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It has been recognized that drug-induced QT prolongation is related to blockage of the human ether-a-go-
go-related gene (hERG) ion channel. Therefore, it is prudent to evaluate the hERG binding of active
compounds in early stages of drug discovery. In silico approaches provide an economic and quick method
to screen for potential hERG liability. A diverse set of 90 compounds with hERG IC50 inhibition data was
collected from literature references. Fragment-based QSAR descriptors and three different statistical methods,
support vector regression, partial least squares, and random forests, were employed to construct QSAR
models for hERG binding affinity. Important fragment descriptors relevant to hERG binding affinity were
identified through an efficient feature selection method based on sparse linear support vector regression.
The support vector regression predictive model built upon selected fragment descriptors outperforms the
other two statistical methods in this study, resulting in anr2 of 0.912 and 0.848 for the training and testing
data sets, respectively. The support vector regression model was applied to predict hERG binding affinities
of 20 in-house compounds belonging to three different series. The model predicted the relative binding
affinity well for two out of three compound series. The hierarchical clustering and dendrogram results show
that the compound series with the best prediction has much higher structural similarity and more neighbors
of training compounds than the other two compound series, demonstrating the predictive scope of the model.
The combination of a QSAR model and postprocessing analysis, such as clustering and visualization, provides
a way to assess the confidence level of QSAR prediction results on the basis of similarity to the training set.

INTRODUCTION

Blockage of the human ether-a-go-go-related gene (hERG)
potassium ion channel is believed to be the major cause of
drug-induced QT syndrome, which can lead to sudden death.1

Several drugs including terfenadine, astemizole, grepafloxi-
cin, terodiline, droperidol, lidoflazine, sertindole, levomethadyl,
and cisapride have been withdrawn from the market or
severely restricted in availability as a result of their associa-
tion with drug-induced long QT syndrome. It is, therefore,
prudent to screen drug candidates for hERG blockage liability
at the early stages of drug discovery.

Current in vitro assays for hERG binding are technically
demanding, costly, and labor-intensive.2 Several in silico
models derived from available in vitro data have been
developed using 3D and 2D approaches to provide a
supplement assessment for hERG liability. These in silico
models are listed in Table 1. A structure-based study for
hERG channel blockage, described by Mitcheson and co-
workers, was based on alanine-scanning mutagenesis and a
homology model built from the closed form of the K+

channel structure.3 Ekins and co-workers developed a phar-
macophore model containing four hydrophobic and one
positively charged feature using in vitro data of 15 drugs.4

Their pharmacophore model was further validated using an
additional 22 testing compounds. Cavalli and co-workers
developed another pharmacophore model, along with a 3D
QSAR (CoMFA) predictive model.5 Their model included
three aromatic moieties and one central positively charged
tertiary amine. Another 3D QSAR (CoMSIA) model has

recently been constructed by Pearlstein and co-workers at
Aventis, and the derived structure-activity relationship was
further interpreted by a homology model based on the crystal
structure of an open MthK potassium channel.6 Although
these structure-based and 3D QSAR models provide impres-
sive insight for the interaction between drugs and the hERG
ion channel, their application is limited by the lack of a hERG
crystal structure, effective techniques for the sampling of
active conformations, and the need for 3D molecular
alignment of diverse structures. Therefore, a variety of 2D
QSAR models have been used as screening tools to estimate
the hERG binding affinity of drug candidates. For example,
Qikprop calculates topological and physicochemical whole
molecular properties derived from Monte Carlo simulations
and describes the relationship between hERG binding affinity
and computed descriptors using multiple linear regression
(MLR).7 Roche et al. used various machine learning tech-
niques, ranging from MLR to modern multivariate analysis
techniques, such as self-organizing maps, principal compo-
nent analysis, partial least squares (PLS), and supervised
neural networks, to find appropriate molecular descriptors
and then built predictive models.8 In that study, the most
accurate model, based on neural networks, produced a
classification accuracy of 93% and 71% for nonblocking and
blocking agents, respectively. Table 1 lists recent publications
of in silico models for hERG binding affinity.

In this study, we developed 2D QSAR models for the
quick estimation of hERG binding affinities. We computed
fragment fingerprints as QSAR descriptors for a set of
training compounds and generated in silico predictive models
based on three different statistical algorithms: support vector* Corresponding author e-mail: mclark@locuspharma.com.
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regression (SVR), PLS, and random forest (RF). A two-step
modeling procedure was employed in this study: first,
important fragment descriptors were identified using feature
selection methods based on sparse linear SVR; then, linear
SVR, PLS, and random forest models were constructed based
upon these selected descriptors. The performance of these
QSAR models was subsequently evaluated by leave-one-
out cross validation and two testing data sets: a testing set
containing 19 additional drugs not used in the model
construction and a set of 20 proprietary compounds.

DATA SET

In vitro hERG inhibition data (IC50) for 90 structurally
diverse drugs were collected from the literature. Among this
set, 19 drugs were randomly selected as testing compounds,
and the remaining 71 drugs were used as training data for
constructing the QSAR models. Most IC50 values were
measured in mammalian cells (HEK, CHO, and COS); IC50

measurements from nonmammalian cell lines were used in
five cases when mammalian cell data were not available.
These binding values (IC50) were transformed to pIC50

(-log IC50, concentration in molarity) for statistical analysis.
The binding data of these compounds as well as their original
references are listed in the Supporting Information.

Twenty Locus proprietary compounds with measured
hERG binding affinities were used as an additional test of
the predictive performance of the models. Their experimental
binding affinities were expressed as the percentage of current
inhibition determined in voltage-clamped HEK293 cells,
measured asIkr current reduction after a steady-state effect
had been reached in the presence of the drug relative to the
control current before the drug was introduced. Since the
binding of in-house compounds was expressed in percentage
of inhibition, we converted the percentage binding data for
these compounds into a binding affinity constant unit that is
compatible with pIC50. This relative binding constant was
calculated from the percent binding measurement using
eq 1, which has been traditionally used to fit the concentra-
tion-response curve and to calculate IC50.

log kapproximateis the binding affinity constant approximated
from the percentage of binding data, andD is the concentra-

tion (1µM) of the drug used in the assay. In a recent study,13

the same formula was used to convert the percentage binding
data to the equivalent binding affinity constant for plasma
protein binding prediction. Since this approximation is quite
crude, these converted data were not used for constructing
models. Instead, they were only used as additional data to
qualitatively assess the ability of the in silico HERG models
to differentiate active and inactive in-house compounds.

METHODS

Structure Preparation and QSAR Fragment Descriptor
Calculation. An initial 2D fragment library was constructed
using 261 structurally diverse fragments that frequently
appear in bioactive compounds. The algorithms used to
compute 2D fragment-based descriptors for the collected
compounds with the structures in their neutral states have
been recently reported.14 A simplified example of the
overlapping fragments found in cathinone is shown in Figure
1. During substructure searching, if a particular fragment is
found in the query molecule, the substructure score is set to
the number of occurrences of this fragment in the molecule.
This substructure search algorithm has recently been applied
to create several ADME (absorption, distribution, metabo-
lism, and excretion) predictive models, such as solubility and
log P models.14

Feature Selection and Predictive Model Construction.
Prior to any statistical modeling, a preprocessing step was
employed to discard descriptors having the same value for

Table 1. Recent Publications of in Silico Modeling of hERG Blockers

references methods employed

Homology Modeling
Mitcheson et al., 20003 alanine-scanning mutagenesis, homology modeling using a closed K+ channel structure (Kcsa),

and docking analysis
Pearlstein et al., 20036 homology model based on an open K+ channel structure (MthK) and a CoMSIA model

Pharmacophore Modeling
Cavalli et al., 20025 conformational search and clustering using MacroModel and 3D-QSAR (CoMFA) models
Ekins et al., 20024 pharmacophore model using Catalyst
Zolotoy, et al. 20039 conformational analysis and ab initio calculation to understand the physicochemical

determinants for hERG blockers

2D QSAR (Classification and Regression)
Qikprop7 QikProp descriptors and multiple linear regression
Roche et al. 20028 a variety of QSAR descriptors and statistical classification methods
Keseru et al. 200310 hologram QSAR descriptors and partial least squares
Aronov et al. 200411 classification model based on a 2D topological similarity filter and 3D pharmacophore ensemble
Bains et al. 200412 fragment-based and experimental descriptors and an evolutionary algorithm

log kapproximate) -log D + log
B%

1 - B%
(1)

Figure 1. Simplified example of overlapping fragments found in
cathinone.
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all compounds. After preprocessing, 141 fragment descriptors
remained. Since the number of remaining descriptors, 141,
was still much larger than the number of training compounds,
71, a feature selection procedure was employed to select
descriptors relevant to variations in hERG binding affinity.
In this study, we used a linear programming formulation of
the ν-SVR algorithm, called sparseν-SVR,15 to perform
feature selection and simultaneously construct the linear SVR
predictive models based upon the 45 selected descriptors.
Support vector machines (SVMs) are a class of supervised
learning algorithms for pattern recognition problems initially
proposed by Vapnik in statistical learning theory16 and further
extended asSVR17 to solve regression problems. Traditional
regression algorithms construct models by minimizing the
training error, so their predictive performance cannot be
guaranteed for novel compounds, especially when the
training data itself is noisy. This problem is known as
“overfitting”. To overcome this problem, instead of minimiz-
ing the training error, SVR minimizes a regularized error
that controls both the training error and model complexity.
This method varies the coefficients for each fragment and
removes fragments with low contributions to the model. A
brief overview of SVR and the linear formulation ofν-SVR
is provided in the Appendix. In addition, the selected
descriptors were used to construct QSAR models using two
other well-known statistical algorithms, PLS and RF.18,19To
further test the performance of the QSAR models, scramble
testing20 was performed. In scramble testing, the bioactivity
responses, hERG pIC50 in this case, of the training data are
randomly shuffled and, then, a new training model is
constructed using shuffled responses. The predictive ability
of these new models is then tested on intact test data. The
correlation is computed as 1- (sum of squares of errors)/
(sum of squares deviations from the mean) and, thus, ranges
from 1.0 to negative values if the variance of the error is
larger than the data variance. The hypothesis behind the
scramble testing is that models constructed using scrambled
data should not be predictive for the test set. If the test
compounds are still well-predicted (i.e., a predictiver2 >
0.5), we can conclude that the model does not make
meaningful predictions.

Sparseν-SVR was implemented in the R programming
language.21 The linear optimization solution was obtained
using the linear programming solver, lp_solve 5.0.22 PLS and
RF calculations were carried out using two statistical
packages in R, pls.pcr and randomForests. For all three
statistical methods, both the full set of descriptors and the
descriptors selected by linear SVR feature selection were
used to construct models. For random forests, the variable
mtry was set to one-third of the number of descriptors for
regression and 500 trees were used to construct the forest
ensemble. For PLS, predictive models were constructed using
the optimal number of latent variables, as determined by
cross validation. For scramble testing, the random shuffle
was carried out 100 times.

RESULTS AND DISCUSSION

The statistical results obtained from support vector regres-
sion, partial least squares, and random forest models are listed
in Table 2. The SVR method gave the best results for both
the training (r2 ) 0.912, RMSE) 0.440) and the test sets

(r2 ) 0.849, RMSE) 0.597), with 45 fragments selected
(RMSE) root-mean-square error). Cross-validation results
are improved for PLS and RF when selected descriptors are
used. Since descriptor selection is intrinsic in the random
forest algorithm, the performance of the random forest
method is generally not sensitive to the presence of irrelevant
descriptors, and additional feature selection does not mark-
edly improve the performance.18 Among the three statistical
methods, the SVR method slightly outperforms the other two
methods in both training and testing predictions, although
two other algorithms also gave satisfactory predictions on
the basis of the testing set predictions.

The scramble test, after feature selection, results in an
average predictiver2 of -0.281 for SVR. The negative
coefficients observed for all methods indicate that the
variances of the errors of prediction are larger than the
variance of the data, and thus, the models of the scrambled
data have no predictive ability. This confirms that the
predictive models are not chance correlations. The scatter
plot of experimental versus predicted pIC50 values by the
SVR model for training compounds after feature selection
and the corresponding leave-5-out cross-validation result after
feature selection are shown in parts a and b of Figure 2,
respectively. The scatter plot of the SVR testing results is
shown in Figure 3. The predicted pIC50 values of 71 training
and 19 testing drugs are listed in the Supporting Information.
All of the results support the effectiveness of the linear SVR
algorithm for both feature selection and constructing predic-
tive models; therefore, the SVR model was chosen to predict
the hERG binding affinity of Locus proprietary compounds.

Linear SVR models not only provide predictions, but they
also imply relationships between the hERG binding affinity
and 2D structural patterns in molecular structures through
the fragment descriptor coefficients. The fragments identified
as important by the linear SVR model as well as their
coefficient weights in the linear model are shown in Table
3. The presence of fragments with positive coefficients
increases the predicted hERG pIC50 value and, therefore, the
potential liability, while fragments bearing negative coef-
ficients diminish the hERG binding affinity. The magnitudes
of the coefficients suggest how much the fragments will
affect hERG binding. In Table 3, lipophilic fragments, such
as benzyl and chloronaphthyl, bear positive coefficients in
the linear model, and hydrophilic groups, such as primary
amine, acetamide, and carbonyl groups, generally have
negative coefficients. Lipophilic groups have been shown
to increase hERG channel binding, and some hydrophilic

Table 2. Comparison of Statistical Results of Different Predictive
Models Based on Support Vector Regression, Partial Least Squares,
and Random Forest

SVR
(FS)a

PLS
(FS)a

PLS
(ALL) b

RF
(FS)a

RF
(ALL) b

trainingr2 0.912 0.882 0.820 0.884 0.889
training RMSE 0.440 0.510 0.623 0.505 0.493
cross-validatedr2 0.636 0.678 0.430 0.495 0.383
scrambler2 -0.281 -0.430 -0.429 -0.109 -0.136
testingr2 0.849 0.781 0.753 0.785 0.823
testing RMSE 0.597 0.719 0.763 0.712 0.645

a FS: only descriptors selected by linear SVR were used for model
construction.b ALL: the full descriptor set before feature selection was
used to construct the predictive models.
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groups, such as carboxylic acid, ketones, hydroxide groups,
and amine or primary aliphatic amines decrease hERG
binding affinity. We also observe that compounds with
substitutions of fluorine or methane sulfonamide groups
increase hERG binding. In contrast to other hydrophilic

fragments, the positive coefficient associated with secondary
aliphatic amines indicate that this group will increase a drug’s
binding to the hERG channel, as suggested in Bain et al.’s
recent work.12 Tertiary amines have been identified as
significant contributors for hERG binding in published
pharmacophore models4-6 and a structure-based modeling
study.3 In our study, N-methyl piperidine shows strong
contribution to hERG binding, as the third most significant
fragment, which is in agreement with the significance of
tertiary amines in those 3D models. However, tertiary amines
also present in weak hERG binders (e.g., IC50 . 1 µM)
indicate that the effect of tertiary amines is modulated by
other structural features of the ligands. Several representatives
of weak hERG binders containing other forms of tertiary
amines are shown in Figure 4. Recently, Zolotoy et al.9

proposed a structural model to address the duality of effects
of tertiary amines in terms of charge and charge shielding.
They observed that potent hERG inhibitors often bear a
charged amine center that is surrounded by bulky hydro-
phobic groups. On the other hand, if the charged center is
less sterically shielded, it is more easily deprotonated and
has less potency. Moreover, we observe in our model that
the presence of benzenesulfonamide diminishes hERG bind-
ing affinity, which is consistent with a previous observation
that the benzenesulfonyl group is present in 20% of the
channel nonblockers but in only 2% of the blockers.8

The predicted pIC50 values of 20 Locus proprietary
compounds are listed in Table 4. The original experimental
hERG binding data, percent binding, and the relative binding
constant values converted from single-point percent binding
data are also shown. These relative binding constants were
compared with experimental pIC50 values to qualitatively
judge whether the model can differentiate strong from weak
hERG binders. The proprietary compounds belong to three
series: series A (16 compounds), series B (2 compounds),
and series C (2 compounds). The RMS error for all 20
compounds is 1.26 log units, with anr2 of 0.29. The in silico
model provides a qualitatively good estimation of hERG
binding for series A compounds, as shown in Figure 5. For
this 16 compound subset, the RMS error is 0.67 and ther2

is 0.76. Only two compounds in series A and B, A5 and A13,
had prediction errors greater than one log unit of experi-
mental pIC50 values. To readily distinguish strong hERG
binders from their weaker analogues, a threshold of predicted
-log IC50 is introduced by observing the predictions for
drugs that have been reported as potential hERG blockers.
The experimental and predicted-log IC50 values of these
18 drugs are listed in Table 3 of the Supporting Information.
The experimental IC50 values of these compounds are lower
than 1µM, and most of their predicted-log IC50 values are
much larger than 6.5. Therefore, this value (6.5) is used as
the cutoff of predicted pIC50 to differentiate potential hERG
blockers from nonblockers in this study. When this cutoff is
used, strong hERG binders with greater than 80% inhibition
can be readily differentiated from other weaker binders below
40% inhibition, with only two false positives, compounds
A6 and A13. Since the determination of this threshold is
somewhat arbitrary, more studies will be needed in order to
determine a reliable threshold. In addition, we observed that,
when a substitution was changed from methanesulfonamide
to acetamide in compounds A3 and A4, hERG binding
affinities at a 1µM concentration dropped from 84.0% (A3)

Figure 2. Training (left) and cross-validation (right) performance
of hERG pIC50 predictions using the SVR model with feature
selection.

Figure 3. Scatter plot of observed vs predicted pIC50 of 19 test
compounds using the SVR model with feature selection. Ther2 is
0.849; the RMS error is 0.597.

AN IN SILICO MODEL FOR HERG BINDING J. Chem. Inf. Model., Vol. 46, No. 1, 2006395



to 7.0% (A12) and from 82.5% (A4) to 4.5% (A15), respec-
tively. This structure-activity relationship is consistent with
the fragment coefficients that suggest that the presence of a
methanesulfonamide group increases hERG binding, while
the acetamide group reduces it.

In terms of absolute value of the binding affinity, series
C compounds were poorly predicted, with errors greater than
three log units, which may be due to either the estimation

of the binding constant from the percentage binding or the
diversity of the training data. Since the predicted pIC50 values
are close to the approximated binding constants in series A
and B, the effect from the diversity of the training data may
be the major contribution to the discrepancy for series C.
Since the training data only covers 71 compounds, the
chemical space of the training data is limited and may not
cover the chemical space for series C compounds. Generally,

Figure 4. Weak hERG binders containing tertiary amines (highlighted with arrows) and their hERG binding affinities. Although tertiary
amines are associated with high binding, they occur in both strong and weak binding compounds.

Table 3. Molecule Fragments Identified as the Most Relevant Descriptors for hERG Binding Affinity by Linear Support Vector Regression
and Their Corresponding Weights in the Linear SVR Equation

396 J. Chem. Inf. Model., Vol. 46, No. 1, 2006 SONG AND CLARK



the predictive ability of a QSAR model is related to two
factors: the similarity of the predicted molecules to the
nearest training compounds and the number of such training
neighbors in chemical space.23 The molecules with more
training neighbors or a high similarity with neighbors will
generally be better predicted. To explore the similarity
relationship between our proprietary compounds and the
training compounds, hierarchical clustering was performed
on the combination set of training compounds and 20 Locus
compounds from the three series. The dissimilarity matrix
of these compounds was derived from their fragment
fingerprint vector distances, and their normalized distances
between compounds were used as the dissimilarity score for
clustering. The resulting clustering tree structure is demon-
strated via a hierarchical dendrogram shown in Figure 6. The

dendrogram is a binary tree in which each leaf represents
one compound. It starts with a cluster for each compound
and recursively joins compounds at each node into clusters
based on structural dissimilarity scores. All compounds
merge into one cluster when the tree reaches the root. The
horizontal scale in the dendrogram corresponds to the
dissimilarity score used to join different cluster in the
hierarchical clustering process. Compounds with a high
structural similarity are generally located within the same
or adjacent clusters. For example, 16 series A compounds
are tightly clustered together in the regions highlighted by
the large arrow. This cluster is mainly composed of two
groups: one contains those hERG binders (A1, A2, A3, A4,
and A5) with relatively high affinities (e.g., larger than 45%
inhibition) and the other contains compounds (from A6 to
A16, except A11) with lower affinities below 40% inhibition.
Compounds in the first group are further separated into two
subgroups. Compounds A1 and A2 with affinities above 90%
inhibition are clustered together, while the other three
compounds form the other subgroup. In the second group,
most compounds with affinities lower than 20% inhibition
(A10, A12, A14, A15, and A16) form a subgroup, which can be
differentiated from another subgroup including compounds
(A7, A8, and A9) with affinities between 20% and 40%
inhibition. In Figure 6, the dendrogram was plotted so that
the nodes or branches with structurally similar compounds
are assigned to the right side of figure. The cluster-joining
process merges branches from right to left on the basis of
their dissimilarity scores. In this figure, the compounds on
the right side have a higher structural similarity than those
compounds on the left side. We observe that two series C
compounds are in branches on the left side and away from
most of the training compounds, while series A compounds
have more training neighbors around them. These results are
consistent with the observation that the SVR model predic-
tions were less accurate for these compounds than for series
A compounds and explains the predictive scope of the QSAR
models for the three different compound series. Two series
B compounds also spread away from most training com-
pounds; however, they cluster close to the training compound
olanzapine. This may explain why they are well-predicted
by the SVR model, although their predictions are less reliable
than the predictions for series A compounds, since they have
fewer training neighbors.

While the fragment-based QSAR method is a powerful
approach, it shares the limitations of other QSAR approaches,
among them the requirement of a high-quality, diverse
training data set. In addition, the variety of different cells
used to measured hERG binding introduces noise into the
collected training data. Even a large set of training com-
pounds cannot be guaranteed to cover the chemical space
of novel compounds, and therefore, QSARs have uneven
performance on various series of novel compounds. In that
sense, postprocessing methods, such as visualization and
model interpretation, are valuable to analyze the prediction
in question and further guide the design of relevant training
sets for relevant compounds. In our study, the hierarchical
dendrogram is presented as a method to further investigate
the predictive scope of QSAR models for novel compounds.
Besides QSAR modeling, the visualization and interpretation
of other computational models has recently drawn the
attention of the computational chemistry community.

Table 4. Prediction of hERG pIC50 Values for 20 In-House
Compounds by the Linear SVR Model and Their Approximated
Binding Affinity Constants Converted from Original Percentage
Inhibition Data

compounds % inhibitiona
approximate binding
affinity constantsb pred. pIC50

c

series A1 95 7.28 7.38
series A2 94.3 7.22 7.10
series A3 84.0 6.72 6.92
series A4 82.5 6.67 7.16
series A5 47.6 5.96 7.02
series A6 38 5.79 6.57
series A7 35 5.73 6.15
series A8 34 5.71 6.13
series A9 27.6 5.58 6.16
series A10 12.5 5.15 5.35
series A11 12 5.13 5.27
series A12 7.0 4.88 5.25
series A13 6 4.81 6.53
series A14 5 4.72 5.36
series A15 5 4.72 5.36
series A16 4.5 4.67 5.48
series B1 6.0 4.81 5.11
series B2 0.3 3.48 4.09
series C1 7.0 4.88 8.28
series C2 0.4 3.60 7.12

a Percentage inhibition data measured in HEK293 cells at the drug
concentration of 1µM. b Approximated relative binding constants
calculated from percentage binding data.c Predicted pIC50 values for
20 in-house compounds from a constructed support vector regression
model.

Figure 5. Scatter plot of predicted pIC50 values of 16 series A
compounds listed in Table 4 vs their equivalent binding affinity
constants converted from percentage binding data.

AN IN SILICO MODEL FOR HERG BINDING J. Chem. Inf. Model., Vol. 46, No. 1, 2006397



CONCLUSIONS

This study described a computational method that employs
fragment fingerprint and statistical approaches to predict
hERG binding affinity. The most predictive model was
generated with support vector regression, although PLS and
random forests also produced satisfactory statistical results.
Our method avoids the extensive efforts required for mo-
lecular 3D alignment and conformation sampling of the
active configurations, making it efficient to create and use
predictive models. The results show that the predictive model
allows accurate predictions of compounds similar to the
training set with an error of 0.6 log units and the prediction
of more diverse proprietary compounds with an RMS error
of 1.3 log units. The SVR algorithm was developed using
linear programming so that it is quite conveniently imple-
mented or integrated into other cheminformatics packages
for virtual screening. The promising prediction results for
the proprietary compounds further demonstrate the ability
of the model to quickly screen structurally diverse com-
pounds for hERG binding. Fragments identified as important
descriptors in the feature selection step can provide insight
to medicinal chemists for lead optimization. Moreover, the
hierarchical clustering and dendrogram tree provides an
additional postprocessing approach to determine the predic-
tion confidence for different series of compounds.
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APPENDIX: SPARSEΝ-SUPPORT VECTOR
REGRESSION

In this appendix, we will explain how sparseν-SVR works
for regression. Given a collection of training data points

{(x1,y1)‚‚‚(xi,yi)‚‚‚(xM,yM)}, wherexi is a vector inN-dimen-
sional descriptor space andyi is the bioactivity value, the
goal of a regression problem is to find an optimal math-
ematical functionf(x) with the least deviation between
predicted and observed responses. If linear functions
f(x1‚‚‚‚‚‚xN) ) ∑j)1

N wjxj + b in the input space are consid-
ered,w andb are parameters that need to be optimized in
the regression problem, wherew is the weight coefficient in
the linear function. In SVR,w and b are optimized by
minimizing a regularized error that controls both the training
error and model complexity:

where1/2||w||2 is the regularization factor which controls the
model complexity (||w||2 denotes the dot product of weight
vectorw × w) and the second term represents the training
error, in whichC is a non-negative parameter that plays the
tradeoff between the above two terms. In SVR, the training
error is usually defined by the so-calledε-insensitive loss

where ε is a non-negative parameter that determines the
tolerance to error, and only deviations larger thanε are
considered as errors during the optimization process. Figure
7 illustrates the basic concept ofε-insensitive loss in the
linear case for one-dimensional input. The geometry space
between the two linesf(x) ) (wx + b) ( ε defines anε
tube. The data points inside theε tube will not be considered
as error points. The use of theε-insensitive loss introduces
tolerance for noisy data, thus reducing overfitting.

However, inε-SVR, it is not straightforward to determine
a proper value for parameterν ∈(0,1]. Hence,ν-SVR was
proposed to use a new input parameterν ∈ (0,1] to
automatically selectε. In ν-SVR, parameterν provides a

Figure 6. Hierarchical clustering dendrogram of the data set including 71 training drugs with 20 in-house compounds. The dendrogram
is sorted by the dissimilarity score among all compounds from left to right, with less similar compounds on the left. The large arrow points
to series A compounds and the smaller arrows to series B and C compounds.

1

2
||w||2 + C∑

i)1

M

|yi - f(xi)|ε (2)

Lg[y - f(x)]: ) |y - f(x)|ε ) min[0, |y - f(x)| - ε] (3)
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lower bound on the fraction of support vectors and an upper
bound on the fraction of error points outside theε-insensitive
tube. Sinceν has a narrow selection range{ν ∈ (0,1]} and
represents the accuracy level of the optimization solution, it
is easier and more intuitive to adjustν to find the properε
for the model optimization than to directly tuneε. Theν-SVR
is formulated as a convex optimization problem as follows:

Instead of minimizing the Euclidean norm (l2-norm)||w||2,
sparseν-SVR regularizes thel1-norm ||w||1 ) ∑j)1

N |wj| of
weightsw in the linear model. To form a linear program,
the l1-norm ||w||1 is expressed as∑j)1

N (Rj + Rj* ), where we
defineRj ) Rj - Rj* subject toRj g 0 andRj* g 0. Then,
the sparseν-SVR is formulated as follows:

The jth weightwj or Rj - Rj* in the resulting linear model
from eq 5 determines how thejth descriptor affects the
biological response. The sign ofwj indicates if the associated
jth descriptor increases or decreases the biological activity,
and its magnitude determines the significance of its impact
on the response in the linear model. Moreover, sparseν-SVR
produces weight vectors where most fragment descriptors
are diminished or driven to zero during the model optimiza-
tion process as a result of the effect of 1-norm regularization
and the convex property of linear programming. Only a few

fragments will “survive” with a nonzero weight after the
model construction. Therefore, these fragments with nonzero
weights are considered as the descriptors most relevant to
biological properties and are used to construct the final
predictive model.

Supporting Information Available: Data tables describ-
ing training set compounds with the experimental and pre-
dicted bindings and the source references for the data. This
material is available free of charge via the Internet at http://
pubs.acs.org.
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