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Partial least squares discriminant analysis (PLSDA), Bayesian regularized artificial neural network (BRANN),
and support vector machine (SVM) methodologies were compared by their ability to classify substrates and
nonsubstrates of 12 isoforms of human UDP-glucuronosyltransferase (UGT), an enzyme “superfamily”
involved in the metabolism of drugs, nondrug xenobiotics, and endogenous compounds. Simple two-
dimensional descriptors were used to capture chemical information. For each data set, 70% of the data were
used for training, and the remainder were used to assess the generalization performance. In general, the
SVM methodology was able to produce models with the best predictive performance, followed by BRANN
and then PLSDA. However, a small number of data sets showed either equivalent or better predictability
using PLSDA, which may indicate relatively linear relationships in these data sets. All SVM models showed
predictive ability (>60% of test set predicted correctly) and five out of the 12 test sets showed excellent
prediction (>80% prediction accuracy). These models represent the first use of pattern recognition methods
to discriminate between substrates and nonsubstrates of human drug metabolizing enzymes and the first
thorough assessment of three classification algorithms using multiple metabolic data sets.

1. INTRODUCTION

The advent of combinatorial chemistry, large chemical
libraries, and high-throughput screening methodologies has
resulted in the generation of large quantities of qualitative
biological data (e.g. active or inactive) for diverse chemicals.
To analyze these types of data, classification pattern recogni-
tion methods capable of developing models of maximal
generalization ability (i.e., for predicting new structurally
diverse chemicals correctly) from large and generally noisy
data sets are required. There are many pattern recognition
methods suitable for classification; three of the most com-
monly used are partial least squares discriminant analysis
(PLSDA),1 artificial neural networks (ANN),2 and support
vector machines (SVM).3

These methods are widely recognized for their ability to
generalize well from underdetermined data sets, in which
there are more descriptors than chemicals. PLSDA is a
variant of partial least squares regression, a commonly used
method in quantitative structure-activity relationship (QSAR)
modeling. It is a linear technique, and thus determination of
the relative importance of descriptors is possible. ANN are
capable of modeling nonlinear relationships, including where
the form of nonlinearity is unknown a priori. While ANN

are commonly used to generate QSAR models, overtraining
and overfitting limit their usefulness. A modified form of
ANN, the Bayesian Regularized Artificial Neural Network
(BRANN), is more resistant to overfitting and overtraining
than conventional ANN, resulting in improved generalization
performance.2 As with ANN, the SVM are universal function
approximators. Unlike ANN, however, there is only one
minimum in the optimization problem, resulting in the rapid
generation of a unique solution. There are very few reported
applications of the SVM methodology in drug discovery
applications4,5 and none that compare the SVM to BRANN
or PLSDA. Some methods will clearly perform better than
others, depending on the degree nonlinearity in the relation-
ship, and consequently only a comparison involving a series
of data sets will be able to give reliable indications of the
general utility of the classification method.

The enzyme UDP-glucuronosyltransferase (UGT) cata-
lyzes the covalent linkage (i.e., “conjugation”) of glucuronic
acid, derived from the cofactor UDP-glucuronic acid, to a
typically lipophilic substrate bearing a suitable “acceptor”
functional group according to a second-order nucleophilic
substitution mechanism. Glucuronidation serves as a clear-
ance mechanism for drugs from all therapeutic classes.6

Additionally, glucuronidation provides an elimination path-
way for numerous endogenous compounds, dietary chemi-
cals, and environmental pollutants (including some chemical
carcinogens) and aids excretion of the products of phase I
metabolism. Endogenous compounds metabolized by glu-
curonidation include bilirubin, bile acids, fatty acids, hy-
droxysteroids, and thyroid hormones. Consistent with this
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substrate diversity, UGT comprises a superfamily of enzymes
(“isoforms”). UGTs characterized to date have been classified
into two families,UGT1 and UGT2, based on amino acid
identity and evolutionary divergence.7 Substrate selectivity
has been documented reasonably well for 12 of the 16
functional human isoforms: UGT 1A1, 1A3, 1A4, 1A6, 1A7,
1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17. The UGT
isoforms exhibit distinct, but overlapping substrate selectivity
and differ in terms of regulation, incidence and frequency
of genetic polymorphism, and patterns of drug-drug interac-
tions.8,9

Reaction phenotyping involves identification of the iso-
form(s) responsible for the metabolism of a given drug or
chemical. Together with an understanding of isoform regula-
tion, pharmacogenetics, and drug interactions, reaction
phenotyping allows prediction of factors likely to alter drug
metabolic clearance (and hence response) in vivo. Currently,
in vitro assays are used for reaction phenotyping. However,
the low throughput and relatively high costs of in vitro
procedures restrict the availability of appropriate data to later
stages of the lead development process. In silico methods
provide the most promising approach to overcome these
problems and thereby allow earlier assessment of drug
metabolism.

Recently, the ability of various methodologies (pharma-
cophore modeling, molecular field based QSAR and 2D-
QSAR) to predict the binding ability (competitive inhibition
constant or Michaelis constant) of UGT1A1 and UGT1A4
has been reported by this laboratory.10,11 These analyses
demonstrated that 2D-QSAR is the best method for such
predictions. However, as a result of the complexity of the
relationships, it was apparent that a larger data set would be
required in order to predict the substrate selectivity of novel
chemicals with confidence. As noted previously, existing in
vitro methods for the experimental determination of substrate
binding affinity are expensive and time-consuming. In
comparison, screening simply whether a chemical can be
metabolized by a UGT isoform is faster and cheaper.
Consequently, there is considerable data available in the
public domain defining the ability of chemicals to be
metabolized by individual human UGT isoforms.

Thus the work reported here aimed to (1) determine the
feasibility of predicting human UGT isoform specific chemi-
cal metabolism (reaction phenotyping) using standard two-
dimensional (2D) chemical properties/descriptors and (2)
compare the generalization performance of the PLSDA,
BRANN, and SVM methodologies for the classification of
metabolic data.

2. DATA AND METHODS

2.1. Data Sets.All data in the public domain relating to
chemicals tested for metabolism by individual UGT isoforms
were collated. Data from 100 publications containing ex-
perimental results of chemicals tested in recombinant cell
systems expressing a single UGT isoform were compiled in
an Access Database (Microsoft Corporation, WA). Isoform-
specific data sets were collated in which the chemicals tested
for activity were classified as either substrates or nonsub-
strates. Twelve data sets, each containing more than 50
chemicals, were generated (Table 1). Chemicals tested on
more than one occasion against the same isoform that showed

conflicting results were not included in the data sets unless
the reason for the discrepancy could be determined.

2.2. Chemical Descriptors.Chemical structures for the
523 chemicals in the 12 data sets were constructed using
ChemDraw (CambridgeSoft, MA). Sixty-seven 2D chemical
descriptors (Table 2) were calculated using in-house software
written in Matlab (MathsWorks Inc., MA). The Unsupervised
Forward Selection (UFS) algorithm12 was used to select a
subset of descriptors for each data set such that redundancy
was eliminated and multicollinearity was reduced. This
method initially selects the two descriptors which are least
well correlated and then additional variables on the basis of
their multiple correlation with those already chosen, resulting
in a subset of variables that are as close to orthogonal as
possible. Subsets of descriptors were selected using this
procedure with theRmax

2 parameter set to 0.99. These
descriptors were normalized to have a mean of zero and unit
variance prior to generation of classification models.

2.3. Pattern Recognition Methods. 2.3.1. Partial Least
Squares Discriminant Analysis (PLSDA).PLS is designed
to deal with collinearity among the independent variables.1

It is broadly similar to principal component regression but
with both the independent and dependent variables involved
in the generation of the orthogonal latent variables rather
than only independent variables. PLS is an iterative algorithm
with consecutive estimates obtained using the residuals from
previous iterations as the new dependent variable.1 Each
iteration of the algorithm introduces another latent variable,
and leave-30%-out cross-validation (the average prediction
accuracy of 30% of the training set data, left out in 30
different ways) was used to determine the optimal number
of latent variables.

The PLS methodology was implemented in the Python
scripting language (www.python.org) using the SAMPLS

Table 1. Composition of the Human UGT Isoform Substrate
Selectivity Data Sets Used for Classification Analyses

number of chemicals percent substrates (%)

1A1 205 38
1A3 178 72
1A4 181 55
1A6 195 38
1A7 69 38
1A8 115 76
1A9 216 63
1A10 156 49
2B4 140 29
2B7 213 64
2B15 141 40
2B17 55 44

Table 2. Molecular Descriptors Used in the Human UGT Isoform
Substrate Classification Analyses

atomistic13 counts of atom types (numbers after atom symbol
represent the number of connections to other atoms):
H, C2, C3, C4, C(Aromatic), N1, N2, N3, N4,
N(Aromatic), O1, O2, O(Aromatic), F, Si2, Si3,
Si4, P2, P3, P4, P5, S1, S2, S3, S4, S(Aromatic),
Cl, Br, I, H donor, H acceptor

rings counts of rings of size 3-8
fragments count of fragments: H-O-C, H-O-N, C-O-C,

N-O-C,N-O-N, CdO, OdC-N,
OdC-O, NdO, OdNdO

eigenvalue
descriptors14

the 10 highest absolute eigenvalues of a modified
adjacency matrix of the molecule

connectivity
indices15

vertex degree and valence vertex degree connectivity
indices of path lengths 0-4
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algorithm.16 The number of latent variables was chosen to
maximize the training set cross-validation percent predicted
correct (i.e., the test set was not used to select the number
of latent variables).

2.3.2.ν-Support Vector Machine (ν-SVM). Overfitting
of data can be avoided by limiting the complexity of the
models that the method can possibly generate. A specific
approach for controlling the complexity of the models is
given by the Vapnik-Chervonenkis (VC) theory and the
structural risk minimization principle.17 This is applied to
the training of a classification SVM by fitting of a hyperplane
such that the largest margin is formed between two classes
of chemicals while minimizing the classification errors.
Nonlinearity in a data set is accounted for with kernel
functions, which map the input vectors to some higher
dimensional space such that a hyperplane with reduced
classification errors can be found.3 A major advantage is that
optimization problems resulting from SVMs have a global
minimum and can be solved with standard quadratic pro-
gramming tools. A recent improvement in the SVM algo-
rithm allows for a more sensible choice of the regularization
parameter.18 The new parameter,ν, represents an upper
bound on the fraction of errors (fraction of chemicals
misclassified) for a classification problem and can be chosen
depending on the inherent error in the data.

The SVM models were generated using the LIBSVM
implementation19 of theν-SVM algorithm.18 For all the data
sets the radial basis function kernel was used with the default
value of the gamma parameter ()1/number of descriptors)
and theν parameter set to 0.1.

2.3.3. Bayesian Regularized Artificial Neural Network
(BRANN). The Bayesian framework for neural networks is
based on a probabilistic interpretation of network training.
In contrast to conventional network training, where an
optimal set of weights is chosen by minimizing an error
function, the Bayesian approach involves a probability
distribution of network weights.20 As a result, the predictions
of the network are also probability distributions. Most
importantly, complex models are penalized in the Bayesian
approach, reducing the problems of overfitting and overtrain-
ing.

The Netlab toolbox21 of Matlab was used to generate
BRANN models. All networks were fully connected, em-
ployed sigmoidal transfer functions (in both hidden and
output layers), and contained one hidden layer with six nodes.
A separate inverse variance hyperparameter was employed
for each group of weights (inputs, input bias, outputs, output
bias). The scaled conjugate gradient algorithm was used to
train the network. The hyperparameters were re-estimated
after each 100 iterations. There were eight cycles of the
whole algorithm.

2.4. Assessment of Generalization Performance.To
assess the ability of the three pattern recognition methods
to predict new chemicals (i.e., generalization performance),
30% of each data set was randomly chosen to be the test set
using a random number generator implemented in Python.
The remaining 70% of chemicals were used to generate the
models with the three pattern recognition methods. The test
set was not used in any way to influence the training and
selection of models. The test set was predicted and compared
against the known experimental results only after the models
were defined completely. The generalization ability of the

models was expressed as the percent of test set chemicals
that were correctly predicted (both substrates and nonsub-
strates).

3. RESULTS AND DISCUSSION

Table 3 shows the percent test set predicted correctly for
each data set using the three different classification methods.
In all data sets other than UGT2B7, the SVM generated a
model with either equivalent or better predictability as judged
by the test set. This observation is highlighted graphically
in Figure 1. It is to be expected that in data sets containing
significant nonlinearity the SVM and BRANN algorithms
would improve on PLSDA. In these cases the SVM is able
to predict up to 20% more of the test set correctly. Similarly,
the BRANN produces models able to predict 10% more of
the test set correctly, compared to PLSDA. The UGT2B7,
UGT2B15, and UGT2B17 data sets are modeled well by
PLSDA, possibly indicating a relatively linear relationship
between the chemical descriptors and chemical lability for
metabolism by UGT.

As shown in Table 3 and displayed graphically in Figure
2, the SVM is best able to predict the test sets overall. Unless
there is prior indication that the relationships involved will
be predominantly linear in nature, it appears that the SVM
provides the most appropriate approach for similar clas-
sification problems. The SVM algorithm is computationally

Figure 1. Improvement of SVM over other methods for each data
set. Note that for UGT1A4, UGT1A10, and UGT2B7, the SVM
model was equivalent to the BRANN model, and for UGT2B15
and UGT2B17, the SVM model was equivalent to the PLSDA
model.

Table 3. Percent of Test Set Predicted Correctly for All UGT
Substrate Data Sets by Each Classification Method

SVM PLSDA BRANN

1A1 72 52 62
1A3 81 68 79
1A4 83 67 83
1A6 81 66 76
1A7 75 70 70
1A8 65 47 56
1A9 77 67 69
1A10 80 65 80
2B4 88 83 83
2B7 63 67 63
2B15 69 69 64
2B17 75 75 69
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efficient to train using data sets of this size and, unlike an
ANN, determines a unique solution. It is possible, however,
that as the size of the data sets increases, the BRANN
performance may improve relative to that of SVM.

A BRANN has previously been compared to the PLS
methodology for regression problems. Three data sets ranging
in size between 55 and 245 chemicals were analyzed.22 For
all three data sets, the BRANN produced significantly better
test set predictivity. Results presented here are in general
agreement with these previous observations. A SVM has also
been compared previously to a conventional ANN and to
linear discriminative analysis (LDA) for several biological
and simulated classification data sets.4 The study showed
the SVM to slightly outperform the ANN, which in turn
slightly outperformed the LDA. The classification methods
are similar but not identical to those reported here. The ANN
was not Bayesian regularized, and thus its performance may
have been suboptimal due to overfitting and/or overtraining.
It would be expected that LDA would produce very similar
results to PLSDA when there are many more chemicals than
descriptors in the data set and there is little redundancy in
the descriptors. However, in many QSAR studies this will
not be the case and PLSDA is likely to perform better than
LDA. A second difference between the studies is the number
of data sets tested. In the previous study three simulated and
two biological data sets were examined.4 In this study, 12
biological data sets were used to compare the three clas-
sification methods. The desirability of a larger number of
data sets is apparent from Figure 1. Large differences in the
generalization performance of the classification methods were
apparent for some data sets, while there was little difference
in others. Clearly, conclusions from the analysis of a small
number of data sets may be misleading. Consequently, the
results presented here provide a much stronger indication of
the performance of the various classification methods in real
systems of relevance to drug discovery. It should be noted
that covalent bonds are formed and broken in the glucu-
ronidation reaction, distinguishing our data from that pub-
lished previously.

The SVM and conventional ANN methodologies have also
been compared for the classification of 179 molecules
capable of penetrating the CNS and 145 molecules that were
unable to do so.5 The SVM (82% predicted correct) was able

to classify the molecules better than the ANN (76% predicted
correct). While the comparison of classification methods is
limited to one data set, the result is consistent with the
outcomes reported here.

It is apparent from Figure 2 and Table 3 that the general
predictivity displayed by the models generated with the SVM
algorithm is very good. It should be noted, however, that
the experimental data have inherent noise or error due to
measurement error and variation in experimental conditions
between laboratories, which will limit the maximum possible
predictivity of the models. Since some chemicals were tested
for glucuronidation on more than one occasion, it was
possible to estimate that data conflicted for about 10% of
chemicals in each data set. Thus, experimental error would
appear to limit the maximum possible predictability to
approximately 90%. All SVM models showed predictive
ability (>60% of test set predicted correctly), and five out
of the 12 test sets showed excellent prediction with>80%
prediction accuracy, demonstrating that standard descriptors
trained with a SVM can account for a large amount of the
variation.

The 67 descriptors (comprising counts of different atomic
features, eigenvalue descriptors, and connectivity indices)
used in this study to classify substrates and nonsubstrates
were chosen on the basis of simplicity, ease of calculation,
and diverse representation of chemical properties. More
complex descriptors, such as those based on quantum
chemical properties and/or 3D chemical structure were not
used, primarily because they were not required. As described
previously, the models generated with the simple descriptors
approached the maximum possible predictivity given the
inherent error in the data. It was thought that incorporation
of additional descriptors was unlikely to significantly improve
predictivity but would significantly increase the time required
to predict isoform selectivity, due to the increased compu-
tational demand imposed by the calculation of quantum
chemical properties and/or optimization of molecular geom-
etry. Considering the complexity of the event being modeled
(binding of a chemical to an enzyme active site in a mode
where the reactive site of the molecule is aligned suitably
with the bound cofactor), it is perhaps surprising that such
generic and simple chemical properties are so predictive.
However, these simple descriptors have been shown previ-
ously to encode subtle complexity23 and have been used
successfully in the past to predict diverse data sets.22,24,25

Nevertheless, the models generated here are difficult to
interpret because the connectivity indices and eigenvalue
descriptors lack a simple physicochemical interpretation. In
addition, the models generated using the SVM are nonlinear
and hence separating the contribution of each descriptor in
a straightforward and meaningful way is not feasible. Since
it is generally accepted that UGT-catalyzed conjugation
proceeds according to a second-order nucleophilic substitu-
tion (SN2) reaction,8 electronic properties describing nucleo-
philicity may prove predictive of metabolism by a UGT;
however, this awaits investigation.

Table 4 illustrates that, for some isoforms, there is a
significant difference in the percentage of substrates versus
nonsubstrates predicted correctly. For example, 92% of the
UGT1A3 substrates are predicted correctly, whereas only
50% of the nonsubstrates are predicted correctly. The
importance of the various types of predictions (overall vs

Figure 2. Distribution of generalization performance for the three
classification methods. For each classification method there are 12
points, each representing the percent of test set predicted correctly
for a UGT isoform.
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substrate vs nonsubstrate) is application dependent. In certain
situations it may be more important to ensure all substrates
are found, and the consequential increase in false positives
(nonsubstrates predicted to be substrates) is of lesser
importance. This bias can be achieved by changing the
weighting of substrates versus nonsubstrates in the training
process. By default, however, the pattern recognition methods
will generally attempt to maximize the overall number of
training chemicals classified correctly. Thus, data sets trained
with more substrates than nonsubstrates will predict sub-
strates better than the nonsubstrates. This is evident from
Tables 1 and 4. Throughout the 12 data sets there exists a
strong correlation (r ) 0.77) between the percentage of
chemicals that are substrates and the relative predictive ability
toward substrates and nonsubstrates (i.e., percent substrates
predicted correctly/percent nonsubstrates predicted correctly).
While no significant correlation existed between the size of
the data set (i.e., number of chemicals) and the percent of
the test set predicted correctly, it is likely that the percent of
test set predicted correctly is related in some way to the
diversity of chemicals tested.

Reaction phenotyping provides useful information for the
selection of new chemical entities in the drug discovery
process. Much of the interindividual variation in drug
response across a population is due to variation in metabolic
clearance. Each metabolic enzyme has a different degree of
population variability due to differences in levels of expres-
sion and activity. For example, promoter polymorphisms
affect the expression of UGT1A1 while coding region
polymorphisms and drug interactions influence UGT1A1
intrinsic clearance. Our understanding of the factors respon-
sible for population variability in drug-metabolizing enzyme
activity is increasing rapidly, and judgment may be made
regarding which enzyme(s) is preferable to metabolize a new
chemical entity. As indicated previously, in vitro assays used
for reaction phenotyping are relatively slow and expensive.
Hence, estimates of enzyme activity and reaction phenotyp-
ing are generally not available to guide chemical selection
until a relatively late stage in the drug discovery process. It
is only recently that classification techniques have been
applied to isoforms of another important drug metabolizing
enzyme, cytochrome P450 (CYP). Two studies have inves-
tigated the predictability of chemical inhibition of CYP3A4.26,27

PLSDA and an ANN were separately used to classify the
inhibitors, and both studies reported similar predictive ability
(approximately 90%). PLSDA has also been used to generate
a model capable of classifying inhibitors of CYP2C9 with
approximately 75% accuracy.28 Classification techniques
have not previously been applied to any other enzymes
involved in drug metabolism.

This paper is the first to report the use of classification
methods to discriminate between substrates and nonsubstrates
of drug metabolizing enzymes. Specifically, the use of simple
2D chemical descriptors and pattern recognition methods
(especially SVM) has provided predictive models of UGT
isoform substrate selectivity. Like UGT, most other drug
metabolizing enzymes, particularly CYP, exist as superfami-
lies of isoforms which exhibit distinct but overlapping
substrate selectivities. It is likely that similar approaches to
those adopted in this work for UGT will similarly prove
useful for other drug metabolizing enzyme families. How-
ever, this requires confirmation.

4. CONCLUSIONS

A comparison of three widely used classification methods
has shown that, on average, the SVM is able to generate the
most predictive models, followed by BRANN-derived mod-
els and then PLSDA. It is likely that the classification
performance of other noisy data sets produced from data
mining or from high-throughput assays will follow similar
patterns. The speed, unique solution, and generalization
performance of the SVM make it an excellent choice for
general classification problems.

Using only standard 2D descriptors, models capable of
predicting metabolism by individual human UGT isoforms
were generated. This is a significant step toward integrated
in silico metabolism models for use in early stages of drug
discovery. Studies are in progress to increase predictive
ability through use of chemical descriptors that contain
information more relevant to the reaction mechanism em-
ployed by UGT. Furthermore, increased interpretability of
the models is also priority for further work, as this will likely
allow greater use of the models in the drug design process.
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