

Hence for sufficiently large R,

(lnR + lnC2 − ln Cσ,n/2)/c ≤ Λ−1
k,σ(R) ≤ (lnR − ln C′

1)/(c + 2ε) .

It follows that for sufficiently large R,

NR ≥
[

1√
nπ(c + 2ε)

{ln R − ln(8n‖a‖σ,2C
′
1)}
]
≥ 1

2
√

nπ(c + 2ε)
ln R .

The estimate in [7] provides a bound for εk: with some fixed constants δ > 0
and C′

2 > 0,

εk(N) ≤ C′
2e

−δN ∀N ∈ N .

Combining the above estimates, we know from Theorem 6.1, that

I(a, R) ≤ ‖a‖σ,2 inf
0<R′≤πNR

{(
1
R′

)σ

+ 2n

(
C′

2e
−δNR

1
C1

e(c+ε)R′
)1/2}

.

Choosing R′ = d ln R for sufficiently small d yields

I(a, R) ≤ ‖a‖σ,2

{
(d ln R)−σ+2n C′

2

C1
e{(c+ε)d−δ/(2

√
nπ(c+2ε))} lnR

}
= O

((
1

ln R

)σ)
.

This is the expected estimate for the approximation error.
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