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We show that support vector machines of the l-norm soft margin type are
universally consistent provided that the regularization parameter is chosen in a
distinct manner and the kernel belongs to a specific class—the so-called universal
kernels—which has recently been considered by the author. In particular it is shown
that the I-norm soft margin classifier with Gaussian RBF kernel on a compact subset
X of R? and regularization parameter ¢, = nf~! is universally consistent, if » is the
training set size and 0<f<1/d. © 2002 Elsevier Science (USA)

1. INTRODUCTION AND RESULTS

In recent years support vector machines (SVMs) have been successfully
applied to many learning problems and they mostly outperformed neural
networks. Even though their development was motivated by results from
statistical learning theory the known bounds of their generalization
performance are not fully satisfactory. In particular, it is open whether
the support vector approach can yield sufficiently good results for all
classification problems, or whether it only works fine for ‘“‘benign”
distributions. The aim of this work is to answer this question for the 1-
norm soft margin classifier (1-SMC) equipped with several standard kernels
like the Gaussian radial basis function (RBF) kernel.

Let us start with a description of the problem of pattern recognition or
classification (cf. also [10, Chap. 1; 5, Chaps. 1 and 4]): assume that we have
a set X which is split into two disjoint and unknown classes X_; and Xj, i.e.,
X = X_; u X;. Obviously, these classes can be encoded by a function f: X
- Y ={-1,1} with f~'({=1})=X_; and f~!({1}) = X;. The classifica-
tion task is to estimate f on the basis of finitely many training samples
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Here, the ith label y; contains information on the class membership of the
point x;. Note, that estimating f corresponds to reconstructing the classes
X_) and X on the basis of the samples.

A typical example of a classification problem is to recognize
handwritten letters by an algorithm that has seen some examples of
these letters.

In the framework of statistical learning theory it is usually assumed
that the training samples are drawn i.i.d. according to an unknown
probability measure P on X x Y. To simplify our considerations
let us suppose in the following that X is a compact subset of R? and P is
a Borel probability measure. By disintegration (cf. [7, Lemma 1.2.1])
there exists a map x+—P(Jr) from X into the set of all probability
measures on Y such that P is the joint distribution of (P(.[x)), and
of the marginal distribution Py of P on X. We call P(.|.), which is in
fact a regular conditional probability, the supervisor. Since in this
model the labels y; are drawn according to the conditional probability
P(.|x;) we may only expect noisy information, i.e., some of our labels
may be incorrect. However, the noiseless case P(.]x) € {0,1} for all
x € X which is usually called agnostic learning model is also covered
in this setting.

A classifier 4 is an algorithm that constructs to every training set 7 =
(x1,31), -+ (X0 1)) € (X x Y)" a (measurable) decision function fr:X — Y.
Besides support vector machines which we shall introduce later on typical
examples of classifiers are the nearest-neighbor algorithm and neural
networks. In order to “learn” from the samples the decision function f7:
X — Y should guarantee a small probability for the misclassification of an
example (x, y) generated with distribution P independently to 7. Here,
misclassification means f(x)# y. To make this precise we define the risk of

fr by

ol fr) = /X i Pl dy) = P ) fr(0) £,

When considering noisy supervisors we cannot expect that we obtain zero
risk. Indeed, let us define
Bi(P) = {xeX: P(y =1lx) > P(y = — 1)},

B_((P) = {xeX: P(y = lx)<P(y = 1)},

By(P) = {xeX: P(y =1]x) = P(y = —1|x)}.
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Then for a function f*:X — {—1,1} with f*(x) = 1 if x € B|(P) and f*(x)
= —1if x e B_1(P) we have (cf. [6, Theorem 2.1])

Rp(f*) = inf{%p(f): f: X — {—1,1} measurable} :/ s(x) Py (dx), (1)
X

where the noise level s: X — R is defined by s(x) .= P(y = —1}x) for x €
Bi(P), s(x) = P(y = 1lx) for x € B_j(P) and s(x) = % otherwise. Equation (1)
shows that no function can yield less risk than f/*. The function f* is called
an optimal Bayes decision rule and we write Zp = Zp(f*) for the Bayes risk.
Trying to obtain a risk close to #p corresponds to reconstructing the classes
B_i(P) and B|(P) in probability. Indeed, an easy computation similar to that
of Lemma 4 yields

Rolfy) = T + /E (1—2s)dPy,

where £ :={xeB_|(P): fr(x) =1} u {xe Bi(P): fr(x) = —1}. Thus, the
risk of fr is close to #Zp if and only if Py(E) is small. Note that in the
described model, we try to imitate the supervisors response in order to
recognize the underlying classes. In particular, we trust the supervisor in the
sense that even though some labels may be incorrect we assume that for
large sample sizes the supervisor tends to give more correct than incorrect
information for every x € X. It is doubtful whether one can learn without
this assumption.

As indicated above, a classifier ¢ should guarantee with high probability
that Zp(f7) is close to Zp provided that T is large enough. Asymptotically,
this means that

Rp(fT) = Ap

should hold in probability if |7| — oo. In this case the algorithm % is called
consistent for the distribution P (cf. [6, Definition 6.1]). If a classifier is
consistent for all distributions on X x Y it is said to be universally
consistent. Although several algorithms such as the k-nearest-neighbor
classifier for k - 0o and k/|T| > 0 are universally consistent (cf. [6,
Theorem 6.4]) it is an open question whether SVMs are universally
consistent for a particular choice of the free parameters. Having proved
universal consistency for a classifier ¢ does not guarantee that ¢ works well
for a specific classification task. Actually, for every classifier and every
decreasing null sequence (a,) < (0, 1—16] there exists a distribution P with
Ap =0 and
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for all n>1 (cf. [6, Theorem 7.2]). From this one easily deduces that for no
classifier there exists a positive, increasing and unbounded sequence (¢,) and
a real number p > 0 such that

PUT € (X X Y)': | Zp(fr) — Aol Z8) <™ @)

holds for all distributions P on X x Y and all =1 even if ¢ > 0 depends on
P. In particular, this shows that for no classifier there exists a uniform rate
of convergence. Thus, every study on the rate of convergence of a specific
classifier must restrict the class of considered distributions. For examples
that demonstrate that these restrictions are severe we refer to [6, Chap. 7].
The ansatz of support vector machines is based on the generalized portrait
algorithm of [11] which we briefly describe now: suppose that we have a
linearly separable training set 7 = ((xy, y1),. . ., (Xs, ¥u)), 1.€., there exists an
element w e Sgg = {xeR?: |||, = 1} and a real number b € R with

<w,xiy+b>0 for all i with y; =1,
<w,xiy +b<0 for all i with y; = —1.

Geometrically, this means that 7 can be correctly separated by the affine
linear hyperplane that is described by w and . Now, the generalized portrait
algorithm constructs the correctly separating hyperplane (wr, by) that has
maximal distance to the training points. The resulting decision function is
defined by

fr(x) = sign({wr,x) + br) for all x e X. 3)

An easy calculation (cf. [5, Chap. 6]) shows that up to normalization (wr, br)
is the unique solution of the optimization problem

minimize <w,wy over w,b

4)
subject to yi(lw,x;y +b)=1 i=1,...,n

Obviously, this ansatz has two shortcomings: firstly, a linear decision
function may be unsuitable to distinct between the classes B_;(P) and B, (P).
In particular, training sets may occur that are not linearly separable and
thus (w7, br) may not exist. Secondly, even if we have a linearly separable
training set, in the presence of noise it can happen that any good decision
function must classify some examples incorrectly.

To avoid the first problem SVMs map the input data x,...,x, into a
(possibly infinite dimensional) Hilbert space—the so-called feature
space—by a nonlinear feature map ®:X — H. Necessary properties of @
are discussed below. Now, the ansatz of the generalized portrait algorithm is
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implemented in H instead of X, i.e., we simply replace x and x; in (3) and (4)
by @(x) and @(x;) and the vector w in (4) is chosen from H. The
corresponding algorithm is called maximal margin classifier and was the first
classifier of SVM type (cf. [1]).

To avoid the second problem the linear constraints in (4) are relaxed to
yillw,x;> + b)=1—¢;, §;=0. Then, in order to prevent trivial solutions the
objective function also has to take the slack variables &; into account.
Combining both modifications can lead to the following quadratic
optimization problem:

minimize waw)+c¢ > & for w, b, &
i=1
subject to y(w, dx)> +b)y=1-¢&,  i=1,....,n,
£i>09 i=1,...,n,

where ¢ >0 is a free parameter which is usually tuned heuristically. Note
that, due to the special form of the supplemented term c¢); ¢, the
objective function is still convex. In the following we denote a solution of (5)
by (Wi, b7°) € H x R. Recently, it was shown in [2] that this solution is not
unique in general. However, an algorithm %% that provides the decision
function

¢ = sign((wpe, @) + b7F) (6)

for every training set T is called 1-norm soft margin classifier (1-SMC) with
feature map @ and parameter ¢. The 1-SMC was introduced in [4] and its
excellent learning ability has been proved in several experiments since then
(cf. the brief surveys in [5, Chap. 8, 10, Chap. 12]).

To treat the above optimization problem algorithmically one usually
consider the Wolfe dual (cf. [5, Chap. 6] for a derivation):

L n 1 n
maximize > ooy — 1 > yivioio{ P(x;), P(x;)) forao;, i=1,...,n
i=1

ij=1
subject to Zn:l yio; =0, i=1,...,n Q)
(;s o; <c,
If (o%, . .., «*) denotes a solution of (7) the solution vector wp of (5) can be

computed by

I
Wi = 3 Z Yo Dx;)
Py



SUPPORT VECTOR MACHINES 773

and the corresponding bias b‘})’” by

C 1 -
b7 = 3 =3 > B P0), D)
i=1

for every a;’f with 0<c>c;.k <c. Note that in both the optimization problem (7)
and in the evaluation of the resulting decision function (6) only inner
products of @ with itself occur. Thus, instead of computing the feature map
directly, it suffices to know the function {&(.), @(.)> : X x X — R. This leads
to the following definition:

DEerFINITION 1. A function k: X x X — R is said to be a kernel on X if
there exists a Hilbert space H and a map ¢ : X — H with

k(x, y) = {P(x), P()>
for all x, y € X. We call @ a feature map and H a feature space of k.

Note that both H and @ are far from being unique. However, for a given
kernel there exists a canonical feature space (with associated feature map),
which is the so-called reproducing kernel Hilbert space (RKHS) (cf. [5,
Chap. 3]). As indicated above the decision function only depends on the
kernel. Thus we denote it by f]T"c in the following.

Using kernels instead of computing feature maps directly also works in
several other situations and is known as the so-called “kernel-trick™ (cf. [8]).
In fact, every algorithm that is based on inner products only, can be
“kernelized.” The advantage of this ansatz is that kernels often enlarge the
considered class of functions without changing the design of an algorithm.

Obviously, not every kernel is a good kernel, e.g., for the kernel with
feature map @ = idy kernelizing has no effect and for the kernel with
feature map @ = 1 the 1-SMC cannot learn at all. Hence, it is natural to ask
whether there are kernels that fit to every classification problem.
Fortunately, such kernels actually exist. To introduce them let k: X x X —
R be a kernel and let @ : X — H be a feature map of £. A function f: X —» R
is induced by the kernel k if there exists an element w € H such that f =
{w, @(.)>. We know from [9, Lemma 2] that this notion is independent of @
and H. The following definition made in [9] is fundamental:

DErFINITION 2. A continuous kernel k: X x X — R is called universal if
the set of all induced functions is dense in C(X), i.e., for all g € C(X) and all
&> 0 there exists a function f induced by & with ||/ — ¢g||, <e.

In [9, Theorem 9] it was shown that & is universal if k(x,x) > Ofor allx e X
and span{®, : n>1} forms a sub-algebra of C(X) for a suitable feature map
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@:X - £, with &(x) = (Py(x)),~,. In particular, it turned out that the
following kernels were universal (cf. [9, Sect. 3]):

® the Gaussian RBF kernel exp(—a?||. — .||§) for all ¢ >0 and all
compact X < R

e the kernel exp(¢{.,.>) for all compact subsets X = R?.

® Vovk’s real infinite polynomial (1 — ¢.,.>)™* for all « >0 and all
compact subsets X < {x € R’ x|, < 1}.

® the stronger regularized Fourier kernel £k(x,y) = H?’:l

m for all 0<g <1 and all compact X < [0, 2nr)".

® the weaker regularized Fourier kernel k(x, y) = Hd cosh

i=12¢q sin?l(n/q)
(%) for all 0 <g <00 and all compact X < [0, 2n)".

In [9] it was also shown that using universal kernels the 1-SMC is consistent
for all classification problems with constant level of noise provided that the
regularization parameter c¢ is chosen in a specific manner that depends on
the sample size n and the noise level. In this article, we show that these
classifiers are even universally consistent provided that the parameters are
chosen in this manner. To prepare this result recall that the covering
numbers of a metric space (X, d) are defined by

N((X,d),e) = inf{n eN: Ixy,...,x, with X < U Bd(x,-,s)}
i=1

for all ¢ > 0. The space (X, d) is precompact if and only if A"((X, d), ¢) is finite
for all ¢ > 0. We also need the following result which has been proved in [9,
Lemma 3 and Corollary 7]:

LEMMA 1. Letk: X x X - R be a universal kernel on a compact subset X
of R? and @ :X — H be a feature map of k. Then @ is continuous and

di(x, y) = [|P(x) — P(y)|
defines a metric on X such that id :(X,|.|) - (X,dy) is continuous. In
particular, N(X, dy), ) is finite for all ¢ > 0.

Now, our first result which almost states universal consistency for the
1-SMC reads as follows:

THEOREM 1. Let X = R? be compact and k:X x X — R be a universal
kernel. Then for all Borel probability measures P on X x Y and all ¢ > 0 there
exists a constant ¢* > 0 such that for all c=c* and all n=1 we have

Pr({T e (X x V)" : Ap(f¥!"Y<Rp + £}) =1 — 2Me 1M1,

where Pr* is the outer probability of P" and M = 67_4/1/ ((X, dy),
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This theorem shows that given a classification problem, a universal kernel
and an accuracy ¢ we just have to choose the parameter ¢ “‘large enough” to
obtain asymptotically a risk which is optimal up to ¢. It turns out that the
universal consistency of the 1-SMC which is stated in the following theorem
is a direct consequence of Theorem 1:

THEOREM 2. Let X = R? be compact and k be a universal kernel on X
with N (X, dy),e) € O(e) for some o> 0. Suppose that we have a positive
sequence (c,) with nc, — 0o and ¢, € O(nP=") for some 0< B <L Then for all
Borel probability measures P on X x Y and all ¢ >0 we have

lim Pr*({T e (X x Y)": Zp(fE")<Rp +¢}) = 1.
n—o0

Since for no classifier there is a uniform rate of convergence we have not
estimated the probability in the above equation asymptotically. Moreover
note, that by (2) the constant ¢* of Theorem 1 cannot be of the form
c* = cpe 1, where cp > 0 depends on the distribution P and ¢ > 0 does not
depend on it. In other words, the influence of the unknown measure P on ¢*
is rather strong and thus, it is almost useless to determine the (asymptotic)
behavior of ¢* with respect to P and ¢ in the general case. If we only consider
noiseless problems which additionally guarantee a large margin, i.e., the
classes B_|(P) and B;(P) have strictly positive distance, then ¢* neither
depends on the distribution nor on ¢ (cf. [9]). In particular, we obtain a
uniform rate of convergence, namely 1 — e~ ", where ¢ > 0 only depends on
the margin.

For the Gaussian RBF kernel which is one of the most important kernels
we immediately obtain the following corollary:

COROLLARY 1. Let X = RY be compact and k be a Gaussian RBF kernel
on X. Moreover, let ¢, =n"~! for some 0<B<L and all n>1. Then the
1-SMC with kernel k and sequence (c,) is universally consistent.

2. PROOFS OF THE THEOREMS

Before we prove Theorem 1 we would like to explain the basic idea of the
proof. For this, let us suppose that we have an induced function {w*, &(.)>
which has the constant values 1 and —1 on B(P) and B_;(P), respectively.
Moreover, we assume that the supervisor has a constant level of noise p €
[0, %). Now let us take a “representative” training set T’ of length n. Then one
easily checks (cf. Lemma 5) that

c/n c/n C -
<w;€’ / ,w?’ / > —|—; Z EL S WS, Wty + 2¢p.
=
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Here < means that the relation < only holds “approximately.” On the
other hand, by the continuity of the decision function wi*/" a misclassified
(compared with the optimal Bayes decision rule) element z forces the sum of
those slack variables, which belong to samples in the “neighborhood” of z,
to be “approximately” greater than their cardinality (cf. (13) in the proof of
Lemma 6). Conversely, for a correctly classified element the corresponding
sum of the slack variables is “approximately” larger than 2p times their
cardinality (cf. (14) in the proof of Lemma 6). Combining these
considerations we obtain

c(1 = 2p)Px(E) + 2cp = c(Px(E) + 2 pPy(X\ E))

n
P.c &, c
S <WTC/W>WTL/n> + Z ¢
=1
< W w4 20p,

where E denotes the set of misclassified (compared with the optimal Bayes
decision rule) elements. Thus Py(E) must be “small” if we have chosen ¢
“large enough.”

The difficulty of the proof below is firstly, to transfer the idea to the
general case and secondly, to give exact formulations of “representative,”
“neighborhood” and ‘“approximately.” Thus, we firstly concentrate
ourselves on the constructive part of the proof, which specifies these
notions. Necessary, but lengthy computations are worked out in several
lemmas in the next section.

Proof of Theorem 1. For brevity’s sake, let s(x) .= P(y = —1|x) for x €

Bi(P), s(x) = P(y = 1l|x) for x € B_;(P) and s(x) = % otherwise. Then an easy
computation (cf. Eq. (1)) shows

,%p:/ SdP)(.
X

Trivially, we may assume without loss of generality, that ¢ € (0, 1]. We define
1= % and fix an integer m with 5, <t <3 Furthermore, let

Il
o
[}
3

[
)

. 1
X, = {xeX:%<s(x)<l; }, i
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Note, that this definition immediately yields

zm—] —1 . zm—] —1

i i
—Py(X)<Zp< ~ Py (X; .
2 PSS D S P ®)

Due to the compactness of X' the measure Py is regular. Hence there exist
compact subsets Kf c X =X,nB(P),i=0,... ,2m1 2 je{—1,1} and
sz—l_l [ XQm—l_l such that

PX()cf\I%Z)szim, i=0,...,0" =2 je{-11},
~ T
PX(sz—Iil\sz—I,1)<2—m.

lfor1 later purpose, we write IZ;,H?] = Kyn1_; 0 (B1(P) U By(P)) and
K,y = Ky1_y nB_1(P). Furthermore, let ®:X — H be a feature
map of k. Since k is universal, Lemma 2 provides an element w* e H
such that

pL I
¥, d(x)y e [1,1+ 1], xe U K,
i=0
y L N
<w*, D(x)> e [-(1 4+ 1), 1], = U K,
i=0
<W*a (p(x)> € [_T» T], X € szflil

hold and {w* &(.)> only takes values between —(1 +1t) and 1+ 7. We

define ¢* = %HW*H%, and for fixed c¢>c* we introduce ¢ :=-%~ Then
c

for every i=0,...,2" ' — 1 and je {—1,1} there exists a finite partition
o] of K] such that each 4 € /] has diameter less than or equal to ¢
with respect to the metric d; introduced in Lemma 1. Moreover, by the
definition of the covering numbers we can also ensure |.52/~?| < AN((X,dy),0).
We define

) o 2t
o) = {A € Mf : PX(A)>M}-

Note that this immediately yields that the cardinality of the union of all sz/{
is smaller than or equal to M. For later purpose we write K/ = J,_ 4 for
all i=0,...,2" ' —1, je{—1,1}. Now we construct “representative”
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training sets. For this let

Fl o= {((xla.)’l) s ) W x €4,y = i}

>(1— r)(l - I)PXM)n}

Fy = {((xlaYI)y-"’(xnsyn)): RI:x1ed, yi#ji=0— T)—PX(A)’?}

2m

where n>1,i=0,...,2" ' =2, je{—1,1} and 4 e&/{. Moreover, for 4 €

A je{=1,1} let

F+A = {((xlayl)""’(xnayn)): |{l X 6A5y1 = 1}|

/( ‘E)( ! )PX(A)}’!}

F = {((xl’yl)a“-:(xnayn)): {1 xred, y=—1}

>(1 1) (5 - 2i,,,) PX(A)n.}

Furthermore, for n>>1 we denote by F, the intersection of all of the above
sets, i.e.,
om=1_]

Fy = ﬂ ﬂ(EﬁAﬁanA)

161 11} Aey/

By Lemma 3 we obtain P*(F,)>1 — 2Me=2"/M)n for all n> 1. Therefore it

suffices to show that Zp (fk c/") <%p + ¢ holds for all T € F,,. Let us assume
the converse, i.e., there exists a training set 7' = ((x1, ¥1),--.,(Xun, Vu)) € F,
with

,%P( ;"c/") > Ap + e 9)

Then for i=0,...,2" ' —~2 and je{-1,1} we denote the set of
misclassified points (compared with the optimal Bayes decision rule) in X/
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by E/, i.e

E] = {x ex/: kc/"(x);é]}

Analogously, let

B, = {xeX2m1 LA Bi(P): f’”/”(x);sj}.

Since we know by Lemma 4 that

,@P< ;“’/”) <Ap+2" P (BN UER )
2m—l_2

# 3 (1 g el o)

i=0

holds, our assumption (9) and 2" Py (E}, , | U E,!, |) <27 <21 yield

om-1_2
e—2t< (1 T ])PX(EIUE h. (10)

i=0

Now let us denote the slack variables, which correspond to a fixed solution
W C/", 2:¢/my of our optimization problem (5), by &, . .., ,. Then Lemma 5
yields

(Wr W) 4237 G < W 4+ 2e(1 = e +97). (1)
=1

On the other hand, by Lemma 6 and inequality (10) we obtain

n om=1_3
%Zg,;(l_f)zc<zﬂp+ > (1 T l)pX(EluE D= 9T>
=1 i=0
> (1= 1)2c2%p + ¢ — 117)
=c(1 —1)2%p + ¢ — 111 — 21%p — &1 — 117%)

> (1 — 1)2%p + & — 137).
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Therefore our assumption (9) must be false since inequality (11) yields
W% > (1 — 0)Q2%p + & — 131) — (1 — 1)(2%p + 187)

=c(l —1)(e — 317)

>c| 1 L)z
=¢ 32)32

=¥ 1

Proof of Theorem 2. Since nc, — oo there exists an integer ng such that
nc, =c* for all n>=ngy. Thus for n>ny Theorem 1 yields

Pr((T: Ap(5) <20y +2)) 21— My /27,

where M, = %4./1/ ((X , dk),#). Moreover, by the assumption on the

covering numbers of (X,d;) we obtain M?e O((nc,)*) and thus
nM;2 - oo, 1

Proof of Corollary 1. Let ¢ >0 and k(x, y) := exp(—a>|lx — y||3). Since
1 — e "<t for all t=0 we observe

dilx, ) = /2 = 2exp(~a?llx — ¥IB)< v/ 20llx — .

This yields M((X,dk),s)gm((X,||.||2),L) and thus (X, dy),¢) e
O (cf. [3, p. 9]). W Vo

3. PROOFS OF THE LEMMAS

In this section, we show the lemmas used in the proof of Theorem 1. We
begin with the following result which is needed to construct an almost
optimal decision function:

LEMMA 2. Let X = R" be compact and k:X x X — R be a universal
kernel. Then for all ¢ > 0 and all pairwise disjoint and compact subsets K_1, K
and K there exists an induced function f:X — [—(1 + &), 1 + €] such that

S ell, 1 +e], xekK,
fx)e[—(1+¢),—1], xekK_y,
Sx) e[—¢, e, x € K.
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Proof. It suffices to show that there exists a continuous function g on X
with values in [—(1 + &/2), 1 4+ ¢/2] such that g(x) = 1 + ¢/2 if x € K}, g(x) =
—(14+¢/2)if xe K| and g(x) = 0 if x € Ky. In fact,

g) ( d(x,K_1 U Kp) d(x,K; U Ko) >

142 _
xe ) \de K 0K 1 dn k) d K U Ko) +deK )

is such a function. &

The next lemma estimates the probabilities of the ‘‘representative”
training sets constructed in the proof of Theorem 1:

LemwmA 3. Using the notations of the proof of Theorem 1 we have
PU(F) =1 — 2Me 20 /M,
Proof. Let us recall Hoeffding’s inequality (cf. [6, Theorem 8.1]), which

in particular states that for all i.i.d. random variables z; : (2, .«Z, Q) — {0, 1}
and all 6 €(0,1), n>=1 we have

i=1

where g .= Q(z; = 1) = [Ez;. Thus fori = 0,...,2" 1 -2, je{-1,1}and 4 €
</ we get

P"(F, ) =P" ({((X1,y1), s Gy W xr €4,y = i

>(1 - r)(l - i;1>PX(A)n})

21 _Pn<{((xlnyl),'"a(xnayl’l)): |{l XIEAsyl:jH

<(1 —‘E)/A (1 —s)dPXn})

> 1 — 872(14/M2)n.

This yields P”(Z”\quA)ge‘ﬂ#/Mz)”<e‘2(16/M2)”, where Z := X x Y. Analo-
gously, we obtain P”(Z”\F,:—I'q)<e*2(’6/Mz)’7 for all 4 € ;zfé L JEe{=111
Moreover, P"(Z"\@TA)ge’z(fb/Mz)” is trivial for je {—1,1} and 4 €.oZ).
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Finally, fori=1,...,2" ' =2, je{-1,1},4 e;z/{ and g = fAsdPX we find
Pn( ,A) 1 _Pn<{((xlny1)9"-a(xna.yl’l)): |{l X EA:)’I :J}|

<(1—1)/AsdPXn}>

7222
>1—e 1

2222 /M)
S| = e EMn

ie., P"(Z"\F;)<e /M The definition of F, thus yields

2l
ren=rl ) (FinF)
jE\ 11} Aeg/’
o
-r( U U)o ()
jgﬂu} Aest]
o o
>1- 3 Y P(zEL) - X (7))
jé?gm} Aest! jleTgl,l} Aest!

> 1 — 2Me 26/ Mn g
The following lemma estimates the risk of a decision function from above:
LEMMA 4. With the notations of the proof of Theorem 1 we have

¢%P<f7lf16/n) 0} +2 m+1PX(E2m 1 UEZm . 1)

b )
+ ) (1 - l)PX(E‘ VE).

i=0

. . m—1__
Proof. Firstly, with £y == J7, ' E! we observe that

¢ iom P(dx,d
/BI(P) {f;,/ (x#y} ( )

/Bl(m ( (e} PO =TI A PO = ”x))PX(dX)
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- / P(y = — 1[0)Pe(dv) + / P(y = 1)Py(dx)
Bi(P)\E, E

- / P(y = —1p)Py(ds) + / (1 - 2P(y = —1}0)Py(dx)
Bi(P) E;
i)

S/B](P)P(y:—llx)PX(dx)—i- > (1 T 1)PX(E)

i=0

holds. Analogously, we obtain

Lo e P

om 1 1 .

1
< P(y = 1[x)Py(dx) + (1 )P E7.
-/Bl(P) y X Z 2m 1 X( )

i=0

Therefore, we have

k,c/n
A (F)= g ey P

1
L sy P ) £ PP

-1
<Ap+ Y (1 T= l)PX(E‘uE )

i=0
=Rp + 2" Py (B VESL )

1y ,
+ > (1—2ml1>PX(E}uE[_1). I

i=0

The next lemma provides an estimate for the value of the optimization
problem (5) from above:

LeEMMA 5. With the notations of the proof of Theorem 1 we have
(W W) £ 237 &< W + 2e(1 = ) p + ).
=1

Proof. We will compare the value of optimization problem (5) with the
value of the objective function in (w*,0). Thus, firstly have to construct an
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admissible slack variable &* corresponding to (w*,0). For this let (x;, y;)
be a sample of 7. If x;eK! for some i=0,...,2" ' —2 and x; is
correctly labeled, i.e., y, =1, we have y,{w* &(x;)>>1. Hence, let
¥ := 0. Analogously, we define & := 0if x; € K; ! for some i =0,...,2" "1 —
2 and y; = —1. Conversely, if x; e K] for some i=0,...,2"!' —2 and
x; is not correctly labeled, ie., y;=—1, we have y<w* &(x;)>=>
—(1+1) by the definition of w* Thus, let & =2+t Again, if
x;eK! for some i=0,...,2"' =2 and y, =1 we analogously define
Ti=2+1 If x;€Ky 1, is positively labeled, ie., y =1, we get
yi{w*, @(x;)>> — 1. Hence, let & :=1+1. This may also be done if
x; €Kpni_; and y; = —1. Finally, if x; is neither an element of any
K/, i=0,...,2"1' —2 je{—1,1} nor an element of K,.»1_, we obtain
[<w*, ®(x/)»| <1+ 7. Thus let & := 2 + 7 in this case. For brevity’s sake, we
now define

2»1—172
a :Z‘{l:xle U Kil,ylzl}

om=1_3
a ZZHI:x,e U K},y,:—l}

az = |{l x; € Kom 171}|,

a

=

om-1_»
= Hl: Ko | (K uKi_l)H.
=0

Since the training set T has length n we obviously have a; + a; + a3 + a4 =
n. Moreover, the above considerations on &* yield

c/n c/n c - c &
<wd;’ i owpe! > +- D& < + >
i=1 =1
SOF W 4+ (24 Dar + (1 +D)ay + 2+ D)ay)

= (WF Wy +§((2 +O 0 —a) — a3) (12)
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since (w?’c/ ",b?’c/ ") together with the corresponding slack variable ¢ is a

solution of problem (5). Furthermore, the construction of F, implies

241 S it 1
—(—a)<Q+7)| 1 Z(; Zv(l—f)(p o )PX(A)
= Aot
Jel-L1} !
732 i+1 Sl o
<2-21-1 Y (1— = >PX(Kl.uKl- )+ 50
i=0

1) .
:2(1—f)<1— 3> (1—’;1>Px(kjuk;‘>>+7f
<2(1r)<1 3 PX(IN{,'IUIZ,-_I)
P S
+ Y PRIV )) +91.

Considering Fnt‘l and Fy forall 4 e ;z/ém,_l, je{—1,1} we also get

a 1 1
722 Z (1 —‘E)(E—z—m)PX(A)
Aeyiﬁmilil
Je-L1
1 1 ~
=21 -1 5 om (P (Kyn11) = 21)
>2(1 — 1) (Px(fcz,,,ll) - G - 2%)5(@9»«‘1)) — 6t.

If we combine these estimates with inequality (8) we thus obtain

L@+ D~ ap) — a)

om=1_1 om=1_1

<2(1—7;)<1— > on(Kuk )+ > 2imPX(12}uKil)>+15z

i=0 i=0

P N

i
<2(1 — — Py(X; 15
( nG+§OWX(0+ :
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<2(1 — 1)t + Zp) + 157
<2(1 — o) (Zp + 7).
The assertion now follows with estimate (12). 1

The last lemma estimates the value of optimization problem (5) from
below:

LEMMA 6. With the notations of the proof of Theorem 1 we have

n P
SZ &= —T)20<2%p+ Z (1 T 1)PX(E1 VE;S ) —91:).
=1

i=0
Proof. Fori=0,...,2" ' —2and je {—1,1} we define

g= |J W:xea
Aex/lf
ANE]#0

Jf = U {l:x;€e4}.
Aest!
ANE] #0

Now, our first goal is to show that

—Zé;z(l—f)< ) > Py, (13)

ler! Aes/!
ANE] #0
= Z &=(1- > Py, (14)
leJ’ Aest)
AmE{:(Z)
1
Z 512(1—1)2( = 1>(PX(K2m 1_ 1)—2‘[) (15)
Ae. /jm‘ -
)C/EA

hold for alli = 0,...,2"~' — 2 and j € {—1,1}. For this, we firstly compare
the value of optimization problem (5) with the value of the objective
function in (0,0) and obtain

<W?c/n’W?,c/n><< ?c/n <1)c/n> Z f;Sc
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e, Wi < \/c. To show inequality (13) let A € /) w1th A A E/#0. Then

for fixed z € A4 N E/ we define a := —(<wTC " ()Y + b m. Without loss of
generality we may assume j = 1, i.e.,, a=0. Now, for an index / with x; € 4
and y; = 1 we have ||@(x;) — <P(z)|| =di(x;,2) <0 = ? and this yields

1-¢ \<WT c/n @(x/)> + bd>c/n
:< b,c/n ¢(X[)—¢(Z)> < d,c/n @I)(Z)> (15c/n
< W) - 1DGx;) — D) — a
<7T—a,

ie., ;=1 — 14 a>0. Analogously, for an index / with x; € 4 and y; = —1
we obtain

1— 6[ < — << D.c/n ¢(x1)¢6/n>

_ _< el ;) — <p(z)> (< 2eln gz )> <1>c/n>

<7+a,

ie., &;=max{0,1 — 7 — a}. Let us suppose that 1 — 7t — a>0. Then by the
definition of F, we get

- DIETI R )( & I)PX(A)+(1 - a1~ 1), PA)

X]EA

=(1-17 (1 ~ %)PX(A) +a(l - r)(l 21; 1>P)((A)

=1 - 07 (1= ;) Prta)

since (2i + 1)27" <1 and a>=0. On the other hand, if 1 — 7 — a<0 we have
1 — 7+ a>2— 2t and this, together with (2i + 1)27" < 1, implies

IS a0 ra - )( “)wa

X]EA 2

(1 - r)2< R Z)qu)

> (1= (1= 3 ) Prt,
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Thus, we finally obtain

—Z == > > &=(-1 ( ) > Py
lel] Aess]  Xied Aest]
ANE! £0 ANE] #0

Now we prove inequality (14). For this let 4 € Mf with 4 N E{ = . Then for
fixedze 4 N (X\E!) we define a = — (< 2eln Pz )> m/"). Without loss

of generality we may assume j = —1, i.e., a=0. For an index / with x; € 4
and y; = —1 we thus obtain

1= & — (W, @) ) + b7</")

_ _< D.c/n <D(x1)—<15(z)> << D.c/n Oz )>+b¢c/n>

<7T+a,

ie., {;=max{0,1 — 7 — a}. Analogously, for an index / with x; € 4 and y; =
1 we obtain

= &< (wp" aw)) + byl”

(v
<w I a) = 0@)) + (w0 ) + b7
T—

N

ie,&>=1—14a>0.Letus suppose that 1 — 7 — a=0. From the definition
of F, we get

- Z Lz—-—1—a)(1 - )( s 1>PX(A)+(1 —t+a)l —r)2imPX(A)

m
WEA 2

- r)(—i)PX(m—a(l—r)( 21“>PX(A)

2m

>(1-1)

T Px(4
2,,, x (4)

since (2i + 1)27" <1 and a<1 — 7. On the other hand, if 1 — 7 —a<0 we
have 1 — 17+ a > 2 — 2t and this implies

LY G0 -tk -0 A= (1 - 1) o

.)C[EA

o1 Fx (4).
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Therefore, we obtain

1 1 L
p Z &= Z Y az=(-1) T Z Px(4).
lel] Aest]  xi€d Aest
ANE/=) ANE/=0

Now we treat inequality (15). For this let 4 e.;z{;—;flil and fix ze 4.
Moreover, we define a == — (<w?’0/ " D(2)bye! "). Suppose that we have an

index / with x; € 4 and y; = —1. Then we obtain
L=< = ((wr" o6) +07")

_ <w‘;”°‘/", B(x)) — (D(z)> - (<w‘;””/”, @(z)> n b;”"/”>

S‘C—a,

ie., £, =>max{0,1 — 7 — a}. Analogously, we check that y; = 1 implies &; >
max{0,1 — 7 + a} for all / with x; € 4. If a € [-(1 — 1), ] — 7] we thus obtain

s 2 ax(0-eman-o(3-5)

Aecs t!
m—1_,

X1EA

+(0-t+a)(l - T)(%_sz>>PX(K2m -1)
1

>(1—1) (1 - 2m_1> (Py(Kyn1_1) — 27).

On the other hand, if a>1—1 we have 1 — t+a>2 — 27 and therefore
inequality (15) also follows. Finally, for a< — (1 — 1) we get | —t—a>
2 — 2t and thus we obtain inequality (15) in this case, too. Having proved
(13)—(15) we may now estimate

n )
I DY (1—21,,,) )
=1

aRaRY Ae,
: AmE-I( 0

2i 2 N
+2_m Z PX(A) + (1 — 2_m>PX(K2’"11) — 2T
Aest!
ANE/=0
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—a-2| 2 (1—2’;1> )

i=0 Vi
Jel=L1} Aey
AmE{ #0

2i 2 2
+om S P | + (1 - m)Px(szl—l) 2t

, 2
Aesf!
><1—f>2< () (et - 5) + Z k)
< 2 ) T2

(- 2tk ).

Moreover, since inequality (8) we have

2i L 2
> See(R))+ (1 —7>PX(K2,” 1)
i=0 2 2
Jei—L1}
om=1_9
2i 2 2t
> ; T <PX(X) > + (1 2,,,) (PX(sz 1) — )
2ml 1 2m—171 .
2i 2i 2t
=2 WP X
i=0 i=0
=2%p — 31

and thus we may continue the above estimate to
1 n
2 G
4
2/11—1_2
2i+ 1
>(1 —1) > (1 ’2+ ><PX(E’) ——) +2%p -7 |.  (16)

i=0 2
Jjet=L1}
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Furthermore, we also get

zmzljz (1 212;1> (Pe(E) - 55)

a2 . a2 .
_ _ 20\ p(E G E) - EEAE
= (1 2m)PX(E,. VE ) 3 (1 2m)2m
m-1_p m-1_p
1 ; 2t

i=0 i=0
Jet=L1;

' =2 2i
> (1 ——)PX(E} UE ") -2t
i=0 2"

and therefore inequality (16) yields

n m=1_p .
225,2(1—7)% 2p+ > (1—2’;_1)PX(E}UEI.1)—9T o
=1

i=0
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