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It has been recognized that drug-induced QT prolongation is related to blockage of the human ether-a-go-
go-related gene (hERG) ion channel. Therefore, it is prudent to evaluate the hERG binding of active
compounds in early stages of drug discovery. In silico approaches provide an economic and quick method
to screen for potential hERG liability. A diverse set of 90 compounds with hERgim@ibition data was
collected from literature references. Fragment-based QSAR descriptors and three different statistical methods,
support vector regression, partial least squares, and random forests, were employed to construct QSAR
models for hERG binding affinity. Important fragment descriptors relevant to hERG binding affinity were
identified through an efficient feature selection method based on sparse linear support vector regression.
The support vector regression predictive model built upon selected fragment descriptors outperforms the
other two statistical methods in this study, resulting irraof 0.912 and 0.848 for the training and testing

data sets, respectively. The support vector regression model was applied to predict hERG binding affinities
of 20 in-house compounds belonging to three different series. The model predicted the relative binding
affinity well for two out of three compound series. The hierarchical clustering and dendrogram results show
that the compound series with the best prediction has much higher structural similarity and more neighbors
of training compounds than the other two compound series, demonstrating the predictive scope of the model.
The combination of a QSAR model and postprocessing analysis, such as clustering and visualization, provides
a way to assess the confidence level of QSAR prediction results on the basis of similarity to the training set.

INTRODUCTION recently been constructed by Pearlstein and co-workers at
Aventis, and the derived structuractivity relationship was
further interpreted by a homology model based on the crystal
structure of an open MthK potassium chanhdllthough
these structure-based and 3D QSAR models provide impres-
sive insight for the interaction between drugs and the hERG
ion channel, their application is limited by the lack of a hERG
crystal structure, effective techniques for the sampling of
active conformations, and the need for 3D molecular
alignment of diverse structures. Therefore, a variety of 2D
QSAR models have been used as screening tools to estimate
the hERG binding affinity of drug candidates. For example,
Qikprop calculates topological and physicochemical whole
molecular properties derived from Monte Carlo simulations
and describes the relationship between hERG binding affinity
and computed descriptors using multiple linear regression
(MLR).” Roche et al. used various machine learning tech-
niques, ranging from MLR to modern multivariate analysis
5echniques, such as self-organizing maps, principal compo-
nent analysis, partial least squares (PLS), and supervised
neural networks, to find appropriate molecular descriptors
and then built predictive modetsln that study, the most
accurate model, based on neural networks, produced a
classification accuracy of 93% and 71% for nonblocking and

Blockage of the human ether-a-go-go-related gene (hERG)
potassium ion channel is believed to be the major cause of
drug-induced QT syndrome, which can lead to sudden death.
Several drugs including terfenadine, astemizole, grepafloxi-
cin, terodiline, droperidol, lidoflazine, sertindole, levomethadyl,
and cisapride have been withdrawn from the market or
severely restricted in availability as a result of their associa-
tion with drug-induced long QT syndrome. It is, therefore,
prudent to screen drug candidates for hERG blockage liability
at the early stages of drug discovery.

Current in vitro assays for hERG binding are technically
demanding, costly, and labor-intensi&everal in silico
models derived from available in vitro data have been
developed using 3D and 2D approaches to provide a
supplement assessment for hERG liability. These in silico
models are listed in Table 1. A structure-based study for
hERG channel blockage, described by Mitcheson and co-
workers, was based on alanine-scanning mutagenesis and
homology model built from the closed form of thetK
channel structuréEkins and co-workers developed a phar-
macophore model containing four hydrophobic and one
positively charged feature using in vitro data of 15 drigs.
Their pharmacophore model was further validated using an : . . 2
additional 22 testing compounds. Cavalli and co-workers blqcklng agents, respectively. T?‘b'? 1 l'St$ recent publications
developed another pharmacophore model, along with a 3DOf in silico models for hERG binding affinity.

QSAR (CoMFA) predictive modél.Their model included In this study, we developed 2D QSAR models for the
three aromatic moieties and one central positively chargedquick estimation of hERG binding affinities. We computed

tertiary amine. Another 3D QSAR (CoMSIA) model has fragment fingerprints as QSAR descriptors for a set of
training compounds and generated in silico predictive models

* Corresponding author e-mail: mclark@locuspharma.com. based on three different statistical algorithms: support vector
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Table 1. Recent Publications of in Silico Modeling of hERG Blockers

references methods employed
Homology Modeling
Mitcheson et al., 2060 alanine-scanning mutagenesis, homology modeling using a closetldanel structure (Kcsa),
and docking analysis
Pearlstein et al., 2003 homology model based on an opeh ghannel structure (MthK) and a CoMSIA model
Pharmacophore Modeling
Cavalli et al., 2002 conformational search and clustering using MacroModel and 3D-QSAR (CoMFA) models
Ekins et al., 2002 pharmacophore model using Catalyst
Zolotoy, et al. 2003 conformational analysis and ab initio calculation to understand the physicochemical

determinants for hERG blockers
2D QSAR (Classification and Regression)

Qikprop QikProp descriptors and multiple linear regression

Roche et al. 2002 a variety of QSAR descriptors and statistical classification methods

Keseru et al. 2008 hologram QSAR descriptors and partial least squares

Aronov et al. 2004 classification model based on a 2D topological similarity filter and 3D pharmacophore ensemble
Bains et al. 200% fragment-based and experimental descriptors and an evolutionary algorithm

regression (SVR), PLS, and random forest (RF). A two-step
modeling procedure was employed in this study: first,
important fragment descriptors were identified using feature
selection methods based on sparse linear SVR; then, linear
SVR, PLS, and random forest models were constructed based
upon these selected descriptors. The performance of these
QSAR models was subsequently evaluated by leave-one-
out cross validation and two testing data sets: a testing set
containing 19 additional drugs not used in the model
construction and a set of 20 proprietary compounds.

DATA SET

In vitro hERG inhibition data (Ig) for 90 structurally
diverse drugs were collected from the literature. Among this Figure 1. Simplified example of overlapping fragments found in
set, 19 drugs were randomly selected as testing compoundsgathinone.
and the remaining 71 drugs were used as training data for
constructing the QSAR models. Most gfCvalues were  tion (1xM) of the drug used in the assay. In a recent sttidy,
measured in mammalian cells (HEK, CHO, and COS}IC  the same formula was used to convert the percentage binding
measurements from nonmammalian cell lines were used indata to the equivalent binding affinity constant for plasma
five cases when mammalian cell data were not available. protein binding prediction. Since this approximation is quite
These binding values (Kg) were transformed to plg crude, these converted data were not used for constructing
(=log ICso, concentration in molarity) for statistical analysis. models. Instead, they were only used as additional data to
The binding data of these compounds as well as their original qualitatively assess the ability of the in silico HERG models

references are listed in the Supporting Information. to differentiate active and inactive in-house compounds.
Twenty Locus proprietary compounds with measured
hERG binding affinities were used as an additional test of METHODS

the predictive performance of the models. Their experimental ) )

binding affinities were expressed as the percentage of current Structure Preparation and QSAR Fragment Descriptor
inhibition determined in voltage-clamped HEK293 cells, Calculation. An initial 2D fragment library was constructed
measured ak, current reduction after a steady-state effect Using 261 structurally diverse fragments that frequently
had been reached in the presence of the drug relative to theaPpear in bioactive compounds. The algorithms used to
control current before the drug was introduced. Since the compute 2D fragment-based descriptors for the collected
binding of in-house compounds was expressed in percentagé:ompounds with the structures in f[helr neutral states have
of inhibition, we converted the percentage binding data for been recently reported. A simplified example of the
these compounds into a binding affinity constant unit that is Overlapping fragments found in cathinone is shown in Figure
compatible with plGo. This relative binding constant was 1. During substructure searching, if a particular fragment is
calculated from the percent binding measurement usingfound in the query molecule, the substructure score is set to
eq 1, which has been traditionally used to fit the concentra- the number of occurrences of this fragment in the molecule.

tion—response curve and to calculate;dC This substructure search algorithm has recently been applied
to create several ADME (absorption, distribution, metabo-
B% lism, and excretion) predictive models, such as solubility and

IOg kapproximate: _IOQ D+ IOgm (l) Iog P models4
Feature Selection and Predictive Model Construction.
l0g KapproximateiS the binding affinity constant approximated Prior to any statistical modeling, a preprocessing step was
from the percentage of binding data, dbds the concentra-  employed to discard descriptors having the same value for
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all compounds. After preprocessing, 141 fragment descriptors Table 2. Comparison of Statistical Results of Different Predictive
remained. Since the number of remaining descriptors, 141, Models Based on Support Vector Regression, Partial Least Squares,
was still much larger than the number of training compounds, 21 Random Forest

71, a feature selection procedure was employed to select SVR  PLS  PLS RF RF
descriptors relevant to variations in hERG binding affinity. (FSp (PSP (ALL® (FSp (ALL)®

In this study, we used a linear programming formulation of trainingr? 0912 0882 0.820 0884  0.889
the »-SVR algorithm, called sparse-SVR5 to perform gﬁ)‘gggaﬁ?g’ggﬁ’z 0064;230 006%0 00;1%203 004%%5 00;:3933
feature selection and simultaneously construct the linear SVR ¢cramble2 —0281 —-0430 —0.429 —-0109 —0.136
predictive models based upon the 45 selected descriptors.testingr2 0.849 0.781 0.753 0.785 0.823
Support vector machines (SVMs) are a class of supervised testing RMSE 0597 0719 0763 0.712  0.645

learning algorithms for pattern recognition problems initially aFS: only descriptors selected by linear SVR were used for model

proposed by Vapnik in statistical learning theSgnd further . oicrion® ALL: the full descriptor set before feature selection was
extended asSVRto solve regression problems. Traditional sed to construct the predictive models.

regression algorithms construct models by minimizing the
training error, so their predictive performance cannot be
guaranteed for novel compounds, especially when the
training data itself is noisy. This problem is known as

“overfitting”. To overcome this problem, instead of minimiz-

ing the training error, SVR minimizes a regularized error
that controls both the training error and model complexity.
This method varies the coefficients for each fragment and

(r? = 0.849, RMSE= 0.597), with 45 fragments selected
(RMSE = root-mean-square error). Cross-validation results
are improved for PLS and RF when selected descriptors are
used. Since descriptor selection is intrinsic in the random
forest algorithm, the performance of the random forest
method is generally not sensitive to the presence of irrelevant

removes fragments with low contributions to the model. A descriptors, and additional feature selection does not mark-

brief overview of SVR and the linear formulation 2fSVR edly improve the performandéAmong the three statistical
is provided in the Appendix. In addition, the selected methods, the SVR method slightly outperforms the other two

descriptors were used to construct QSAR models using two methods in bOt.h training and testin.g predictions,_ a!though
other well-known statistical algorithms, PLS and R To two Oth?r algorlthm§ also gave _sapsfactory predictions on
further test the performance of the QSAR models, scramble the Pasis of the testing set predictions.

testing® was performed. In scramble testing, the bioactivity =~ The scramble test, after feature selection, results in an
responses, hERG pigin this case, of the training data are average predictive® of —0.281 for SVR. The negative
randomly shuffled and, then, a new training model is coefficients observed for all methods indicate that the

constructed using shuffled responses. The predictive ability variances of the errors of prediction are larger than the
of these new models is then tested on intact test data. Thevariance of the data, and thus, the models of the scrambled
correlation is computed as (sum of squares of errors)/  data have no predictive ability. This confirms that the
(sum of squares deviations from the mean) and, thus, rangegredictive models are not chance correlations. The scatter
from 1.0 to negative values if the variance of the error is Plot of experimental versus predicted piQalues by the
larger than the data variance. The hypothesis behind theSVR model for training compounds after feature selection
scramble testing is that models constructed using scrambled@nd the corresponding leave-5-out cross-validation result after
data should not be predictive for the test set. If the test feature selection are shown in parts a and b of Figure 2,

compounds are still well-predicted (i.e., a predictive> respectively. The scatter plot of the SVR testing results is
0.5), we can conclude that the model does not make shown in Figure 3. The predicted pivalues of 71 training
meaningful predictions. and 19 testing drugs are listed in the Supporting Information.

All of the results support the effectiveness of the linear SVR
algorithm for both feature selection and constructing predic-
using the linear programming solver, Ip_solve B.BLS and tive models; therefore, the SVR model was chosen to predict

RF calculations were carried out using two statistical "€ NERG binding affinity of Locus proprietary compounds.

packages in R, pls.pcr and randomForests. For all three Linear SVR models not only provide predictions, but they
statistical methods, both the full set of descriptors and the also imply relationships between the hERG binding affinity
descriptors selected by linear SVR feature selection wereand 2D structural patterns in molecular structures through
used to construct models. For random forests, the variablethe fragment descriptor coefficients. The fragments identified
my, Was set to one-third of the number of descriptors for as important by the linear SVR model as well as their
regression and 500 trees were used to construct the foresgoefficient weights in the linear model are shown in Table
ensemble. For PLS, predictive models were constructed using3. The presence of fragments with positive coefficients
the optimal number of latent variables, as determined by increases the predicted hERG gd@alue and, therefore, the
cross validation. For scramble testing, the random shuffle potential liability, while fragments bearing negative coef-

Sparser-SVR was implemented in the R programming
language! The linear optimization solution was obtained

was carried out 100 times. ficients diminish the hERG binding affinity. The magnitudes
of the coefficients suggest how much the fragments will
RESULTS AND DISCUSSION affect hERG binding. In Table 3, lipophilic fragments, such

as benzyl and chloronaphthyl, bear positive coefficients in

The statistical results obtained from support vector regres-the linear model, and hydrophilic groups, such as primary
sion, partial least squares, and random forest models are listedmine, acetamide, and carbonyl groups, generally have
in Table 2. The SVR method gave the best results for both negative coefficients. Lipophilic groups have been shown
the training (> = 0.912, RMSE= 0.440) and the test sets to increase hERG channel binding, and some hydrophilic
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Figure 2. Training (left) and cross-validation (right) performance
of hERG pIC50 predictions using the SVR model with feature
selection.
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Figure 3. Scatter plot of observed vs predicted gJ©f 19 test

compounds using the SVR model with feature selection. (Pl
0.849; the RMS error is 0.597.
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fragments, the positive coefficient associated with secondary
aliphatic amines indicate that this group will increase a drug’s
binding to the hERG channel, as suggested in Bain et al.’s
recent workl? Tertiary amines have been identified as
significant contributors for hERG binding in published
pharmacophore modéi$ and a structure-based modeling
study® In our study, N-methyl piperidine shows strong
contribution to hERG binding, as the third most significant
fragment, which is in agreement with the significance of
tertiary amines in those 3D models. However, tertiary amines
also present in weak hERG binders (e.g.s0l& 1 uM)
indicate that the effect of tertiary amines is modulated by
other structural features of the ligands. Several representatives
of weak hERG binders containing other forms of tertiary
amines are shown in Figure 4. Recently, Zolotoy et al.
proposed a structural model to address the duality of effects
of tertiary amines in terms of charge and charge shielding.
They observed that potent hERG inhibitors often bear a
charged amine center that is surrounded by bulky hydro-
phobic groups. On the other hand, if the charged center is
less sterically shielded, it is more easily deprotonated and
has less potency. Moreover, we observe in our model that
the presence of benzenesulfonamide diminishes hERG bind-
ing affinity, which is consistent with a previous observation
that the benzenesulfonyl group is present in 20% of the
channel nonblockers but in only 2% of the blockérs.

The predicted plg values of 20 Locus proprietary
compounds are listed in Table 4. The original experimental
hERG binding data, percent binding, and the relative binding
constant values converted from single-point percent binding
data are also shown. These relative binding constants were
compared with experimental pi¢values to qualitatively
judge whether the model can differentiate strong from weak
hERG binders. The proprietary compounds belong to three
series: series A (16 compounds), series B (2 compounds),
and series C (2 compounds). The RMS error for all 20
compounds is 1.26 log units, with ahof 0.29. The in silico
model provides a qualitatively good estimation of hERG
binding for series A compounds, as shown in Figure 5. For
this 16 compound subset, the RMS error is 0.67 andthe
is 0.76. Only two compounds in series A and B,ahd A,
had prediction errors greater than one log unit of experi-
mental plGo values. To readily distinguish strong hERG
binders from their weaker analogues, a threshold of predicted
—log ICs is introduced by observing the predictions for
drugs that have been reported as potential hERG blockers.
The experimental and predictedog 1Cs, values of these
18 drugs are listed in Table 3 of the Supporting Information.
The experimental 165 values of these compounds are lower
than 1uM, and most of their predictedlog ICso values are
much larger than 6.5. Therefore, this value (6.5) is used as
the cutoff of predicted pl§; to differentiate potential hERG
blockers from nonblockers in this study. When this cutoff is
used, strong hERG binders with greater than 80% inhibition
can be readily differentiated from other weaker binders below
40% inhibition, with only two false positives, compounds
As and Az Since the determination of this threshold is

groups, such as carboxylic acid, ketones, hydroxide groups,somewhat arbitrary, more studies will be needed in order to
and amine or primary aliphatic amines decrease hERG determine a reliable threshold. In addition, we observed that,

binding affinity. We also observe that compounds with

when a substitution was changed from methanesulfonamide

substitutions of fluorine or methane sulfonamide groups to acetamide in compoundsszAand A, hERG binding
increase hERG binding. In contrast to other hydrophilic affinities at a 1uM concentration dropped from 84.0% {A
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Figure 4. Weak hERG binders containing tertiary amines (highlighted with arrows) and their hERG binding affinities. Although tertiary

amines are associated with high binding, they occur in both strong and weak binding compounds.

Table 3. Molecule Fragments Identified as the Most Relevant Descriptors for hERG Binding Affinity by Linear Support Vector Regression
and Their Corresponding Weights in the Linear SVR Equation
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to 7.0% (A) and from 82.5% (4) to 4.5% (As), respec-
tively. This structure-activity relationship is consistent with
the fragment coefficients that suggest that the presence of aare close to the approximated binding constants in series A
methanesulfonamide group increases hERG binding, while and B, the effect from the diversity of the training data may

the acetamide group reduces it.

of the binding constant from the percentage binding or the
diversity of the training data. Since the predictedghalues

be the major contribution to the discrepancy for series C.
In terms of absolute value of the binding affinity, series Since the training data only covers 71 compounds, the

C compounds were poorly predicted, with errors greater than chemical space of the training data is limited and may not

three log units, which may be due to either the estimation cover the chemical space for series C compounds. Generally,
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Table 4. Prediction of hERG plé Values for 20 In-House dendrogram is a binary tree in which each leaf represents
Compounds by the Linear SVR Model and Their Approximated one compound. It starts with a cluster for each compound
F'qu'.'t‘.g Ag'”;ty Constants Converted from Original Percentage and recursively joins compounds at each node into clusters
nhibion bata based on structural dissimilarity scores. All compounds
merge into one cluster when the tree reaches the root. The
horizontal scale in the dendrogram corresponds to the

approximate binding
compounds % inhibitich  affinity constant’ pred. plG¢®

zg;:gzg gi 3 ;%3 ;Sf(;) dissimilarity score used to join different cluster in the
series A 84.0 6.72 6.92 hierarchical clustering process. Compounds with a high
series A 82.5 6.67 7.16 structural similarity are generally located within the same
series A 47.6 5.96 7.02 or adjacent clusters. For example, 16 series A compounds
2222;2 gg g;g g-% are tightly clustered together in the regions highlighted by
series A 34 571 6.13 the large arrow. This cluster is mainly composed of two
series A 27.6 5.58 6.16 groups: one contains those hERG binderg, @y, As, Aa,
series 20 i§5 g%g ggf?S and As) with relatively high affinities (e.qg., larger than 45%
series . . i ihiti H

corios A; 2o 88 255 Z\hlbltlon) and th_e other cor!ta}lps compoungis'(fr_or@.w
series As 6 481 6.53 16, €xcept A,) with lower affinities below 40% inhibition.
series A4 5 4.72 5.36 Compounds in the first group are further separated into two
series As 5 4,72 5.36 subgroups. Compounds And A with affinities above 90%
series Ag 4.5 4.67 5.48 inhibition are clustered together, while the other three
series B 6.0 4.81 5.11

series B 0.3 348 109 compounds form the other subgroup. In the second group,
series G 7.0 4.88 8.28 most compounds with affinities lower than 20% inhibition
series G 0.4 3.60 7.12 (A0, A1, A1, Ass, and Ag) form a subgroup, which can be

differentiated from another subgroup including compounds

a Percentage inhibition data measured in HEK293 cells at the drug ; . 0 0
concentration of 1uM. ® Approximated relative binding constants (A7, As, and A) with affinities between 20% and 40%

calculated from percentage binding dét&redicted pl&, values for inhibition. In Figure 6, the dendrogram was plotted so that
20 in-house compounds from a constructed support vector regressionthe nodes or branches with structurally similar compounds
model. are assigned to the right side of figure. The cluster-joining
process merges branches from right to left on the basis of

Additional Testing Scatter Plot their dissimilarity scores. In this figure, the compounds on

the right side have a higher structural similarity than those
compounds on the left side. We observe that two series C
@ compounds are in branches on the left side and away from
most of the training compounds, while series A compounds

s ] o .' . have more training neighbors around them. These results are
g o L] consistent with the observation that the SVR model predic-
§ s, tions were less accurate for these compounds than for series
-l A compounds and explains the predictive scope of the QSAR
& models for the three different compound series. Two series

B compounds also spread away from most training com-
o pounds; however, they cluster close to the training compound
olanzapine. This may explain why they are well-predicted

‘ , , , , , , , by the SVR model, although their predictions are less reliable

2 3 4 5 6 7 8 9 than the predictions for series A compounds, since they have
Binding affinity constant 10gK approximate fewer training neighbors.
Figure 5. Scatter plot of predicted pkg values of 16 series A While the fragment-based QSAR method is a powerful

compounds listed in Table 4 vs their equivalent binding affinity approach, it shares the limitations of other QSAR approaches,
constants converted from percentage binding data. among them the requirement of a high-quality, diverse
the predictive ability of a QSAR model is related to two training data set. In addition, the variety of different cells
factors: the similarity of the predicted molecules to the used to measured hERG binding introduces noise into the
nearest training compounds and the number of such trainingcollected training data. Even a large set of training com-
neighbors in chemical spaé&The molecules with more  pounds cannot be guaranteed to cover the chemical space
training neighbors or a high similarity with neighbors will  of novel compounds, and therefore, QSARs have uneven
generally be better predicted. To explore the similarity performance on various series of novel compounds. In that
relationship between our proprietary compounds and the sense, postprocessing methods, such as visualization and
training compounds, hierarchical clustering was performed model interpretation, are valuable to analyze the prediction
on the combination set of training compounds and 20 Locus in question and further guide the design of relevant training
compounds from the three series. The dissimilarity matrix sets for relevant compounds. In our study, the hierarchical
of these compounds was derived from their fragment dendrogram is presented as a method to further investigate
fingerprint vector distances, and their normalized distancesthe predictive scope of QSAR models for novel compounds.
between compounds were used as the dissimilarity score forBesides QSAR modeling, the visualization and interpretation
clustering. The resulting clustering tree structure is demon- of other computational models has recently drawn the
strated via a hierarchical dendrogram shown in Figure 6. The attention of the computational chemistry community.
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CONCLUSIONS { (Xe,y1) =+ (%, yi) =+ (Xm,ym)} , wherex; is a vector inN-dimen-
sional descriptor space anglis the bioactivity value, the
goal of a regression problem is to find an optimal math-
ematical functionf(x) with the least deviation between

This study described a computational method that employs
fragment fingerprint and statistical approaches to predict

hERG b'”d'f‘g affinity. The most prgd|ct|ve model was predicted and observed responses. If linear functions
generated with support vector regression, although PLS andf ...... — SN wx + bin the inout id-
random forests also produced satisfactory statistical results. (xa q Xy) db 2j=1WX n ﬁ Inpu dspacbe are .co.nS|d .
Our method avoids the extensive efforts required for mo- tehrg réwrzgsioﬁrero%?é?nm(\?\fﬁ;etisetm3\?ei tr?t cge?fpi)gigﬁn n
lecular 3D alignment and conformation sampling of the th I'g f '? | ,SVR db 9 imized b
active configurations, making it efficient to create and use € lin€ar function. in W an are optimized by
predictive models. The results show that the predictive model minimizing a regularized eyrgr that controls both the training
allows accurate predictions of compounds similar to the error and model complexity:
training set with an error of 0.6 log units and the prediction 1 M
of more diverse proprietary compounds with an RMS error —||W||2 +CYly, — f(x)] )

of 1.3 log units. The SVR algorithm was developed using 2 ! ¢

linear programming so that it is quite conveniently imple-

mented or integrated into other cheminformatics packageswhere,||w||? is the regularization factor which controls the
for virtual screening. The promising prediction results for model complexity |(w||> denotes the dot product of weight
the proprietary compounds further demonstrate the ability vectorw x w) and the second term represents the training
of the model to quickly screen structurally diverse com- error, in whichC is a non-negative parameter that plays the
pounds for hERG binding. Fragments identified as important tradeoff between the above two terms. In SVR, the training
descriptors in the feature selection step can provide insighterror is usually defined by the so-calleensensitive loss

to medicinal chemists for lead optimization. Moreover, the

hierarchical clustering and dendrogram tree provides an L[y — f(X)]: = |y — f(x)|. = min[0, |y — f(x)| — €] (3)
additional postprocessing approach to determine the predic-

tion confidence for different series of compounds. where € is a non-negative parameter that determines the
tolerance to error, and only deviations larger thamare
ACKNOWLEDGMENT considered as errors during the optimization process. Figure

7 illustrates the basic concept efinsensitive loss in the
linear case for one-dimensional input. The geometry space
between the two line§(x) = (wx + b) + ¢ defines ane
tube. The data points inside théube will not be considered
as error points. The use of tkeinsensitive loss introduces
] tolerance for noisy data, thus reducing overfitting.
APPENDIX: SE%%%?Sg%Pﬁ ORT VECTOR However, ine-SVR, it is not straightforward to determine
a proper value for parameter €(0,1]. Hencey-SVR was
In this appendix, we will explain how spargeSVR works proposed to use a new input parametere (0,1] to
for regression. Given a collection of training data points automatically select. In v-SVR, parametew provides a
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Figure 7. Graphical illustration of the-insensitive loss and the
tube?* Only the two data points outside tkeube are considered
in the calculation of training errors, and theénsensitive loss for
these two points are denoted Byand &*.
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fragments will “survive” with a nonzero weight after the
model construction. Therefore, these fragments with nonzero
weights are considered as the descriptors most relevant to
biological properties and are used to construct the final
predictive model.

Supporting Information Available: Data tables describ-
ing training set compounds with the experimental and pre-
dicted bindings and the source references for the data. This
material is available free of charge via the Internet at http:/
pubs.acs.org.
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