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Abstract

Undesirable absorption, distribution, metabolism, excretion (ADME) properties are the cause of many drug development failures and
this has led to the need to identify such problems earlier in the development process. This review highlights computational (in silico)
approaches that have been used to identify the characteristics of ligands influencing molecular recognition and/or metabolism by the
drug-metabolising enzyme UDP-gucuronosyltransferase (UGT). Current studies applying pharmacophore elucidation, 2D-quantitative
structure metabolism relationships (2D-QSMR), 3D-quantitative structure metabolism relationships (3D-QSMR), and non-linear pattern
recognition techniques such as artificial neural networks and support vector machines for modelling metabolism by UGT are reported.
An assessment of the utility of in silico approaches for the qualitative and quantitative prediction of drug glucuronidation parameters
highlights the benefit of using multiple pharmacophores and also non-linear techniques for classification. Some of the challenges facing
the development of generalisable models for predicting metabolism by UGT, including the need for screening of more diverse structures,
are also outlined.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Drug discovery and development are expensive and
time-consuming processes. Recognition by the pharma-
ceutical industry that undesirable absorption, distribution,
metabolism and excretion (ADME) properties of new drug
candidates are the cause of many clinical phase drug devel-
opment failures has resulted in a paradigm shift to identify
such problems early in the drug discovery process[1].
Thus, in vitro approaches are now widely used to investi-
gate the ADME properties of new chemical entities and,
more recently, computational (in silico) modelling has been
investigated as a tool to optimise selection of the most
suitable drug candidates for development.

Hepatic metabolism is the primary elimination mech-
anism for the majority of drugs, and indeed non-drug
xenobiotics, in humans. Cytochrome P450 (CYP), a heme
monooxygenase, and UDP-glucuronosyltransferase (UGT)
are quantitatively the most important functionalisation
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(Phase I) and conjugation (Phase II) enzymes involved in
drug and chemical metabolism. CYP and UGT are together
responsible for the elimination of more than 90% of drugs
cleared by the liver and additionally contribute to xenobiotic
biotransformation in extrahepatic tissues (e.g. gastrointesti-
nal tract). The versatility of both CYP and UGT arises from
the existence of multiple enzyme forms (‘isoforms’), which
tend to differ in terms of substrate selectivity, patterns
of drug–drug interactions, regulation and genetic poly-
morphism. Given these characteristics of CYP and UGT,
prediction of drug metabolism parameters at the qualita-
tive and quantitative levels assumes major importance in
drug discovery and for dosage optimisation of established
drugs. Identification of the isoform(s) responsible for the
metabolism of any given drug, a process referred to reaction
phenotyping, together with knowledge of isoform regula-
tion, genetic polymorphism and drug interactions allows
prediction of those factors likely to alter elimination and
hence response in vivo[2–4]. Quantitative prediction most
commonly involves scaling of the kinetic parameters (viz.
Km and Vmax) for metabolite formation to in vivo hepatic
clearance[8,10,14]. While in vitro and in silico approaches
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are finding increasing acceptance for prediction of the dis-
positional characteristics of drugs cleared by CYP-catalysed
biotransformation, the application of these strategies to
drugs metabolised by UGT has received less attention.

UGT catalyses the covalent linkage, or conjugation, of
glucuronic acid to substrate bearing a suitable functional
group (typically OH, CO2H, NR2) according to a second
order nucleophilic substitution mechanism[5]. As noted
above, UGT exists as an enzyme ‘superfamily’. cDNAs en-
coding 18 UGT proteins have been isolated to date and these
have been classified in two families, UGT1 and UGT2, based
on amino acid sequence identity[6]. Of the various human
UGTs, substrate selectivites now approach interpretable lev-
els for UGT 1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10,
2B4, 2B7, 2B15 and 2B17. Available evidence suggests that
the individual UGT isoforms tend to exhibit unique substrate
selectivities, but there is often a significant overlap of sub-
strate profiles between isoforms[5,7]. In comparison to CYP,
UGT structure–function relations are poorly understood. An
X-ray crystal structure of a UGT is not yet available and few
structurally or catalytically relevant amino acids have been
identified.

This review highlights computational (in silico) ap-
proaches that have been used to identify the characteris-
tics of ligands influencing molecular recognition and/or
metabolism by UGT. An assessment of the utility of in silico
approaches for the qualitative and quantitative prediction of
drug glucuronidation parameters is also presented, together
with an outline of some challenges facing the develop-
ment of generalisable models for predicting metabolism by
UGT.

2. Past

2.1. Non-human UGT modelling

Initial UGT modelling was performed using a relatively
small number of datasets[8–14] derived from testing UGT
enzyme activity towards simple chemical structures in
laboratory animals. In a pioneering study, Bray et al.[8]
reported an empirically derived structure–metabolism rela-
tionship (SMR) for the glucuronidation of 14 substituted
phenols in the rabbit in vivo. Analysis of approximate ve-
locity constants showed that a group of nine low molecular
weight phenols had higher velocity constants than a second
group of five phenols with higher molecular weights. Fur-
thermore, these authors observed that the velocity constant
did not seem to be related to the electronic influence of
the substituent forpara-substituted phenols. Little further
was reported until Hansch et al.[15,16] demonstrated that
the rate of glucuronidation of benzoic acids and primary
aliphatic alcohols in rat and rabbit showed a parabolic
dependence on the partition coefficient of the chemical
between octanol and water (logP). Schaefer et al.[17] sub-
sequently investigated a series of substituted phenols and

showed that substrate hydrophobicity was linearly corre-
lated with rate of glucuronidation although the electronic
constant (σ−) did not seem to play an important role despite
the nucleophilic substitution mechanism involved.

The field did not progress until the late 1980s to early
1990s when research was spurred by an increasing realisa-
tion in the pharmaceutical industry of the importance of drug
metabolism in the development process. This was also fa-
cilitated by technological advances in the field of molecular
biology and improved assay techniques for measuring mi-
crosomal drug-metabolising enzyme activities. Expression
of a cDNA encoding rat UGT1A6 in COS-7 cells enabled
Jackson et al.[18] to screen the glucuronidation of more
than 20 compounds to elucidate the substrate selectivity of
this isoform. Restricted specificity towards planar phenols
was demonstrated. An empirical SMR based on the obser-
vation that molecular ‘thickness’ needed to be<4 Å and the
molecule length<6.3 Å to ensure effective glucuronidation
was also reported. This study assumes particular importance
as it was the first to investigate structural features of the
substrates of an individual UGT isoform. SMRs developed
using data generated from tissue microsome activities are
usually of limited utility as there may be a number of differ-
ent isoforms contributing to metabolism, which leads to a
‘hybrid’ representation of the chemical features influencing
metabolism.

Mercier et al.[19] remodelled an early dataset[12–14]
comprising 27 primary, secondary and tertiary alcohols
tested for glucuronidation in the rabbit. Global, fragment and
topological descriptors were used to determine the capacity
of alcohols to undergo glucuronidation and three ‘rules of
thumb’ were reported. The nature of the hydroxyl (OH)
group was shown to be important. The glucuronidation of
secondary and tertiary alcohols was comparable and an order
of magnitude higher than that of primary alcohols. Further-
more, branching on primary alcohols and chain-lengthening
up to a threshold of six carbon atoms increased the likelihood
of glucuronidation. This work represents the first reported
use of topological descriptors for modelling metabolism by
UGT. Kim [20] also reviewed and remodelled a number of
datasets at this time, confirming that much of the variation in
rate of glucuronidation in rats and rabbits can be accounted
for by the lipophilic properties of the substrates. In addition
to the relevance of molar refractivity and standard sub-
stituent effects such as steric bulk, a parabolic dependence
on logP, with an optimum logP = 2, was highlighted.

In 1992, the first of a number of reports that focused
on classifying the metabolic conversion of a chemical
appeared. Ghauri et al.[21] reported the relative conjuga-
tion 14 chemicals with glucuronic acid and glycine in the
rat, and assessed the utility of several pattern recognition
techniques for modelling the data. Three compounds were
predominantly glucuronidated and 11 were predominantly
conjugated with glycine. Principal component maps were
used to develop a structure–metabolism model capable of
separating the classes. Of the 39 primarily semi-empirical
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molecular orbital-derived physicochemical descriptors, 10
allowed separation; the two most important parameters
were partial atomic chargemetato the carboxylic acid and
electrophilic superdelocalisability at same position. This
work highlights that powerful electronic effects influence,
and sometimes dominate, the route of metabolism.

Yin et al. [22] probed the effect of electron withdrawing
and donating substituents on the glucuronidation rate of phe-
nols using a preparation of partially purified rat liver UGT.
Electron donation increased the rate of conjugation, consis-
tent with nucleophilic attack via an SN2 mechanism. There
was a good correlation (r = 0.88) between Hammettσ−
values and logVmax difference (relative to parent). Inclusion
of the hydrophobicity parameterπ improved the correlation
(r = 0.98). The strongσ− correlation further highlights the
importance of electronic influences and demonstrates that
reactivity of the nucleophile is an important determinant of
the rate of reaction. A hypothetical transition state was also
proposed, involving axial orientation of glucuronic acid so
as to maximise overlap between the oxygen of the phenol
and the antibonding orbital of the anomeric sugar carbon.

In the mid-1990s two more reports applied the method-
ology highlighted by Ghauri et al. for classification of
metabolic fate. Urinary excretion of sulfate and glucuronide
conjugates of 16 substituted phenols in the rat were investi-
gated[23] and classified using a number of semi-empirical
molecular orbital-derived physicochemical descriptors. In
addition to classification, linear regression techniques were
used to derive quantitative structure–metabolism relation-
ships (QSMR) capable of quantifying the relative excretion
of sulfate and glucuronide conjugates in urine. The urinary
excretion of glycine and glucuronide conjugates of 24 sub-
stituted benzoic acids in the rat were further investigated
[24], and both classification and regression were performed.
Percentage excretion of parent chemical was additionally
modelled. The highest occupied molecular orbital (HOMO)
energy, logP and electrophilic superdelocalisability on the
aromatic ring were highlighted as important for delineating
the classes. This study was extended to include a further 22
benzoic acids[25], further demonstrating the importance
of logP, volume, ellipsoid dimensions, and partial atom
charges.

The first three-dimensional QSMR (3D-QSMR) study
was reported by Said et al.[26] and examined a series
of 18 compounds (structurally related to phenolphthalein
and a triphenylalkylcarboxylic acid) as inhibitors of rat
liver bilirubin UGT (i.e. UGT1A1) using comparative
molecular-field analysis (CoMFA), with IC50 values as the
index of inhibition. The model allowed good prediction of
inhibitory potency. The relative contribution of steric (43%)
and electrostatic fields (57%) and their distribution allowed
inference regarding binding site geometry. A subsequent
study by this group[27] demonstrated potent, competitive
inhibition of rat liver bilirubin glucuronidation by deriva-
tives of 7,7,7-triphenylheptanoic acid. The relevance of
pKa was additionally demonstrated, with less acidic chemi-

cals showing better inhibition and suggesting that absence
of ionisation was important for inhibition. A similar ef-
fect of pKa was observed using rat UGT2B1[28], which
metabolised phenols (unionised pKa 9–13) effectively, but
analogous carboxylic acids (pKa ∼ 4) poorly. Molecular
modelling was used to highlight the 3D structural anal-
ogy between the inhibitors and bilirubin, which comprised
aromatic (hydrophobic) groups in a triangular arrangement
of dimensions 6.5, 4.6 and 4.4 Å. Naydenova et al.[29]
reported a Free-Wilson QSAR study using the measured
inhibitory activity of “transition-state” analogues based on
oligopeptide derivatives of uridine. The study outlined the
significance of a lipophilic residue linked to uridine by a
minimum length of five atoms. A recent review of natural
and synthetic inhibitors of UDP-glucuronosyltransferase
has been published[30].

The rate of glucuronidation of 42 catechols (1,2-dihydro-
xyphenols) by rat liver microsomes was recently mod-
elled using PLS regression[31] in order to determine the
factors that direct catechol metabolism via different path-
ways and hence govern their biotransformation. Fourteen
substructure descriptors were used, in addition to three
physicochemical descriptors (logP, pKa, molecular vol-
ume), however since a number of the descriptors are related
only to catechols, the model can only be used to predict
the metabolism of this chemical class. Significant descrip-
tors for the rat liver microsomal UGT QSMR included
hydrophobicity/volume, pKa (parabolic around 8–9), hy-
drogen bonding and steric effects. Twelve substructure
descriptors were the most relevant, with carboxyl group
position and logP/volume exerting the strongest influence.
The logP/volume term may reflect diffusion of substrates to
the active site, while pKa probably relates to mechanism of
catalysis.

2.2. Human UGT modelling

Computational modelling of human xenobiotic glu-
curonidation has occurred only in the last decade or so.
Kinetic constants (Km and Vmax) for the glucuronidation
and sulfation of 24 monosubstituted phenolic substrates
were analysed by Temellini et al.[32]. It was noted that
an alkyl group in theortho position increasedKm. Further-
more, a methyl or ethyl in any position increased the rate
of glucuronidation compared to phenol. HigherVmax values
were observed forpara substitution than forortho, while
bulky ortho substituents impaired glucuronidation. More
recently, the glucuronidation of propofol (2,6 diisopropyl,
an intravenous anaesthetic, and a number of 2,5-(o,m-) and
2,6-(o,o-) disubstituted analogues were investigated using
both human and rat microsomes[33]. In both species,Km
values for 2,5 disubstituted analogues were lower than
for 2,6 disubstituted althoughVmax values associated with
2,5-substitution were higher than for 2,6-substitution. This
highlights that 2,5-substitution leads to higher intrinsic
clearance (Vmax/Km), information that could potentially be
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used in the design of new anaesthetic agents with modi-
fied pharmacokinetic properties. Investigation of the glu-
curonidation of zidovudine and a number of nucleoside
analogues by human liver microsomes demonstrated that
nucleoside hydrophobicity correlates strongly with binding
affinity (measured asKi ), although there was no correlation
with Vmax [34].

The cloning of human UGT cDNAs throughout the
1990s allowed expression of the individual isoforms in
mammalian cell lines, an undertaking which has enormous
implications for development of useful models of drug and
chemical metabolism by UGT. Vashishtha et al.[35] have
recently published QSMR for the glucuronidation of eight
1-substituted imadazoles by recombinant human UGT iso-
forms. These represent the only QSMR for glucuronides not
linked through an oxygen atom, as imidazole glucuronida-
tion results in a quaternary ammonium linkage. Testing
against many of the known recombinant human UGT iso-
forms showed that UGT1A4 exhibited highest activity.
Non-linear least-squares regression was used to develop
models for prediction ofKm andVmax. There was a linear,
inverse relationship betweenVmax and logP, and both the
Km and Vmax models showed a linear relationship with
pKa. Correlation between activity and pKa has been demon-
strated previously, and is presumably related to the reaction
mechanism of glucuronidation (i.e. SN2). Delocalisation
of electron density by the strongly electron-withdrawing
nitro-substituted analogue, highlighted in this study by the
absence of glucuronidation, is consistent with the catalytic
mechanism again highlighting that the availability of lone
pair of electrons on the substrate is important. It was also
hypothesised that UGT1A3 and UGT1A4 selective sub-
strates might be developed based on the observation that
UGT1A3 preferentially glucuronidates aliphatic nitrogens
at pH 8.4, whereas UGT1A4 apparently preferentially glu-
curonidates aromatic nitrogens at pH 7.4. The eight imida-
zoles were subsequently screened for glucuronidation by
liver microsomes from four different species, including hu-
mans, in order to assess interspecies difference, which was
significant (8–18-fold)[36]. This variation highlights the
challenge in extrapolating QSMR from animal to human
UGTs and the need to conduct studies with human iso-
forms wherever possible. As with the recombinant isoforms,
lipophilic, electronic and steric descriptors were investi-
gated;Km correlated significantly with lipophilicity while
Vmax/Km correlated with electronic substituent properties
and pKa.

QSMR that predict theKm andVmax values for the glu-
curonidation of 24 simple 4-substituted phenols[37] by
human UGT1A6 and UGT1A9 have also been developed.
Molecular surface (MS-WHIM) and atomic descriptors
(AT-WHIM) were used with a genetic function algo-
rithm for model development. Eleven directional and six
non-directional descriptors accounted for molecular sur-
face properties of the compounds. Of the 24 compounds
screened, all were glucuronidated by UGT1A9, but only 10

were metabolised by UGT1A6.Km values for the UGT1A6
substrates tended to be higher than those observed for
UGT1A9 substrates. As UGT1A6 substrate size (assessed as
molecular volume) decreased, theVmax increased; that is the
turnover of bulky phenols was low. The UGT1A6Km model
included four descriptors associated with hydrogen-bond
donation, positive molecular electrostatic potential, atomic
mass and atomic partial charge. While also including atomic
partial charge, the UGT1A9Km model contained descrip-
tors associated with hydrogen-bond acceptors, negative
molecular electrostatic potential and atomic polarisability.
The authors acknowledged the limited range ofKm values
(∼1 log order) modelled in this work.

2.3. Summary

A number of issues are apparent from assessment of
the previously published studies, the most apparent being
the challenge of combining the knowledge in an inte-
grated manner. Despite the lack of integration, some of
the studies highlight common factors. Not surprisingly, a
range of descriptors is important for molecular recognition
and catalysis by UGT and the descriptor-type is depen-
dant on the parameter being modelled (e.g.Km or Vmax).
LogP commonly occurs in models[38], mostly associated
with Km since lipophilicity is primarily associated with
substrate binding (a low energy process) rather than catal-
ysis [39]. Consistent with chemical intuition, electronic
descriptors are most commonly associated with rate mea-
sures (e.g.Vmax). In particular, the electronic nature of
the nucleophile is important, a point highlighted in stud-
ies of substituent effects and by the significance of pKa
in models.

Assessment of the modelling techniques used indicates
that both classification and regression models provide use-
ful, indeed complementary, information. Despite the rel-
evance of classification, few examples exist in the UGT
literature. Only linear modelling techniques have previously
been attempted. Thus non-linearity in datasets is difficult to
assess other than through simple parabolic dependencies,
and significant limitations may exist considering the com-
plex nature of the processes being modelled. Moreover, no
comparison between a range of modelling techniques and
descriptor combinations using a single dataset has been
attempted. The predominant use of liver microsomes gen-
erally precludes direct linkage of the relationships back to a
particular isoform or active site. Data cannot be pooled due
to significant interlaboratory variability in the assessment of
UGT activity. Measures ofVmax are particularly challenging
as they differ widely depending on the level of UGT isoform
expression and cannot currently be related to the amount of
active enzyme, unlike the spectrophotometric measurement
of CYP. BothKm and Vmax need to be modelled for each
dataset in order to assess catalytic competency as intrinsic
clearance (i.e.Vmax/Km), and little or no characterisation of
conjugative regioselectivity on polynucleophilic substrates
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exists. Finally, most modelling has been performed using
animal data, which is not appropriate for translation to hu-
mans in most cases. Despite these caveats, the modelling
of UGT ligands is feasible and certainly merits further
investigation.

Many of the published studies aimed to assess the suitabil-
ity of data modelling and pattern recognition techniques for
determining chemical properties associated with metabolism
by UGT. However, it is apparent that the concepts, ap-
proaches and descriptors outlined above are suitable, but
only for certain endpoints. The appropriateness to the field
as a whole of the endpoints being modelled clearly remains
to be assessed. While it would appear that ‘local’ models
can be developed and these are suitable for lead optimisa-
tion of analogues, the paradigm shift in the pharmaceuti-
cal industry to assess ADME properties earlier, for the pur-
poses of choosing leads with suitable properties capable of
reducing late-stage attrition[1] demands that models adopt
a more ‘global’ nature, capable of prediction from diverse
datasets[40,41]. Hence, the major bottleneck for the evolu-
tion of UGT modelling toward this endpoint is undoubtedly
the chronic data shortfall that exists currently. However, even
within the framework of data currently available, a number
of avenues exist for the assessment and application of more
advanced modelling approaches with more diverse datasets.
Hence, the goal of recent research in this laboratory was to
use human UGT isoform-selective data to investigate a range
of modelling techniques and descriptors previously not as-
sessed with UGT. The process included the development and
use of more structurally diverse datasets with wider ranges of
activity measures, and assessment of a broader range of tech-
niques including pharmacophore elucidation and 3D-QSMR
in addition to 2D-QSMR. Furthermore, we aimed to ap-
ply the latest linear and non-linear pattern recognition tech-
niques for development of QSMR, but also for classifica-
tion, and to incorporate more diverse descriptors accounting
for the underlying mechanism and alignment rules appro-
priate to UGT. These studies aimed to generate predictive
and interpretable models that can be used in a number of
ways to help design and choose molecules with the desired
metabolic stability that are metabolised by isoforms least
affected by genetic polymorphism and drug–drug interac-
tions. A summary of the principal results and conclusions
from our assessments follow.

Table 1
Salient features of the UGT1A1, UGT1A4 and UGT1A9 models

UGT1A1 UGT1A4 UGT1A9

Common-features pharmacophore 1 Glucuronidation,
2 Hydrophobic

1 Glucuronidation,
2 Hydrophobic

1 Glucuronidation, 2 hydrophobic,
1 H-bond acceptor

2D-QSAR
r2 0.92 0.80 No model
CV r2 0.92 0.73 No model

Pharmacophore-based 3D QSARr2 0.87 0.88 No model
Molecular-field-based 3D-QSARr2 0.71 0.73 No model

3. Present

3.1. 2D-QSMR

Initial modelling in this laboratory focused on substrates
for UGT1A1 [42], UGT1A4 [43] and UGT1A9, each of
which has been reported to glucuronidate structurally di-
verse compounds. As highlighted previously, evidence
exists that linear regression techniques provide useful
mathematical approaches for 2D-QSMR, and a number of
2D-descriptors show relevance. However, the size and di-
versity of the training sets used to generate models have
generally been limited. Hence, we employed structurally di-
verse datasets (∼24 molecules) spanning 3 log orders ofKm
(or the surrogate,Ki ) to assess how the increase in diversity
would affect the 2D-QSMR modelling process[42,43]. The
Ki values for the UGT1A1 substrates were determined in
this laboratory, while the UGT1A4Km dataset was derived
from data published by Green and Tephly[44,45]. Both
datasets gave models with reasonable to good predictivity
as assessed by independent test-set and cross-validation
approaches as shown inTable 1.

This established that more diverse datasets could be mod-
elled, and in light the success of a UGT1A9 2D-QSMR
developed previously for simple phenols[37], a more struc-
turally diverse dataset of UGT1A9 substrates was assembled
and theirKi values determined using the same procedure as
reported previously for UGT1A1[42]. The chemical struc-
tures andKi values (�M) for the UGT1A9 dataset is shown
in Fig. 1.

The same variable selection, partial-least-square (PLS)
regression and principal component analysis (PCA) ap-
proaches reported for the UGT1A1 and UGT1A4 substrates
were applied to the UGT1A9 dataset. The leave-one-out
cross-validation r2 statistic (<0.3) indicated that the
model generated was not useful for predicting theKi
(or Km) of other substrates. Further exploration of the
dataset showed that there were no descriptors with sig-
nificant linear correlation to the pKi , when multiple test-
ing was taken into account. This was in marked contrast
to the UGT1A1 and UGT1A4 models, where many in-
dividual descriptors were strongly correlated (r > 0.7)
with pKi . This presumably reflects either the relatively
small size of the dataset or the existence of significant
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Fig. 1. The chemical structures andKi values (�M) for the UGT1A9 dataset.
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non-linearity in the relationship between descriptors and
pKi .

3.2. Pharmacophores

Pharmacophores represent a configuration of structural
features associated with biological activity (in this case
metabolism by an individual UGT isoform), and represent
one of the most intuitive 3D-descriptors. A striking ab-
sence of any attempt to develop pharmacophores for UGT
substrates is evident from the review of previous UGT
modelling reports. This is somewhat surprising, given the
widespread use of pharmacophore elucidation in general
drug discovery and in particular its application to the other
major drug-metabolising enzyme cytochrome P450 (CYP)
[46]. Common-features pharmacophores for the UGT1A1
[42] and UGT1A4[43] datasets were generated using the
program Catalyst, with the aid of a novel, user-defined
‘glucuronidation’ feature that allowed overlay of the sub-
strate conjugation sites. Use of a ‘site of reaction’ feature in
pharmacophores of enzyme substrates allows a chemically
sensible alignment that may better represent the catalytic
binding mode. Interestingly the UGT1A1 and UGT1A4
pharmacophores share a striking similarity in core features;
the site of glucuronidation is invariably adjacent to a hy-
drophobic region, with another hydrophobic domain located
6–8 Å from the site of conjugation[47] (seeFig. 2). Using
the UGT1A9 dataset published in this report, and the same
pharmacophore approach used with UGT1A1/UGT1A4,
a UGT1A9 pharmacophore has also been developed.
Fig. 2 shows the UGT1A9 pharmacophore in addition to
the previously reported UGT1A1 and UGT1A4 pharma-
cophores. Although the core features recur, the chemical
phenotype of UGT1A9 substrates differs from that of
UGT1A1/UGT1A4 substrates through the additional pres-
ence of a hydrogen-bond acceptor (HBA) region near the
outermost hydrophobic region. These core features may
represent the molecular basis for the overlapping substrate
selectivities observed between UGT1A family isoforms.

3.3. 3D-QSMR

Determination of a pharmacophore represents an early,
but significant, step towards the understanding of a given
receptor–ligand binding event. However, while satisfaction
of the pharmacophore criteria by a molecule is necessary
for a binding interaction to occur, steric and electronic influ-
ences on the binding event may nevertheless be ignored by
this approach. Thus, a 3D-QSAR modelling approach that
more specifically accounts for such influences could com-
plement the pharmacophore approach well.

The UGT1A1 and UGT1A4 common-features pharmaco-
phores were used as alignment rules for one such molecular-
field-based approach, a self organising molecular-field
analysis (SOMFA), which is a variant of CoMFA[42,43].
Both alignment rules gave moderately predictive models,

though not as predictive as the 2D-QSMR (seeTable 1). An
alternate 3D-QSAR approach is available through the Hy-
pogen module of Catalyst. The Hypogen algorithm searches
for a 3D arrangement of chemical features to explain trends
and variations of activity with chemical structure, and can
be used to quantitatively predict the binding of chemicals
by an enzyme or receptor. The ‘fit’ of the chemicals to
the pharmacophore features (i.e. how closely the features
of each chemical can match the features of the pharma-
cophore) can then be linearly correlated to the activity of
the chemicals. Application of this approach with UGT1A1
and UGT1A4 yielded moderately predictive models also
(seeTable 1), although the alignments provided little cat-
alytic interpretation since shared sites of conjugation were
not overlaid. Using the UGT1A9 dataset described above,
no satisfactorily predictive model could be developed, per-
haps for reasons related to multiple binding modes that are
elaborated further in the following section.

3.4. Classification

Use of computational methods for identification of the
UGT isoform(s) responsible for the metabolism of any given
drug (in silico reaction phenotyping), potentially provides
a facile and economic alternative to in vitro approaches
[48]. In vitro procedures for reaction phenotyping normally
involve the integration of data from human liver micro-
somes (although hepatocyte suspensions may also be used)
and recombinant human enzymes. In silico reaction pheno-
typing, however, utilises pattern recognition techniques to
elucidate a set of chemical properties (descriptors) associ-
ated with the binding and metabolism of substrates by an
enzyme. Developing datasets for each isoform by combin-
ing known substrates with carefully selected and relevant
non-substrate data has the potential to provide valuable in-
formation when classification algorithms are used to probe
explicit differences between the two sets.

A comprehensive database of all reported substrates
and non-substrates of 12 human UGT isoforms has been
compiled in this laboratory to investigate the utility of
various classification techniques for UGT reaction pheno-
typing. The isoforms investigated are UGT 1A1, 1A3, 1A4,
1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15 and 2B17.
Partial-least-squares discriminant analysis (PLS-DA) in ad-
dition to an artificial neural network (ANN) and a Support
Vector Machine (SVM) classification algorithm, which both
potentially provide greater flexibility and generalisation
performance[49], were compared using 2D-chemical de-
scriptors generated for substrates and non-substrates[50].
The SVM algorithm generally outperformed ANN and
PLS-DA showing excellent (>80% accuracy) predictability
for five isoforms and good (63–80% accuracy) predictabil-
ity for the other seven, confirming the potential value of
this approach. The variability between isoforms probably
reflects differences in the size, structural diversity and qual-
ity of the datasets, and confirms the inherent complexity
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Fig. 2. UGT1A1 (panel a), UGT1A4 (panel c) and UGT1A9 (panel e) common-features pharmacophores. The cyan, green and purple spheres represent
a hydrophobic feature, hydrogen-bond acceptor and glucuronidation feature, respectively. Bold arrows show the direction of lone-pair electron donation.
Panels (b), (d) and (f) show alizarin, clozapine and quercetin mapped to the respective UGT1A1, UGT1A4 and UGT1A9 pharmacophores.

of defining relationships for enzymes with broad and over-
lapping selectivities. This work represents the first detailed
assessment of SVM algorithms for ADME prediction, al-
though an SVM has recently been successfully applied
to classifying drug CNS-permeability for a single dataset
[51].

In addition to good predictivity, it is desirable for a
model to have a degree of interpretability, in order to al-
low translation of chemical characteristics directly to the
molecular design and optimisation process. Recent studies
in this laboratory investigated whether multiple pharma-
cophores, which allow simple interpretation and encompass

the chemical features relevant to each of the possible bind-
ing modes, would prove useful for classification of UGT
substrates[52]. Single, common-features pharmacophores
require the assumption that all ligands share a common
binding mode[53]. However, this assumption clearly does
not hold for many drug-metabolising enzymes, which of-
ten generate multiple metabolites from a single chemical
presumably due to multiple binding modes. While the
field of drug-metabolism prediction is a novel application
for such ‘pharmacophore fingerprints’, successful applica-
tion of this concept has been reported in other fields of
drug discovery[54,55]. Indeed multiple pharmacophores
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have also been utilised to characterise molecular recogni-
tion by a number of xenobiotic binding proteins[56–58].
Employing concepts developed in these reports and incor-
porating the ‘site of metabolism’ pharmacophore concept
developed earlier, pattern recognition techniques were used
to select subsets of pharmacophores associated with sub-
strates and non-substrates of the 12 UGT isoforms in our
database. The models were more intuitive but marginally
less predictive than classification using 2D-descriptors.
The ease of interpretability associated with these models
greatly increases the potential for the design of ligands
with either enhanced or reduced affinity for particular
UGT isoforms. Furthermore, both the 2D-descriptor and
pharmacophore-fingerprint-based classifications should be
amenable to high-throughput virtual screening paradigms,
well suited to ADME property design process increasingly
incorporated in drug discovery.

It was also observed that a number of the pharmacophores
selected as important included simple chemical features.
Further analysis demonstrated significant isoform-related
differences in the prevalence of nucleophilic functional
groups (e.g. phenol, hydroxyl, carboxyl, imidazole, and pri-
mary, secondary and tertiary amine function) in substrates
[52]. These simple, intuitive features may be used for clas-
sification with equal or better accuracy than approaches
using 2D-descriptors or pharmacophore ‘fingerprints’. This
method is likely to prove most valuable when conjugative
regioselectivity data, which has generally been charac-
terised poorly in the past, is included. Advances in the
prediction of CYP regioselectivity using quantum chem-
ical descriptors[59,60] is in no small part due to the
availability of training data derived from thorough charac-
terisation of metabolite regioselectivity. Diligence in the
characterisation of conjugative regioselectivity is required
in order to realise similar advances with in silico UGT
models.

3.5. Future directions

The successful adoption of in silico approaches for mod-
elling CYP-catalysed biotransformation has progressed in
parallel with the increasing availability of CYP isoform
substrate and inhibitor selectivities, and the development
of such models has also been aided by access to homol-
ogy models of human CYP’s. However, the development
of models for predicting metabolism and for characterising
structural features of substrates for UGT isoforms is less
advanced relative to CYP. Only recently has the substrate
profile of UGT isoforms begun to approach an interpretable
level, and an X-ray crystal structure is not yet available.
Nevertheless, it seems certain that the modelling techniques
outlined in this review will find increasing application
to UGT given the significance of this enzyme for drug
elimination.

In a recent review Van de Waterbeemd and Gifford[1]
note, “Good predictive models for ADMET parameters de-

pend crucially on selecting the right mathematical approach,
the right molecular descriptors for the particular ADMET
endpoint, and a sufficiently large set of experimental data
relating to this endpoint. . . . In particular, more needs to
be learnt about how the size of the training set influences
the choice of the most capable model.” The limited UGT
kinetic data currently available lends itself primarily to the
development of ‘local’ models and the linear 2D-QSMR
and classification approaches described here seem well
suited to this application. Increasingly, however, there is a
requirement for ‘global’ or generalisable ADMET models
[1,40]. Given the inherent complexity of the physiologi-
cal processes involved and the vastness of the chemical
space to be investigated, sophisticated pattern recognition
techniques and large, quality datasets will undoubtedly be
required to generate ‘globally’ predictive models in future.
Work in this laboratory suggests that linear techniques
and ‘reductionist’ alignment-based approaches do not ac-
count for the promiscuous nature of drug-metabolising
enzymes and show mixed success with more structurally
diverse datasets. However, increased dataset size in addi-
tion to the application of non-linear pattern recognition
techniques or use of multiple pharmacophores can result in
significant progress towards generalisable and interpretable
models. The crucial requisite for advancement of the field,
however, is the development and publication of datasets
of increased size and structural diversity, a requirement
mirrored across the ADME prediction field as a whole
[1]. Future assessment of the ‘chemical diversity space’
that has been screened against UGT should also high-
light the areas where increased screening will serve most
usefully.

The other major challenge for UGT modelling is to link
the complementary roles of ligand-based and protein-based
modelling. Most critical in this pursuit is obtaining a repre-
sentation of the 3D structure of UGTs, either by homology
modelling or by meeting the challenge of crystallising
human UGTs. The docking of ligands into protein struc-
tures has aided determination of reaction phenotype and
binding affinities of ligands for CYP[61] and such tech-
niques are anticipated to translate effectively to UGTs.
Increasingly, advancements in crystallisation technology
and high-throughput capacity are being focused toward
membrane-bound enzymes, including human CYP. Homol-
ogy modelling of UGT’s may also be realised by reference
to the increasing studies of the structural biology of other
glycosyltransferases[62].

More generally, robust assessment of models is essential
and comparison between pattern recognition techniques for
datasets of given sizes and diversity will serve as a solid
grounding from which to further advance UGT modelling.
Vigilance in defining the required endpoint of the model,
and increased understanding and consideration of the un-
derlying mechanisms of the metabolic processes involved in
molecular recognition and catalysis will ensure increasingly
useful models.



516 P.A. Smith et al. / Journal of Molecular Graphics and Modelling 22 (2004) 507–517

Acknowledgements

This work was funded by a grant from the National Health
and Medical Research Council of Australia. MJS is the re-
cipient of an Australian Postgraduate Award.

References

[1] H. Van de Waterbeemd, E. Gifford, ADMET in silico modelling:
towards prediction paradise? Nat. Rev. Drug Discov. 2 (2003) 192–
204.

[2] J.O. Miners, M.E. Veronese, D.J. Birkett, In vitro approaches for the
prediction of human drug metabolism, Ann. Rep. Med. Chem. 29
(1994) 307–316.

[3] A.D. Rodrigues, Integrated cytochrome P450 reaction phenotyping.
Attempting to bridge the gap between cDNA-expressed cytochromes
P450 and native human liver microsomes, Biochem. Pharmacol. 57
(1999) 465–480.

[4] J.O. Miners, Hitchhiking the technology bandwagon: the evolution
of drug metabolism, Clin. Exp. Pharmacol. Physiol. 29 (2002) 1040–
1044.

[5] A. Radominska-Pandya, P.J. Czernik, J.M. Little, E. Battaglia, P.I.
Mackenzie, Structural and functional studies of UDP-glucuronosyl-
transferases, Drug Metab. Rev. 31 (1999) 817–899.

[6] P.I. Mackenzie, I.S. Owens, B. Burchell, K.W. Bock, A. Bairoch,
A. Belanger, The UDP-glycosyltransferase gene superfamily—
recommended nomenclature update based on evolutionary
divergence, Pharmacogenetics 7 (1997) 255–269.

[7] R.H. Tukey, C.P. Strassburg, Human UDP-glucuronosyltransferases:
metabolism, expression, and disease, Ann. Rev. Pharmacol. Toxicol.
40 (2000) 581–616.

[8] H.G. Bray, B.G. Humphris, W.V. Thorpe, K. White, P.B. Wood,
Kinetic studies of the metabolism of foreign organic compounds. III.
Conjugation of phenols with glucuronic acid, Biochem. J. 52 (1952)
416–419.

[9] G.J. Mulder, A.B. Van Doorn, A rapid NAD+-linked assay for
microsomal uridine diphosphate glucuronyltransferase of rat liver and
some observations on substrate specificity of the enzyme, Biochem.
J. 151 (1975) 131–140.

[10] H.P. Illing, D. Benford, Observations on the accessibility of acceptor
substrates to the active centre of UDP-glucuronosyltransferase in
vitro, Biochim. Biophys. 429 (1976) 768–779.

[11] G.J. Mulder, J.H.N. Meerman, Glucuronidation and sulfation in vivo
and in vitro: selective inhibition of sulfation by drugs and deficiency
of inorganic sulfate, in: Proceedings of the Conjugation Reactions
of Drug Biotransformations, 1978, pp. 389–397.

[12] I.A. Kamil, J.N. Smith, R.T. Williams, Detoxication. L. Isolation of
methyl and ethyl glucuronides from the urine of rabbits receiving
methanol and ethanol, Biochem. J. 54 (1953) 390–392.

[13] I.A. Kamil, J.N. Smith, R.T. Williams, Detoxication. XLVII.
Formation of ester glucuronides of aliphatic acids during the
metabolism of 2-ethylbutanol and 2-ethylhexanol, Biochem. J. 53
(1953) 137–140.

[14] I.A. Kamil, J.N. Smith, R.T. Williams, Detoxication. XLVI.
Metabolism of aliphatic alcohols. The glucuronic conjugation of
cyclic aliphatic alcohols, Biochem. J. 53 (1953) 129–136.

[15] C. Hansch, E.J. Lien, F. Helmer, Structure–activity correlations in the
metabolism of drugs, Arch. Biochem. Biophys. 128 (1968) 319–330.

[16] C. Hansch, J.M. Clayton, Lipophilic character and biological activity
of drugs. II. Parabolic case, J. Pharm. Sci. 62 (1973) 1–21.

[17] M. Schaefer, I. Okulicz-Kozaryn, A. Batt, G. Siest, V. Loppinet,
Structure–activity relationships in glucuronidation of substituted
phenols, Eur. J. Med. Chem. 16 (1981) 461–464.

[18] M.R. Jackson, S. Fournel-Gigleux, D. Harding, B. Burchell,
Examination of the substrate specificity of cloned rat kidney
phenol UDP-glucuronyltransferase expressed in COS-7 cells, Mol.
Pharmacol. 34 (1988) 638–642.

[19] C. Mercier, V. Fabart, Y. Sobel, J.E. Dubois, Modeling alcohol
metabolism with the DARC/CALPHI system, J. Med. Chem. 34
(1991) 934–942.

[20] K.H. Kim, Quantitative structure–activity relationships of the
metabolism of drugs by uridine diphosphate glucuronosyltransferase,
J. Pharm. Sci. 80 (1991) 966–970.

[21] F.Y. Ghauri, C.A. Blackledge, R.C. Glen, B.C. Sweatman, J.C.
Lindon, C.R. Beddell, I.D. Wilson, J.K. Nicholson, Quantitative
structure–metabolism relationships for substituted benzoic acids in
the rat. Computational chemistry, NMR spectroscopy and pattern
recognition studies, Biochem. Pharmacol. 44 (1992) 1935–1946.

[22] H.Q. Yin, G. Bennett, J.P. Jones, Mechanistic studies of uridine
diphosphate glucuronosyltransferase, Chemico-Biol. Interact. 90
(1994) 47–58.

[23] E. Holmes, B.C. Sweatman, M.E. Bollard, C.A. Blackledge, C.R.
Beddell, I.D. Wilson, J.C. Lindon, J.K. Nicholson, Prediction
of urinary sulphate and glucuronide conjugate excretion for
substituted phenols in the rat using quantitative structure–metabolism
relationships, Xenobiotica 25 (1995) 1269–1281.

[24] B.C. Cupid, C.R. Beddell, J.C. Lindon, I.D. Wilson, J.K. Nicholson,
Quantitative structure–metabolism relationships for substituted
benzoic acids in the rabbit: prediction of urinary excretion of glycine
and glucuronide conjugates, Xenobiotica 26 (1996) 157–176.

[25] B.C. Cupid, E. Holmes, I.D. Wilson, J.C. Lindon, J.K. Nicholson,
Quantitative structure–metabolism relationships (QSMR) using
computational chemistry: pattern recognition analysis and statistical
prediction of phase II conjugation reactions of substituted benzoic
acids in the rat, Xenobiotica 29 (1999) 27–42.

[26] M. Said, J.C. Ziegler, J. Magdalou, A. Elass, G. Vergoten, Inhibition
of bilirubin UDP-glucuronosyltransferase—a comparative molecular
field analysis (CoMFA), Quant. Struct. Act. Relat. 15 (1996) 382–
388.

[27] M. Said, E. Battaglia, A. Elass, V. Cano, J.C. Ziegler, A. Cartier, M.H.
Livertoux, G. Vergoten, S. Fournel-Gigleux, J. Magdalou, Mechanism
of inhibition of rat liver bilirubin UDP-glucuronosyltransferase by
triphenylalkyl derivatives, J. Biochem. Mol. Toxicol. 12 (1998) 19–
27.

[28] M. Pritchard, S. Fournel-Gigleux, G. Siest, P.I. Mackenzie,
J.A. Magdalou, Recombinant phenobarbital-inducible rat liver
UDP-glucuronosyltransferase (UDP-glucuronosyltransferase 2B1)
stably expressed in V79 cells catalyzes the glucuronidation of
morphine, phenols, and carboxylic acids, Mol. Pharmacol. 45 (1994)
42–50.

[29] Z.G. Naydenova, K.C. Grancharov, D.K. Alargov, E.V. Golovinsky,
I.M. Stanoeva, L.D. Shalamanova, I.K. Pajeva, Inhibition of UDP-
glucuronosyltransferase by 5′-o-amino acid and oligopeptide deri-
vatives of uridine—structure–activity relationships, Z. Naturforsch.
53 (1998) 173–181.

[30] K. Grancharov, Z. Naydenova, S. Lozeva, E. Golovinsky, Natural
and synthetic inhibitors of UDP-glucuronosyltransferase, Pharmacol.
Ther. 89 (2001) 176–181.

[31] L. Antonio, J.P. Grillasca, J. Taskinen, E. Elovaara, B. Burchell,
M.H. Piet, B. Ethell, M. Ouzzine, S. Fournel-Gigleux, J. Magdalou,
Characterization of catechol glucuronidation in rat liver, Drug Metab.
Dispos. 30 (2002) 199–207.

[32] A. Temellini, M. Franchi, L. Giuliani, G.M. Pacifici, Human
liver sulphotransferase and UDP-glucuronosyltransferase: structure–
activity relationship for phenolic substrates, Xenobiotica 21 (1991)
171–177.

[33] M. Shimizu, Y. Matsumoto, M. Tatsuno, M. Fukuoka, Glucuro-
nidation of propofol and its analogs by human and rat liver
microsomes, Biol. Pharm. Bull. 26 (2003) 216–219.



P.A. Smith et al. / Journal of Molecular Graphics and Modelling 22 (2004) 507–517 517

[34] A. Resetar, D. Minick, T. Spector, Glucuronidation of 3′-azido-
3′-deoxythymidine catalyzed by human liver UDP-glucuronosyl-
transferase. Significance of nucleoside hydrophobicity and inhibition
by xenobiotics, Biochem. Pharmacol. 42 (1991) 559–568.

[35] S.C. Vashishtha, E.M. Hawes, G. McKay, D.J. McCann, Quaternary
ammonium-linked glucuronidation of 1-substituted imidazoles: stu-
dies of human UDP-glucuronosyltransferases involved and substrate
specificities, Drug Metab. Dispos. 29 (2001) 1290–1295.

[36] S.C. Vashishtha, E.M. Hawes, D.J. McCann, O. Gosheh, L.
Hogg, Quaternary ammonium-linked glucuronidation of 1-substituted
imidazoles by liver microsomes: interspecies differences and
structure–metabolism relationships, Drug Metab. Dispos. 30 (2002)
1070–1076.

[37] B.T. Ethell, S. Ekins, J.B. Wang, B. Burchell, Quantitative structure
activity relationships for the glucuronidation of simple phenols by
expressed human UGT1A6 and UGT1A9, Drug Metab. Dispos. 30
(2002) 734–738.

[38] C. Hansch, Comparative QSAR: understanding hydrophobic interac-
tions, Class. Three-dimens. QSAR Agrochem. 606 (1995) 254–262.

[39] B. Testa, P. Crivori, M. Reist, P.A. Carrupt, The influence of
lipophilicity on the pharmacokinetic behavior of drugs: concepts and
examples, Perspect. Drug Discov. Des. 19 (2000) 179–211.

[40] P. Buchwald, N. Bodor, Computer-aided drug design: the role of
quantitative structure–property, structure–activity and structure–meta-
bolism relationships (QSPR, QSAR, QSMR), Drugs Future 27 (2002)
577–588.

[41] H. Van de Waterbeemd, High-throughput and in silico techniques in
drug metabolism and pharmacokinetics, Curr. Opin. Drug Discov.
Dev. 5 (2002) 33–43.

[42] M.J. Sorich, P.A. Smith, R.A. McKinnon, J.O. Miners, Phar-
macophore and quantitative structure activity relationship modeling
of UDP-glucuronosyltransferase 1A1 (UGT1A1) substrates, Phar-
macogenetics 12 (2002) 635–645.

[43] P.A. Smith, M.J. Sorich, R.A. McKinnon, J.O. Miners, Phar-
macophore and quantitative structure activity relationship (QSAR)
modelling: complementary approaches to the rationalisation and
prediction of UDP-glucuronosyltransferase 1A4 (UGT1A4) substrate
selectivity, J. Med. Chem. 46 (2002) 1617–1626.

[44] M.D. Green, C.D. King, B. Mojarrabi, P.I. Mackenzie, T.R. Tephly,
Glucuronidation of amines and other xenobiotics catalyzed by
expressed human UDP-glucuronosyltransferase 1A3, Drug Metab.
Dispos. 26 (1998) 507–512.

[45] M.D. Green, T.R. Tephly, Glucuronidation of amines and
hydroxylated xenobiotics and endobiotics catalyzed by expressed
human Ugt1.4 protein, Drug Metab. Dispos. 24 (1996) 356–363.

[46] M.J. de Groot, S. Ekins, Pharmacophore modeling of cytochromes
P450, Adv. Drug Del. Rev. 54 (2002) 367–383.

[47] P.A. Smith, M.J. Sorich, R.A. McKinnon, J.O. Miners, In silico
insights: chemical and structural characteristics associated with
UDP-glucuronosyltransferase (UGT) substrate selectivity, Clin. Exp.
Pharmacol. Physiol. 30 (2003) 836–840.

[48] J.O. Miners, P.A. Smith, M.J. Sorich, R.A. McKinnon, P.I.
Mackenzie, Predicting human drug glucuronidation parameters:
application of in vitro and in silico modelling approaches, Ann. Rev.
Pharmacol. Toxicol. 44 (2004) 1–25.

[49] D. Winkler, The broader applications of neural and genetic modelling
methods, Drug Discov. Today 6 (2001) 1198–1199.

[50] M.J. Sorich, R.A. McKinnon, J.O. Miners, P.A. Smith, Comparison
of linear and non-linear classification algorithms for the prediction
of chemical metabolism by UDP-glucuronosyltransferase isoforms,
J. Chem. Inform. Comp. Sci. 43 (2003) 2019–2024.

[51] S. Doniger, T. Hofmann, J. Yeh, Predicting CNS permeability of
drug molecules: comparison of neural network and support vector
machine algorithms, J. Comput. Biol. 9 (2002) 849–864.

[52] M.J. Sorich, J.O. Miners, R.A. McKinnon, P.A. Smith,
Multiple pharmacophores for the investigation of human UDP-
glucuronosyltransferase isoform substrate selectivity, Mol. Pharm. 65
(2004) 301–308.

[53] A.K. Ghose, J.J. Wendoloski, Pharmacophore modelling—methods,
experimental verification and applications, Perspect. Drug Discov.
Des. 9–11 (1998) 253–271.

[54] M.J. McGregor, S.M. Muskal, Pharmacophore fingerprinting. 1.
Application to QSAR and focused library design, J. Chem. Inf.
Comput. Sci. 39 (1999) 569–574.

[55] J.S. Mason, A.C. Good, E.J. Martin, 3-D pharmacophores in drug
discovery, Curr. Pharmacol. Des. 7 (2001) 567–597.

[56] A. Garrigues, N. Loiseau, M. Delaforge, J. Ferte, M. Garrigos,
Characterization of two pharmacophores on the multidrug transporter
P-glycoprotein, Mol. Pharmacol. 62 (2002) 1288–1298.

[57] J.E. Penzotti, M.L. Lamb, E. Evensen, P.D.J. Grootenhuis, A
computational ensemble pharmacophore model for identifying
substrates of P-glycoprotein, J. Med. Chem. 45 (2002) 1737–
1740.

[58] R.E. Watkins, S.M. Noble, M.R. Redinbo, Structural insights into the
promiscuity and function of the human pregnane X receptor, Curr.
Opin. Drug Discov. Dev. 5 (2002) 150–158.

[59] M.J. de Groot, M.J. Ackland, V.A. Horne, A.A. Alex, B.C.
Jones, A novel approach to predicting P450 mediated drug
metabolism. CYP2D6 catalyzedN-dealkylation reactions and
qualitative metabolite predictions using a combined protein and
pharmacophore model for CYP2D6, J. Med. Chem. 42 (1999) 4062–
4070.

[60] J.P. Jones, M. Mysinger, K.R. Korzekwa, Computational models
for cytochrome P450: a predictive electronic model for aromatic
oxidation and hydrogen atom abstraction, Drug Metab. Disp. 30
(2002) 7–12.

[61] G.M. Keseru, A virtual high throughput screen for high affinity
cytochrome P450cam substrates. Implications for in silico prediction
of drug metabolism, J. Comput.-aided Mol. Des. 15 (2001) 649–
657.

[62] Y.N. Hu, S. Walker, Remarkable structural similarities between
diverse glycosyltransferases, Chem. Biol. 9 (2002) 1287–1296.


	Towards integrated ADME prediction: past, present and future directions for modelling metabolism by UDP-glucuronosyltransferases
	Introduction
	Past
	Non-human UGT modelling
	Human UGT modelling
	Summary

	Present
	2D-QSMR
	Pharmacophores
	3D-QSMR
	Classification
	Future directions

	Acknowledgements
	References


