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ABSTRACT
Summary: Biological networks, such as protein interaction,
regulatory or metabolic networks, derived from public data-
bases, biological experiments or text mining can be useful
for the analysis of high-throughput experimental data. We
present two algorithms embedded in the ToPNet application
that show promising performance in analyzing expression data
in the context of such networks. First, the Significant Area
Search algorithm detects subnetworks consisting of signific-
antly regulated genes. These subnetworks often provide hints
on which biological processes are affected in the measured
conditions. Second, Pathway Queries allow detection of net-
works includingmolecules that are not necessarily significantly
regulated, such as transcription factors or signaling proteins.
Moreover, using these queries, the user can formulate bio-
logical hypotheses and check their validity with respect to
experimental data. All resulting networks and pathways can be
explored further using the interactive analysis tools provided
by ToPNet program.
Contact: florian.sohler@ifi.lmu.edu

INTRODUCTION
As gene expression measurements are still one of the most
promising approaches to high-throughput elucidation of bio-
logical processes and pathomechanisms of diseases, the
analysis of these data receives considerable attention. In this
paper, we will focus on interactive analysis of expression data
in the context of biological networks and functional annota-
tions. Incorporation of this additional biological knowledge
into analysis methods enables researchers to assess quickly
the functional context and the relevant interaction partners of
significantly regulated genes. This context might be neglected
when relying on results from expression measurements only.
Most methods incorporate biological annotations after pro-
cessing the gene expression data alone (e.g. using a clustering
procedure). For example, Robinson et al. (2002) implemen-
ted aWeb-based tool for statistical evaluation of cluster results
according to functional categorizations, such as gene ontology
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(GO; The Gene Ontology Consortium, 2001). Methods for
integration of biological network and expression data have
also been suggested. For example, Zien et al. (2000) and
Hanisch et al. (2002) demonstrated methods for detection
of co-regulated metabolic subnetworks. Ideker et al. (2002)
presented a method for identifying regulatory mechanisms
integrating protein–protein interaction network information
and expression data. Recently, Yeang and Jaakola (2003) sug-
gested a method of extracting physical pathways supported
by expression measurements.
Here, we demonstrate two new algorithms implemented

in the ToPNet program, namely Significant Area Search and
Pathway Queries, for contextual analysis of expression data.
Both methods aim at detecting subnetworks relevant with
respect to experimental data. Whereas the first algorithm
identifies significantly regulated subnetworks, the second one
additionally incorporates user-specified constraints in order to
generate biologically more plausible hypotheses.

THEToPNet FRAMEWORK
ToPNet (http://www.biosolveit.de/topnet/) is a tool for handl-
ing several biological networks from multiple sources. Each
network has several associated properties (e.g. color, size and
hyperlinks of nodes and edges) that can be linked to annota-
tion data, such as a matrix of gene expression data. The
glue between networks and annotations is provided by a third
data type, the mappings.
ToPNet is able to import networks fromvarious sources (e.g.

network databases), which can then be explored interactively
using the algorithms provided, edited manually and stored for
later inspection.
Data maps handle annotation data in ToPNet by providing

standardized information about their content. For example,
expression data are often available in a tabular format where
rows represent genes and columns correspond to specific
experimental conditions. The table itself might contain e.g.
probability values quantifying differential expression, or fold
changes of expression. A corresponding data map then
provides information for a gradient color coding or tooltip
annotation of corresponding vertices. As a second example,
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terms from the GO (The Gene Ontology Consortium, 2001)
can be treated as a data map in ToPNet, thereby associating
a set of GO terms and corresponding hyperlinks with each
vertex.
To connect annotation data to networkproperties, amapping

is essential. As several major gene and protein databases exist
and a general nomenclature for protein and gene names is still
missing, ToPNet is able to load mappings for different sets
of identifiers interactively and visualize the results. If neces-
sary, ToPNet automatically generates transitive mappings by
computing shortest paths in the graph of all mappings.

ALGORITHMS AND DATA ANALYSIS
To analyze expression data in the context of biological net-
works, we developed several algorithms that require user
interaction to various degrees. To demonstrate the capabilities
of these algorithms, we selected the yeast compendiumdataset
(Hughes et al., 2000). In this work, 300 mutations and chem-
ical treatments in Saccharomyces cerevisiae were analyzed
using expression profiling techniques. To assess the degree of
differential expression in a certain condition, an errormodel of
expression in the wildtype has been developed and calibrated
by Hughes et al. (2000). Using this model, probability values
quantifying differential expression are available for each gene
in each experimental condition.
In this case study, we focus on two gene knockout experi-

ments (HPT1, FUS3/KSS1) and construct corresponding data
maps associating each of the approximately 6000 measured
open reading frames (ORFs) with the p-value of differen-
tial expression provided. It has been found previously that
HPT1 mutations affect the expression of purine biosynthesis
genes in yeast (Guetsova et al., 1997) and that Fus3 and Kss1
are mitogen activated protein (MAP) kinases involved in the
pheromone response pathway. Both are activated by Ste7 and,
in turn, activate the transcription factor Ste12 (Tedford et al.,
1997; Bardwell et al., 1996).
For analysis of the expression dataset with ToPNet, we use

three different networks: The DIP protein interaction network
contains experimentally determined interactions (Xenarios
et al., 2000). The genome-wide location analysis of Lee
et al. (2002) provides data for a transcriptional regulatory
network. In this network, an edge between a transcription
factor and a gene exists if the transcription factor binds to the
upstream region of that gene with a p-value less than 0.01.
Furthermore, we compute a literature network using the name
recognition procedure of Hanisch et al. (2003). We search
for gene names in all PubMed abstracts (NIH, 2000, http://
www.ncbi.nlm.nih.gov/entrez/)andconstructanedgebetween
two genes if both co-occur in one abstract. The resulting
network contains 6262genes and approximately 42 000 edges.

Hulls, paths and queries
For interactive exploration of the data, gene sets can be
selected according to user-defined criteria. These criteria

are specified via boolean functions defined on data maps.
For example, given that probability values and GO annota-
tions are available, the following expression would select
all apoptosis-related genes with a significant p-value: GO
biological process like apoptosis & pValueMap ≤ 0.05.
Selected gene sets can be visualized as a network or fur-

ther extended by graph operations. These operations include
computing hulls around genes, i.e. exploring the neighbor-
hood of genes or computing all shortest paths among selected
molecules. In conjunction, the selection and manipulation
options provide the basis for efficient interactive exploration
of the gene expression data.
From the HPT1 knockout data, we select the 11 most signi-

ficantly regulated genes in the literature network (Fig. 1a),
eight of which belong to the purine biosynthesis pathway
and form a connected component. The other three genes
(BDH1, SAM3 and YBL098w) are unconnected and have
functions that appear unrelated. Further investigation of these
genes might be worthwhile, but there is also a chance that
they are false positives. In contrast, the evidence that the
purine biosynthesis is affected by the knockout of HPT1 is
striking.

Significant Area Search
The Significant Area Search algorithm aims at detecting con-
nected parts of the network that are significant according to
specified p-values. These might correspond to co-regulated
pathways in metabolic networks or functionally related pro-
teins in literature networks. The algorithm selects a set of
seed genes according to a specified threshold and starts a
greedy expansion by including the most significant neighbor-
ing molecule in each step. The significance of the selected
gene set is quantified by combination of individual p-values
using Fisher’s inverse χ2 method (Fisher, 1932), which quan-
tifies the probability that all individual values result from
their respective null distributions. The individual p-values are
adjusted for greedy selection based on local graph topology.
This avoids the constructionof subnetworks that are connected
only via unspecific high-degree nodes. The detected signi-
ficant areas are collected and pruned for highly overlapping
redundant graphs. The resulting graphs are reported to the
user in order of decreasing significance for further interactive
exploration.
Applying this algorithm to the HPT1 knockout experi-

ment on the literature network yields only one significant
area containing 11 genes from the purine biosynthesis path-
way (Fig. 1b). Thus, we can identify three more regulated
genes from the purine biosynthesis pathway, namely MTD1,
ADE5,7 and ADE12, that are not found by simply select-
ing the most significantly regulated genes. These genes
further support the hypothesis that the purine biosynthesis
pathway is affected. On the other hand, the chances that
the unconnected three genes with significant p-values are
true positives is further diminished since there are no more
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(a) (b) (c)

Fig. 1. Examples of significantly regulated subgraphs of the yeast literature network and the regulatory network according to the HPT1
experiment. Genes are shaded according to significance of differential expression. (a), The 11 most significantly regulated genes of the
network are shown. (b) A network found by Significant Area Search using the same data is depicted. Using Significant Area Search on the
regulatory network derived from Lee et al. (2002), we find the subgraph shown in (c).

regulated genes in their neighborhood within the literat-
ure network; otherwise they would also form a significant
area. In the regulatory network, a significant area containing
almost the same set of genes connected by the transcription
factor Bas1 is found (Fig. 1c). Bas1 is a known regulator of
the purine biosynthesis pathway (Daignan-Fornier and Fink,
1992).
Based on the FUS3/KSS1 knockout, Significant Area

Search provides interesting subgraphs of the text mining and
regulatory network as well (Fig. 1b and c). The text mining
graph contains significantly downregulated genes essential
in filamentous growth (e.g. TEC1 and FIG1) and mating
pheromone response (e.g. FUS1, SST2 and STE12). This is
consistent with findings that the knockout genes Fus3 and
Kss1 are required for regulation of filamentation in conjunc-
tion with TEC1 (Zeitlinger et al., 2003). Moreover, both
genes are known to regulate the pheromone response path-
way (Tedford et al., 1997). Using the regulatory network, the
transcription factor STE12 and to a lesser degree MCM1 can
be identified as being involved in regulation of differentally
expressed genes. This has been described in the literature as
well (Kirkman-Correia et al., 1993).

Pathway Query Language and Pathway Search
The main goal of ToPNet is to assist in the identification of
pathways or subnetworks that are interesting with respect to
experimental data. Users from different areas of application
will have specific restrictions as to what they consider inter-
esting. For example, in pharmaceutical research focus may
be on pathways containing ‘druggable’ targets like kinases or
phosphatases. A kinase could be considered interesting only
if it phosphorylates a transcription factor that regulates genes

that show a significant change in their expression pattern in a
certain experiment.
To allow for such complex queries, we have developed

an XML-based query language. In this language, pathway
templates can be formulated as graph-like structures where
vertices describe properties of the genes or proteins (e.g. must
be a kinase or a transcription factor) and edges pose restric-
tions on the connections (e.g. the path between the kinase
and the transcription factor must not be longer than 2 or it
must involve a phosphorylation).
The template is first transformed into an instance graph

by finding all instances of the template nodes in the under-
lying network and connecting them if all conditions on the
paths between them are met. With that preprocessing, a max-
imal clique in the instance graph that contains instances of all
template nodes is a valid realization of the pathway. To find
all pathway instances, we enumerate all maximal cliques in
the instance graph. This is a computationally hard problem
(known to be NP-hard), but exploiting the special structure of
the instance graph, most practical queries can be computed
within a few seconds.
Figure 2 (left-hand-side) shows a simple pathway tem-

plate, that specifies a network containing a transcription factor
connected to one or more genes that are significantly regu-
lated (p-value< 0.005). In the yeast literature network, we
find three instances of that template with at least three regu-
lated genes. These instances aremerged into a single graph and
shown in Figure 2 (right-hand side). They contain 11 regulated
genes from the purine synthesis pathway and the transcription
factors BAS1, PHO2/BAS2 and GCN4, which are known
to regulate this pathway (Daignan-Fornier and Fink, 1992;
Rolfes and Hinnebusch, 1993).
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<?xml version=”1.0”?>
<pw:TheNet xmlns:pw=

”http://bio.informatik.uni!

!

muenchen.de/Pathways”
name=”Transcription Factor + Regulatee”>
<pw:Subnet name=”Transcription Factor”>

<pw:Node name=”Transcription Factor”>
GO: molecular function like Transcription Factor

</pw:Node>
</pw:Subnet>
<pw:Subnet name=”Regulatee” multiple=”true”>

<pw:Node name=”Regulatee”>
pvals &lt ; 5e 3

</pw:Node>
</pw:Subnet>
<pw:Connection minEdges=”1” maxEdges=”1”>

<pw:ConnectFrom>Transcription Factor</pw:ConnectFrom>
<pw:ConnectTo>Regulatee</pw:ConnectTo>

</pw:Connection>
</pw:TheNet>

Fig. 2. An example of a pathway query. The template on the left describes a subgraph that consists of a transcription factor and all connected
genes that are significantly regulated. On the right, the three most significant results obtained on the text mining network merged into a single
graph are shown.

(a) (b) (c)

Fig. 3. Effects of the knockout of FUS3 and KSS1. In (a) and (b) the two subgraphs show the results of a Significant Area Search conducted
on the literature network and the regulatory network, respectively. (c) The result of a specific Pathway Query on a combination of the DIP
and regulatory networks. Details of the Pathway Query are described in the text.

To demonstrate the flexibility of pathway templates, we
apply a more complex query to the FUS3/KSS1 knockout
data. We look for kinases that are directly connected to both
Fus3 and Kss1. Fus3 and Kss1 must be connected via at most
one additional protein to a transcription factor that regulates
genes that are differentially expressed in the knockout exper-
iment. Thus, the underlying network must contain protein

interactions as well as gene regulations by transcription factor
binding. To obtain such a network, we merge the DIP- and
the regulatory network and apply the query to the resulting
graph. The only matching template instance (Fig. 3c) strongly
resembles the downstream part of the pheromone response
signaling pathway as it can be found, e.g. in CYGD (Mewes
et al., 2002).
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SUMMARY AND FUTUREWORK
The presented algorithms embedded in the ToPNet applica-
tion show promising performance in analyzing expression
data in the context of biological networks. Here, we demon-
strated their merits in analyzing experiments of the yeast
compendium dataset in the context of different networks.
Significant Area Search detects subnetworks consisting of
significantly regulated genes. These networks often provide
hints as to which biological processes are affected in the
measured conditions. The Pathway Queries allow detection
of networks including molecules that are not necessarily sig-
nificantly regulated, such as transcription factors or kinases.
Moreover, the user can formulate biological hypotheses and
check their validity with respect to experimental data. All res-
ulting networks and pathways can be explored further using
the interactive analysis tools provided by ToPNet.
In the future, we plan to construct a library of biologic-

ally meaningful pathway templates. It might even be possible
to learn such templates from databases of known pathways
using machine learning techniques. Furthermore, we would
like to incorporate ideas from genetic network reconstruction
algorithms to enable the discovery of potential pathways that
are not completely present in the network sources.
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