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We show that support vector machines of the 1-norm soft margin type are

universally consistent provided that the regularization parameter is chosen in a

distinct manner and the kernel belongs to a specific class}the so-called universal

kernels}which has recently been considered by the author. In particular it is shown

that the 1-norm soft margin classifier with Gaussian RBF kernel on a compact subset

X of Rd and regularization parameter cn ¼ nb�1 is universally consistent, if n is the

training set size and 05b51=d: # 2002 Elsevier Science (USA)
1. INTRODUCTION AND RESULTS

In recent years support vector machines (SVMs) have been successfully
applied to many learning problems and they mostly outperformed neural
networks. Even though their development was motivated by results from
statistical learning theory the known bounds of their generalization
performance are not fully satisfactory. In particular, it is open whether
the support vector approach can yield sufficiently good results for all

classification problems, or whether it only works fine for ‘‘benign’’
distributions. The aim of this work is to answer this question for the 1-
norm soft margin classifier (1-SMC) equipped with several standard kernels
like the Gaussian radial basis function (RBF) kernel.

Let us start with a description of the problem of pattern recognition or
classification (cf. also [10, Chap. 1; 5, Chaps. 1 and 4]): assume that we have
a set X which is split into two disjoint and unknown classes X�1 and X1; i.e.,
X ¼ X�1 [ X1: Obviously, these classes can be encoded by a function f : X
! Y :¼ f�1; 1g with f�1ðf�1gÞ ¼ X�1 and f�1ðf1gÞ ¼ X1: The classifica-
tion task is to estimate f on the basis of finitely many training samples

ððx1; y1Þ; . . . ; ðxn; ynÞÞ 2 X 
 Y :
1 Research was supported by DFG Grant Ca 179/4-1.

768
0885-064X/02 $35.00
# 2002 Elsevier Science (USA)

All rights reserved.



SUPPORT VECTOR MACHINES 769
Here, the ith label yi contains information on the class membership of the
point xi: Note, that estimating f corresponds to reconstructing the classes
X�1 and X1 on the basis of the samples.

A typical example of a classification problem is to recognize
handwritten letters by an algorithm that has seen some examples of
these letters.

In the framework of statistical learning theory it is usually assumed
that the training samples are drawn i.i.d. according to an unknown
probability measure P on X 
 Y : To simplify our considerations
let us suppose in the following that X is a compact subset of Rd and P is
a Borel probability measure. By disintegration (cf. [7, Lemma 1.2.1])
there exists a map x/P ð:jxÞ from X into the set of all probability
measures on Y such that P is the joint distribution of ðP ð:jxÞÞx and
of the marginal distribution PX of P on X : We call P ð:j:Þ; which is in
fact a regular conditional probability, the supervisor. Since in this
model the labels yi are drawn according to the conditional probability
P ð:jxiÞ we may only expect noisy information, i.e., some of our labels
may be incorrect. However, the noiseless case P ð:jxÞ 2 f0; 1g for all
x 2 X which is usually called agnostic learning model is also covered
in this setting.

A classifier C is an algorithm that constructs to every training set T ¼
ððx1; y1Þ; . . . ; ðxn; ynÞÞ 2 ðX 
 Y Þn a (measurable) decision function fT : X ! Y :
Besides support vector machines which we shall introduce later on typical
examples of classifiers are the nearest-neighbor algorithm and neural
networks. In order to ‘‘learn’’ from the samples the decision function fT :
X ! Y should guarantee a small probability for the misclassification of an
example ðx; yÞ generated with distribution P independently to T : Here,
misclassification means f ðxÞ=y: To make this precise we define the risk of
fT by

RP ðfT Þ :¼
Z
X
Y

1ffT ðxÞ=ygP ðdx; dyÞ ¼ P ðfðx; yÞ : fT ðxÞ=ygÞ:

When considering noisy supervisors we cannot expect that we obtain zero
risk. Indeed, let us define

B1ðP Þ :¼ fx 2 X : P ðy ¼ 1jxÞ > P ðy ¼ �1jxÞg;

B�1ðP Þ :¼ fx 2 X : P ðy ¼ 1jxÞ5P ðy ¼ �1jxÞg;

B0ðP Þ :¼ fx 2 X : P ðy ¼ 1jxÞ ¼ P ðy ¼ �1jxÞg:
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Then for a function f n : X ! f�1; 1g with f nðxÞ ¼ 1 if x 2 B1ðP Þ and f nðxÞ
¼ �1 if x 2 B�1ðP Þ we have (cf. [6, Theorem 2.1])

RP ðf nÞ ¼ inffRP ðf Þ : f : X ! f�1; 1g measurableg ¼
Z
X
sðxÞPX ðdxÞ; ð1Þ

where the noise level s : X ! R is defined by sðxÞ :¼ P ðy ¼ �1jxÞ for x 2
B1ðP Þ; sðxÞ :¼ P ðy ¼ 1jxÞ for x 2 B�1ðP Þ and sðxÞ ¼ 1

2
otherwise. Equation (1)

shows that no function can yield less risk than f n: The function f n is called
an optimal Bayes decision rule and we write RP :¼ RP ðf nÞ for the Bayes risk.
Trying to obtain a risk close to RP corresponds to reconstructing the classes
B�1ðP Þ and B1ðP Þ in probability. Indeed, an easy computation similar to that
of Lemma 4 yields

RP ðfT Þ ¼ RP þ
Z
E
ð1 � 2sÞ dPX ;

where E :¼ fx 2 B�1ðP Þ : fT ðxÞ ¼ 1g [ fx 2 B1ðP Þ : fT ðxÞ ¼ �1g: Thus, the
risk of fT is close to RP if and only if PX ðEÞ is small. Note that in the
described model, we try to imitate the supervisors response in order to
recognize the underlying classes. In particular, we trust the supervisor in the
sense that even though some labels may be incorrect we assume that for
large sample sizes the supervisor tends to give more correct than incorrect
information for every x 2 X : It is doubtful whether one can learn without
this assumption.

As indicated above, a classifier C should guarantee with high probability
that RP ðfT Þ is close to RP provided that T is large enough. Asymptotically,
this means that

RP ðfT Þ ! RP

should hold in probability if jT j ! 1: In this case the algorithm C is called
consistent for the distribution P (cf. [6, Definition 6.1]). If a classifier is
consistent for all distributions on X 
 Y it is said to be universally

consistent. Although several algorithms such as the k-nearest-neighbor
classifier for k ! 1 and k=jT j ! 0 are universally consistent (cf. [6,
Theorem 6.4]) it is an open question whether SVMs are universally
consistent for a particular choice of the free parameters. Having proved
universal consistency for a classifier C does not guarantee that C works well
for a specific classification task. Actually, for every classifier and every
decreasing null sequence ðanÞ � ð0; 1

16
� there exists a distribution P with

RP ¼ 0 and

EPnRP ðfððx1;y1Þ;...;ðxn;ynÞÞÞ5an
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for all n51 (cf. [6, Theorem 7.2]). From this one easily deduces that for no
classifier there exists a positive, increasing and unbounded sequence (an) and
a real number p > 0 such that

PnðT 2 ðX 
 Y Þn : jRP ðfT Þ �RP j5eÞ4e�ce
pan ð2Þ

holds for all distributions P on X 
 Y and all n51 even if c > 0 depends on
P : In particular, this shows that for no classifier there exists a uniform rate
of convergence. Thus, every study on the rate of convergence of a specific
classifier must restrict the class of considered distributions. For examples
that demonstrate that these restrictions are severe we refer to [6, Chap. 7].

The ansatz of support vector machines is based on the generalized portrait

algorithm of [11] which we briefly describe now: suppose that we have a
linearly separable training set T ¼ ððx1; y1Þ; . . . ; ðxn; ynÞÞ; i.e., there exists an
element w 2 S‘d

2
:¼ fx 2 Rd : jjxjj2 ¼ 1g and a real number b 2 R with

hw; xii þ b > 0 for all i with yi ¼ 1;

hw; xii þ b50 for all i with yi ¼ �1:

Geometrically, this means that T can be correctly separated by the affine
linear hyperplane that is described by w and b: Now, the generalized portrait
algorithm constructs the correctly separating hyperplane ðwT ; bT Þ that has
maximal distance to the training points. The resulting decision function is
defined by

fT ðxÞ :¼ signðhwT ; xi þ bT Þ for all x 2 X : ð3Þ

An easy calculation (cf. [5, Chap. 6]) shows that up to normalization ðwT ; bT Þ
is the unique solution of the optimization problem

minimize hw;wi over w; b

subject to yiðhw; xii þ bÞ51 i ¼ 1; . . . ; n:
ð4Þ

Obviously, this ansatz has two shortcomings: firstly, a linear decision
function may be unsuitable to distinct between the classes B�1ðP Þ and B1ðP Þ:
In particular, training sets may occur that are not linearly separable and
thus ðwT ; bT Þ may not exist. Secondly, even if we have a linearly separable
training set, in the presence of noise it can happen that any good decision
function must classify some examples incorrectly.

To avoid the first problem SVMs map the input data x1; . . . ; xn into a
(possibly infinite dimensional) Hilbert space}the so-called feature

space}by a nonlinear feature map F : X ! H : Necessary properties of F
are discussed below. Now, the ansatz of the generalized portrait algorithm is
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implemented in H instead of X ; i.e., we simply replace x and xi in (3) and (4)
by FðxÞ and FðxiÞ and the vector w in (4) is chosen from H : The
corresponding algorithm is called maximal margin classifier and was the first
classifier of SVM type (cf. [1]).

To avoid the second problem the linear constraints in (4) are relaxed to
yiðhw; xii þ bÞ51 � xi; xi50: Then, in order to prevent trivial solutions the
objective function also has to take the slack variables xi into account.
Combining both modifications can lead to the following quadratic
optimization problem:

minimize hw;wi þ c
Pn
i¼1

xi for w; b; x

subject to yiðhw;FðxiÞi þ bÞ51 � xi; i ¼ 1; . . . ; n;

xi50; i ¼ 1; . . . ; n;

ð5Þ

where c > 0 is a free parameter which is usually tuned heuristically. Note
that, due to the special form of the supplemented term c

Pn
i¼1 xi; the

objective function is still convex. In the following we denote a solution of (5)
by ðwF;c

T ; bF;cT Þ 2 H 
 R: Recently, it was shown in [2] that this solution is not
unique in general. However, an algorithm CF;c that provides the decision
function

fF;c
T :¼ sign wF;c

T ;Fð:Þ
� �

þ bF;cT
� �

ð6Þ

for every training set T is called 1-norm soft margin classifier (1-SMC) with
feature map F and parameter c: The 1-SMC was introduced in [4] and its
excellent learning ability has been proved in several experiments since then
(cf. the brief surveys in [5, Chap. 8, 10, Chap. 12]).

To treat the above optimization problem algorithmically one usually
consider the Wolfe dual (cf. [5, Chap. 6] for a derivation):

maximize
Pn
i¼1

ai �
1

4

Pn
i;j¼1

yiyjaiajhFðxiÞ;FðxjÞi for ai; i ¼ 1; . . . ; n

subject to
Pn
i¼1

yiai ¼ 0; i ¼ 1; . . . ; n:

04ai4c;

ð7Þ

If ðan1 ; . . . ; a
n
nÞ denotes a solution of (7) the solution vector wF;c

T of (5) can be
computed by

wF;c
T ¼

1

2

Xn
i¼1

yiani FðxiÞ
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and the corresponding bias bF;cT by

bF;cT ¼ yj �
1

2

Xn
i¼1

yiani hFðxiÞ;FðxjÞi

for every anj with 05anj5c: Note that in both the optimization problem (7)
and in the evaluation of the resulting decision function (6) only inner
products of F with itself occur. Thus, instead of computing the feature map
directly, it suffices to know the function hFð:Þ;Fð:Þi : X 
 X ! R: This leads
to the following definition:

Definition 1. A function k : X 
 X ! R is said to be a kernel on X if
there exists a Hilbert space H and a map F : X ! H with

kðx; yÞ ¼ hFðxÞ;FðyÞi

for all x; y 2 X : We call F a feature map and H a feature space of k:

Note that both H and F are far from being unique. However, for a given
kernel there exists a canonical feature space (with associated feature map),
which is the so-called reproducing kernel Hilbert space (RKHS) (cf. [5,
Chap. 3]). As indicated above the decision function only depends on the
kernel. Thus we denote it by f k;cT in the following.

Using kernels instead of computing feature maps directly also works in
several other situations and is known as the so-called ‘‘kernel-trick’’ (cf. [8]).
In fact, every algorithm that is based on inner products only, can be
‘‘kernelized.’’ The advantage of this ansatz is that kernels often enlarge the
considered class of functions without changing the design of an algorithm.

Obviously, not every kernel is a good kernel, e.g., for the kernel with
feature map F ¼ idRd kernelizing has no effect and for the kernel with
feature map F � 1 the 1-SMC cannot learn at all. Hence, it is natural to ask
whether there are kernels that fit to every classification problem.
Fortunately, such kernels actually exist. To introduce them let k : X 
 X !
R be a kernel and let F : X ! H be a feature map of k: A function f : X ! R

is induced by the kernel k if there exists an element w 2 H such that f ¼
hw;Fð:Þi: We know from [9, Lemma 2] that this notion is independent of F
and H : The following definition made in [9] is fundamental:

Definition 2. A continuous kernel k : X 
 X ! R is called universal if
the set of all induced functions is dense in CðX Þ; i.e., for all g 2 CðX Þ and all
e > 0 there exists a function f induced by k with jjf � gjj14e:

In [9, Theorem 9] it was shown that k is universal if kðx; xÞ > 0 for all x 2 X
and spanfFn : n51g forms a sub-algebra of CðX Þ for a suitable feature map
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F : X ! ‘2 with FðxÞ ¼ ðFnðxÞÞn51: In particular, it turned out that the
following kernels were universal (cf. [9, Sect. 3]):

* the Gaussian RBF kernel expð�s2jj:� :jj22) for all s > 0 and all
compact X � Rd :

* the kernel expðh:; :iÞ for all compact subsets X � Rd :
* Vovk’s real infinite polynomial ð1 � h:; :iÞ�a for all a > 0 and all

compact subsets X � fx 2 Rd : jjxjj251g:
* the stronger regularized Fourier kernel kðx; yÞ :¼

Qd
i¼1

1�q2

2ð1�2q cosðxi�yiÞþq2Þ for all 05q51 and all compact X � ½0; 2pÞd :

* the weaker regularized Fourier kernel kðx; yÞ :¼
Qd

i¼1
p

2q sinhðp=qÞ cosh
p�jxi�yi j

q

	 

for all 05q51 and all compact X � ½0; 2pÞd :

In [9] it was also shown that using universal kernels the 1-SMC is consistent
for all classification problems with constant level of noise provided that the
regularization parameter c is chosen in a specific manner that depends on
the sample size n and the noise level. In this article, we show that these
classifiers are even universally consistent provided that the parameters are
chosen in this manner. To prepare this result recall that the covering
numbers of a metric space ðX ; dÞ are defined by

NððX ; dÞ; eÞ :¼ inf n 2 N : 9x1; . . . ; xn with X �
[n
i¼1

Bd ðxi; eÞ

( )

for all e > 0: The space ðX ; dÞ is precompact if and only if NððX ; dÞ; eÞ is finite
for all e > 0: We also need the following result which has been proved in [9,
Lemma 3 and Corollary 7]:

Lemma 1. Let k : X 
 X ! R be a universal kernel on a compact subset X
of Rd and F : X ! H be a feature map of k: Then F is continuous and

dkðx; yÞ :¼ jjFðxÞ � FðyÞjj

defines a metric on X such that id : ðX ; j:jÞ ! ðX ; dkÞ is continuous. In

particular, N ððX ; dkÞ; eÞ is finite for all e > 0:

Now, our first result which almost states universal consistency for the
1-SMC reads as follows:

Theorem 1. Let X � Rd be compact and k : X 
 X ! R be a universal

kernel. Then for all Borel probability measures P on X 
 Y and all e > 0 there

exists a constant cn > 0 such that for all c5cn and all n51 we have

PrnðfT 2 ðX 
 Y Þn : RP ðf
k;c=n
T Þ4RP þ egÞ51 � 2Me�ðe6=229M2Þn;

where Prn is the outer probability of Pn and M :¼ 64
e N

	
ðX ; dkÞ; e

32
ffiffi
c

p 

:
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This theorem shows that given a classification problem, a universal kernel
and an accuracy e we just have to choose the parameter c ‘‘large enough’’ to
obtain asymptotically a risk which is optimal up to e: It turns out that the
universal consistency of the 1-SMC which is stated in the following theorem
is a direct consequence of Theorem 1:

Theorem 2. Let X � Rd be compact and k be a universal kernel on X
with NððX ; dkÞ; eÞ 2 Oðe�aÞ for some a > 0: Suppose that we have a positive

sequence ðcnÞ with ncn ! 1 and cn 2 Oðnb�1Þ for some 05b51
a: Then for all

Borel probability measures P on X 
 Y and all e > 0 we have

lim
n!1

PrnðfT 2 ðX 
 Y Þn : RP ðf
k;cn
T Þ4RP þ egÞ ¼ 1:

Since for no classifier there is a uniform rate of convergence we have not
estimated the probability in the above equation asymptotically. Moreover
note, that by (2) the constant cn of Theorem 1 cannot be of the form
cn ¼ cP e�q; where cP > 0 depends on the distribution P and q > 0 does not
depend on it. In other words, the influence of the unknown measure P on cn

is rather strong and thus, it is almost useless to determine the (asymptotic)
behavior of cn with respect to P and e in the general case. If we only consider
noiseless problems which additionally guarantee a large margin, i.e., the
classes B�1ðP Þ and B1ðP Þ have strictly positive distance, then cn neither
depends on the distribution nor on e (cf. [9]). In particular, we obtain a
uniform rate of convergence, namely 1 � e�cen; where c > 0 only depends on
the margin.

For the Gaussian RBF kernel which is one of the most important kernels
we immediately obtain the following corollary:

Corollary 1. Let X � Rd be compact and k be a Gaussian RBF kernel

on X : Moreover, let cn :¼ nb�1 for some 05b51
d and all n51: Then the

1-SMC with kernel k and sequence ðcnÞ is universally consistent.

2. PROOFS OF THE THEOREMS

Before we prove Theorem 1 we would like to explain the basic idea of the
proof. For this, let us suppose that we have an induced function hwn;Fð:Þi
which has the constant values 1 and �1 on B1ðP Þ and B�1ðP Þ; respectively.
Moreover, we assume that the supervisor has a constant level of noise p 2
½0; 1

2
Þ: Now let us take a ‘‘representative’’ training set T of length n: Then one

easily checks (cf. Lemma 5) that

wF;c=n
T ;wF;c=n

T

D E
þ
c
n

Xn
l¼1

xl9hwn;wni þ 2cp:
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Here 9 means that the relation 4 only holds ‘‘approximately.’’ On the
other hand, by the continuity of the decision function wF;c=n

T a misclassified
(compared with the optimal Bayes decision rule) element z forces the sum of
those slack variables, which belong to samples in the ‘‘neighborhood’’ of z;
to be ‘‘approximately’’ greater than their cardinality (cf. (13) in the proof of
Lemma 6). Conversely, for a correctly classified element the corresponding
sum of the slack variables is ‘‘approximately’’ larger than 2p times their
cardinality (cf. (14) in the proof of Lemma 6). Combining these
considerations we obtain

cð1 � 2pÞPX ðEÞ þ 2cp ¼ cðPX ðEÞ þ 2pPX ðX =EÞÞ

9 wF;c=n
T ;wF;c=n

T

D E
þ
c
n

Xn
l¼1

xl

9 hwn;wni þ 2cp;

where E denotes the set of misclassified (compared with the optimal Bayes
decision rule) elements. Thus PX ðEÞ must be ‘‘small’’ if we have chosen c
‘‘large enough.’’

The difficulty of the proof below is firstly, to transfer the idea to the
general case and secondly, to give exact formulations of ‘‘representative,’’
‘‘neighborhood’’ and ‘‘approximately.’’ Thus, we firstly concentrate
ourselves on the constructive part of the proof, which specifies these
notions. Necessary, but lengthy computations are worked out in several
lemmas in the next section.

Proof of Theorem 1. For brevity’s sake, let sðxÞ :¼ P ðy ¼ �1jxÞ for x 2
B1ðP Þ; sðxÞ :¼ P ðy ¼ 1jxÞ for x 2 B�1ðP Þ and sðxÞ ¼ 1

2
otherwise. Then an easy

computation (cf. Eq. (1)) shows

RP ¼
Z
X
s dPX :

Trivially, we may assume without loss of generality, that e 2 ð0; 1�: We define
t :¼ e

32
and fix an integer m with 1

2m
4t4 1

2m�1: Furthermore, let

Xi :¼ x 2 X :
i

2m
4sðxÞ5

iþ 1

2m

� �
; i ¼ 0; . . . ; 2m�1 � 2;

X2m�1�1 :¼ x 2 X :
1

2
�

1

2m
4sðxÞ4

1

2

� �
:
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Note, that this definition immediately yields

X2m�1�1

i¼0

i
2m
PX ðXiÞ4RP4

X2m�1�1

i¼0

i
2m
PX ðXiÞ þ t: ð8Þ

Due to the compactness of X the measure PX is regular. Hence there exist
compact subsets *KK

j
i � Xji :¼ Xi \ BjðP Þ; i ¼ 0; . . . ; 2m�1 � 2; j 2 f�1; 1g and

*KK2m�1�1 � X2m�1�1 such that

PX ðX
j
i = *KK

j
i Þ4

t
2m

; i ¼ 0; . . . ; 2m�1 � 2; j 2 f�1; 1g;

PX ðX2m�1�1= *KK2m�1�1Þ4
t

2m
:

For later purpose, we write *KK
1

2m�1�1 :¼ *KK2m�1�1 \ ðB1ðP Þ [ B0ðP ÞÞ and
*KK
�1

2m�1�1 :¼ *KK2m�1�1 \ B�1ðP Þ: Furthermore, let F : X ! H be a feature
map of k: Since k is universal, Lemma 2 provides an element wn 2 H
such that

hwn;FðxÞi 2 ½1; 1 þ t�; x 2
S2m�1�2

i¼0

*KK
1

i ;

hwn;FðxÞi 2 ½�ð1 þ tÞ;�1�; x 2
S2m�1�2

i¼0

*KK
�1

i ;

hwn;FðxÞi 2 ½�t; t�; x 2 K2m�1�1

hold and hwn;Fð:Þi only takes values between �ð1 þ tÞ and 1 þ t: We

define cn :¼ 34
e jjw

njj2H and for fixed c5cn we introduce s :¼ t ffiffi
c

p : Then

for every i ¼ 0; . . . ; 2m�1 � 1 and j 2 f�1; 1g there exists a finite partition
*AA
j
i of *KK

j
i such that each A 2 *AA

j
i has diameter less than or equal to s

with respect to the metric dk introduced in Lemma 1. Moreover, by the
definition of the covering numbers we can also ensure j *AA

j
i j4NððX ; dkÞ; sÞ:

We define

A
j
i :¼ A 2 *AA

j
i : PX ðAÞ5

2t
M

� �
:

Note that this immediately yields that the cardinality of the union of all A
j
i

is smaller than or equal to M : For later purpose we write Kji :¼
S
A2Aj

i
A for

all i ¼ 0; . . . ; 2m�1 � 1; j 2 f�1; 1g: Now we construct ‘‘representative’’
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training sets. For this let

F þ
n;A :¼

�
ððx1; y1Þ; . . . ; ðxn; ynÞÞ : jfl : xl 2 A; yl ¼ jgj

5ð1 � tÞ 1 �
iþ 1

2m

� �
PX ðAÞn

�
;

F�
n;A :¼ ððx1; y1Þ; . . . ; ðxn; ynÞÞ : jfl : xl 2 A; yl=jgj5ð1 � tÞ

i
2m
PX ðAÞn

� �
;

where n51; i ¼ 0; . . . ; 2m�1 � 2; j 2 f�1; 1g and A 2 A
j
i : Moreover, for A 2

A
j
2m�1�1

; j 2 f�1; 1g let

F þ
n;A :¼

(
ððx1; y1Þ; . . . ; ðxn; ynÞÞ : jfl : xl 2 A; yl ¼ 1gj

5ð1 � tÞ
1

2
�

1

2m

� �
PX ðAÞn

)
;

F �
n;A :¼

(
ððx1; y1Þ; . . . ; ðxn; ynÞÞ : jfl : xl 2 A; yl ¼ �1gj

5ð1 � tÞ
1

2
�

1

2m

� �
PX ðAÞn:

)

Furthermore, for n51 we denote by Fn the intersection of all of the above
sets, i.e.,

Fn :¼
\2m�1�1

i¼0
j2f�1;1g

\
A2Aj

i

F þ
n;A \ F �

n;A

	 

:

By Lemma 3 we obtain PnðFnÞ51 � 2Me�2ðt6=M2Þn for all n51: Therefore it

suffices to show that RP f k;c=nT

	 

4RP þ e holds for all T 2 Fn: Let us assume

the converse, i.e., there exists a training set T ¼ ððx1; y1Þ; . . . ; ðxn; ynÞÞ 2 Fn
with

RP f k;c=nT

	 

> RP þ e: ð9Þ

Then for i ¼ 0; . . . ; 2m�1 � 2 and j 2 f�1; 1g we denote the set of
misclassified points (compared with the optimal Bayes decision rule) in X j

i
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by Eji ; i.e.,

Eji :¼ x 2 X j
i : f k;c=nT ðxÞ=j

n o
:

Analogously, let

Ej
2m�1�1

:¼ x 2 X2m�1�1 \ BjðP Þ : f k;c=nT ðxÞ=j
n o

:

Since we know by Lemma 4 that

RP f k;c=nT

	 

4RP þ 2�mþ1PX E1

2m�1�1 [ E�1
2m�1�1

� �
þ
X2m�1�2

i¼0

1 �
i

2m�1

� �
PX E1

i [ E�1
i

� �

holds, our assumption (9) and 2�mþ1PX E1
2m�1�1

[ E�1
2m�1�1

� �
42�mþ142t yield

e� 2t5
X2m�1�2

i¼0

1 �
i

2m�1

� �
PX E1

i [ E�1
i

� �
: ð10Þ

Now let us denote the slack variables, which correspond to a fixed solution
ðwF;c=n

T ; bF;c=nT Þ of our optimization problem (5), by x1; . . . ; xn: Then Lemma 5
yields

wF;c=n
T ;wF;c=n

T

D E
þ
c
n

Xn
l¼1

xl4hwn;wni þ 2cð1 � tÞðRP þ 9tÞ: ð11Þ

On the other hand, by Lemma 6 and inequality (10) we obtain

c
n

Xn
l¼1

xl5ð1 � tÞ2c 2RP þ
X2m�1�2

i¼0

1 �
i

2m�1

� �
PX E1

i [ E�1
i

� �
� 9t

 !

> ð1 � tÞ2cð2RP þ e� 11tÞ

¼ cð1 � tÞð2RP þ e� 11t� 2tRP � et� 11t2Þ

> cð1 � tÞð2RP þ e� 13tÞ:
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Therefore our assumption (9) must be false since inequality (11) yields

jjwnjj2H > cð1 � tÞð2RP þ e� 13tÞ � cð1 � tÞð2RP þ 18tÞ

¼ cð1 � tÞðe� 31tÞ

5c 1 �
1

32

� �
e

32

5jjwnjj2H : ]

Proof of Theorem 2. Since ncn ! 1 there exists an integer n0 such that
ncn5cn for all n5n0: Thus for n5n0 Theorem 1 yields

Prn T : RP f
k;cn
T

� �
4RP þ e

� �� �
51 � 2Mne�ðe6=229M2

n Þn;

where Mn :¼ 64
e N

	
ðX ; dkÞ; e

32
ffiffiffiffiffi
ncn

p 

: Moreover, by the assumption on the

covering numbers of ðX ; dkÞ we obtain M2
n 2 OððncnÞ

aÞ and thus
nM�2

n ! 1: ]

Proof of Corollary 1. Let s > 0 and kðx; yÞ :¼ exp �s2jjx� yjj22
� �

: Since
1 � e�t4t for all t50 we observe

dkðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 2 expð�s2jjx� yjj22Þ

q
4

ffiffiffi
2

p
sjjx� yjj2:

This yields NððX ; dkÞ; eÞ4N
	
ðX ; jj:jj2Þ;

effiffi
2

p
s



and thus NððX ; dkÞ; eÞ 2

Oðe�d Þ (cf. [3, p. 9]). ]

3. PROOFS OF THE LEMMAS

In this section, we show the lemmas used in the proof of Theorem 1. We
begin with the following result which is needed to construct an almost
optimal decision function:

Lemma 2. Let X � Rn be compact and k : X 
 X ! R be a universal

kernel. Then for all e > 0 and all pairwise disjoint and compact subsets K�1;K0

and K1 there exists an induced function f : X ! ½�ð1 þ eÞ; 1 þ e� such that

f ðxÞ 2 ½1; 1 þ e�; x 2 K1;

f ðxÞ 2 ½�ð1 þ eÞ;�1�; x 2 K�1;

f ðxÞ 2 ½�e; e�; x 2 K0:
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Proof. It suffices to show that there exists a continuous function g on X
with values in ½�ð1 þ e=2Þ; 1 þ e=2� such that gðxÞ ¼ 1 þ e=2 if x 2 K1; gðxÞ ¼
�ð1 þ e=2Þ if x 2 K�1 and gðxÞ ¼ 0 if x 2 K0: In fact,

x/ 1 þ
e
2

	 
 dðx;K�1 [ K0Þ
dðx;K�1 [ K0Þ þ dðx;K1Þ

�
dðx;K1 [ K0Þ

dðx;K1 [ K0Þ þ dðx;K�1Þ

� �

is such a function. ]

The next lemma estimates the probabilities of the ‘‘representative’’
training sets constructed in the proof of Theorem 1:

Lemma 3. Using the notations of the proof of Theorem 1 we have

PnðFnÞ51 � 2Me�2ðt6=M2Þn:

Proof. Let us recall Hoeffding’s inequality (cf. [6, Theorem 8.1]), which
in particular states that for all i.i.d. random variables zi : ðO;A;QÞ ! f0; 1g
and all d 2 ð0; 1Þ; n51 we have

Qn
Xn
i¼1

zi4ð1 � dÞqn

 !
4e�2ðdqÞ2n;

where q :¼ Qðzi ¼ 1Þ ¼ Ezi: Thus for i ¼ 0; . . . ; 2m�1 � 2; j 2 f�1; 1g and A 2
A

j
i we get

PnðF þ
n;AÞ ¼ P

n

��
ððx1; y1Þ; . . . ; ðxn; ynÞÞ : jfl : xl 2 A; yl ¼ jgj

5ð1 � tÞ 1 �
iþ 1

2m

� �
PX ðAÞn

��

51 � Pn
��

ððx1; y1Þ; . . . ; ðxn; ynÞÞ : jfl : xl 2 A; yl ¼ jgj

4ð1 � tÞ
Z
A
ð1 � sÞ dPX n

��

5 1 � e�2ðt4=M2Þn:

This yields PnðZn=F þ
n;AÞ4e�2ðt4=M2Þn4e�2ðt6=M2Þn; where Z :¼ X 
 Y : Analo-

gously, we obtain PnðZn=F�
n;AÞ4e�2ðt6=M2Þn for all A 2 A

j
2m�1�1

; j 2 f�1; 1g:
Moreover, PnðZn=F �

n;AÞ4e�2ðt6=M2Þn is trivial for j 2 f�1; 1g and A 2 A
j
0:
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Finally, for i ¼ 1; . . . ; 2m�1 � 2; j 2 f�1; 1g; A 2 A
j
i and q :¼

R
A s dPX we find

PnðF þ
n;AÞ51 � Pn

��
ððx1; y1Þ; . . . ; ðxn; ynÞÞ : jfl : xl 2 A; yl ¼ jgj

4ð1 � tÞ
Z
A
s dPX n

��

51 � e�2t2q2n

51 � e�2t2ðt2=MÞ2n;

i.e., PnðZn=F þ
n;AÞ4e�2ðt6=M2Þn: The definition of Fn thus yields

PnðF nÞ ¼ Pn
\2m�1�1

i¼0
j2f�1;1g

\
A2Aj

i

F þ
n;A \ F �

n;A

	 
0
B@

1
CA

¼ 1 � Pn
[2m�1�1

i¼0
j2f�1;1g

[
A2Aj

i

Zn=F þ
n;A

	 

[ Zn=F �

n;A

	 
	 
0
B@

1
CA

5 1 �
X2m�1�1

i¼0
j2f�1;1g

X
A2Aj

i

P n Zn=F þ
n;A

	 

�

X2m�1�1

i¼0
j2f�1;1g

X
A2Aj

i

P n Zn=F �
n;A

	 


5 1 � 2Me�2ðt6=M2Þn: ]

The following lemma estimates the risk of a decision function from above:

Lemma 4. With the notations of the proof of Theorem 1 we have

RP f k;c=nT

	 

4RP þ 2�mþ1PX E1

2m�1�1 [ E�1
2m�1�1

� �
þ
X2m�1�2

i¼0

1 �
i

2m�1

� �
PX E1

i [ E�1
i

� �
:

Proof. Firstly, with E1 :¼
S2m�1�1
i¼0 E1

i we observe thatZ
B1ðP Þ

1
f k;c=nT ðxÞ=y
� �P ðdx; dyÞ

¼
Z
B1ðP Þ

1
f k;c=nT ðxÞ=�1
� �P ðy ¼ �1jxÞ þ 1

f k;c=nT ðxÞ=1
� �P ðy ¼ 1jxÞ

� �
PX ðdxÞ
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¼
Z
B1ðP Þ=E1

P ðy ¼ �1jxÞPX ðdxÞ þ
Z
E1

P ðy ¼ 1jxÞPX ðdxÞ

¼
Z
B1ðP Þ

P ðy ¼ �1jxÞPX ðdxÞ þ
Z
E1

ð1 � 2P ðy ¼ �1jxÞÞPX ðdxÞ

4
Z
B1ðP Þ

P ðy ¼ �1jxÞPX ðdxÞ þ
X2m�1�1

i¼0

1 �
i

2m�1

� �
PX E1

i

� �

holds. Analogously, we obtainZ
B�1ðP Þ

1
f k;c=nT ðxÞ=y
� �P ðdx; dyÞ

4
Z
B�1ðP Þ

P ðy ¼ 1jxÞPX ðdxÞ þ
X2m�1�1

i¼0

1 �
i

2m�1

� �
PX E�1

i

� �
:

Therefore, we have

RP f k;c=nT

	 

¼
Z
B1ðP Þ

1
f k;c=nT ðxÞ=y
� �P ðdx; dyÞ

þ
Z
B�1ðP Þ

1
f k;c=nT ðxÞ=y
� �P ðdx; dyÞ þ 1

2
PX ðB0ðP ÞÞ

4RP þ
X2m�1�1

i¼0

1 �
i

2m�1

� �
PX E1

i [ E�1
i

� �
¼RP þ 2�mþ1PX E1

2m�1�1 [ E�1
2m�1�1

� �

þ
X2m�1�2

i¼0

1 �
i

2m�1

� �
PX E1

i [ E�1
i

� �
: ]

The next lemma provides an estimate for the value of the optimization
problem (5) from above:

Lemma 5. With the notations of the proof of Theorem 1 we have

wF;c=n
T ;wF;c=n

T

D E
þ
c
n

Xn
l¼1

xl4hwn;wni þ 2cð1 � tÞðRP þ 9tÞ:

Proof. We will compare the value of optimization problem (5) with the
value of the objective function in ðwn; 0Þ: Thus, firstly have to construct an
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admissible slack variable xn corresponding to ðwn; 0Þ: For this let ðxl; ylÞ
be a sample of T : If xl 2 K1

i for some i ¼ 0; . . . ; 2m�1 � 2 and xl is
correctly labeled, i.e., yl ¼ 1; we have ylhwn;FðxlÞi51: Hence, let
xnl :¼ 0: Analogously, we define xnl :¼ 0 if xl 2 K�1

i for some i ¼ 0; . . . ; 2m�1 �
2 and yl ¼ �1: Conversely, if xl 2 K1

i for some i ¼ 0; . . . ; 2m�1 � 2 and
xl is not correctly labeled, i.e., yl ¼ �1; we have ylhwn;FðxlÞi5
�ð1 þ tÞ by the definition of wn: Thus, let xnl :¼ 2 þ t: Again, if
xl 2 K�1

i for some i ¼ 0; . . . ; 2m�1 � 2 and yl ¼ 1 we analogously define
xnl :¼ 2 þ t: If xl 2 K2m�1�1 is positively labeled, i.e., yl ¼ 1; we get
ylhwn;FðxlÞi5� t: Hence, let xnl :¼ 1 þ t: This may also be done if
xl 2 K2m�1�1 and yl ¼ �1: Finally, if xl is neither an element of any
Kji ; i ¼ 0; . . . ; 2m�1 � 2; j 2 f�1; 1g nor an element of K2m�1�1 we obtain
jhwn;FðxlÞij41 þ t: Thus let xnl :¼ 2 þ t in this case. For brevity’s sake, we
now define

a1 :¼ l : xl 2
[2m�1�2

i¼0

K1
i ; yl ¼ 1

( )&&&&&
&&&&&þ l : xl 2

[2m�1�2

i¼0

K�1
i ; yl ¼ �1

( )&&&&&
&&&&&;

a2 :¼ l : xl 2
[2m�1�2

i¼0

K1
i ; yl ¼ �1

( )&&&&&
&&&&&þ l : xl 2

[2m�1�2

i¼0

K�1
i ; yl ¼ 1

( )&&&&&
&&&&&;

a3 :¼ l : xl 2 K2m�1�1f gj j;

a4 :¼ l : xl =2 K2m�1�1 [
[2m�1�2

i¼0

K1
i [ K�1

i

� �( )&&&&&
&&&&&:

Since the training set T has length n we obviously have a1 þ a2 þ a3 þ a4 ¼
n: Moreover, the above considerations on xn yield

wF;c=n
T ;wF;c=n

T

D E
þ
c
n

Xn
i¼1

xl4hwn;wni þ
c
n

Xn
l¼1

xnl

4hwn;wni þ
c
n
ðð2 þ tÞa2 þ ð1 þ tÞa3 þ ð2 þ tÞa4Þ

¼ hwn;wni þ
c
n
ðð2 þ tÞ ðn� a1Þ � a3Þ ð12Þ
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since wF;c=n
T ; bF;c=nT

	 

together with the corresponding slack variable x is a

solution of problem (5). Furthermore, the construction of Fn implies

2 þ t
n

ðn� a1Þ4ð2 þ tÞ 1 �
X2m�1�2

i¼0
j2f�1;1g

X
A2Aj

i

ð1 � tÞ 1 �
iþ 1

2m

� �
PX ðAÞ

0
B@

1
CA

42 � 2ð1 � tÞ
X2m�1�2

i¼0

1 �
iþ 1

2m

� �
PX *KK

1

i [ *KK
�1

i

	 

þ 5t

¼ 2ð1 � tÞ 1 �
X2m�1�2

i¼0

1 �
iþ 1

2m

� �
PX *KK

1

i [ *KK
�1

i

	 
 !
þ 7t

42ð1 � tÞ 1 �
X2m�1�2

i¼0

PX *KK
1

i [ *KK
�1

i

	 
 

þ
X2m�1�2

i¼0

i
2m
PX *KK

1

i [ *KK
�1

i

	 
!
þ 9t:

Considering F þ
n;A and F �

n;A for all A 2 A
j
2m�1�1

; j 2 f�1; 1g we also get

a3

n
52

X
A2Aj

2m�1�1

j2f�1;1g

ð1 � tÞ
1

2
�

1

2m

� �
PX ðAÞ

52ð1 � tÞ
1

2
�

1

2m

� �
PX *KK2m�1�1

� �
� 2t

� �
52ð1 � tÞ PX *KK2m�1�1

� �
�

1

2
�

1

2m

� �
PX *KK2m�1�1

� �� �
� 6t:

If we combine these estimates with inequality (8) we thus obtain

1

n
ðð2 þ tÞðn� a1Þ � a3Þ

42ð1 � tÞ 1 �
X2m�1�1

i¼0

PX *KK
1

i [ *KK
�1

i

	 

þ
X2m�1�1

i¼0

i
2m
PX *KK

1

i [ *KK
�1

i

	 
 !
þ 15t

42ð1 � tÞ tþ
X2m�1�1

i¼0

i
2m
PX ðXiÞ

 !
þ 15t
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42ð1 � tÞðtþRP Þ þ 15t

42ð1 � tÞðRP þ 9tÞ:

The assertion now follows with estimate (12). ]

The last lemma estimates the value of optimization problem (5) from
below:

Lemma 6. With the notations of the proof of Theorem 1 we have

c
n

Xn
l¼1

xl5ð1 � tÞ2c 2RP þ
X2m�1�2

i¼0

1 �
i

2m�1

� �
PX E1

i [ E�1
i

� �
� 9t

 !
:

Proof. For i ¼ 0; . . . ; 2m�1 � 2 and j 2 f�1; 1g we define

Iji :¼
[
A2Aj

i

A\Eji=|

fl : xl 2 Ag;

Jji :¼
[
A2Aj

i

A\Eji=|

fl : xl 2 Ag:

Now, our first goal is to show that

1

n

X
l2Iji

xl5ð1 � tÞ2 1 �
1

2m

� � X
A2Aj

i

A\Eji=|

PX ðAÞ; ð13Þ

1

n

X
l2Jji

xl5ð1 � tÞ2
i

2m�1

X
A2Aj

i

A\Eji¼|

PX ðAÞ; ð14Þ

1

n

X
A2A�1

2m�1�1
xl2A

xl5ð1 � tÞ2 1 �
1

2m�1

� �
PX *KK2m�1�1

� �
� 2t

� �
ð15Þ

hold for all i ¼ 0; . . . ; 2m�1 � 2 and j 2 f�1; 1g: For this, we firstly compare
the value of optimization problem (5) with the value of the objective
function in ð0; 0Þ and obtain

wF;c=n
T ;wF;c=n

T

D E
4 wF;c=n

T ;wF;c=n
T

D E
þ
c
n

Xn
l¼1

xl4c;
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i.e., jjwF;c=n
T jj4

ffiffiffi
c

p
: To show inequality (13) let A 2 A

j
i with A\ Eji=|: Then

for fixed z 2 A\ Eji we define a :¼ �ðhwF;c=n
T ;FðzÞi þ bF;c=nT Þ: Without loss of

generality we may assume j ¼ 1; i.e., a50: Now, for an index l with xl 2 A
and yl ¼ 1 we have jjFðxlÞ � FðzÞjj ¼ dkðxl; zÞ4s ¼ t ffiffi

c
p and this yields

1 � xl4 wF;c=n
T ;FðxlÞ

D E
þ bF;c=nT

¼ wF;c=n
T ;FðxlÞ � FðzÞ

D E
þ wF;c=n

T ;FðzÞ
D E

þ bF;c=nT

4jjwF;c=n
T jj � jjFðxlÞ � FðzÞjj � a

4t� a;

i.e., xl51 � tþ a > 0: Analogously, for an index l with xl 2 A and yl ¼ �1
we obtain

1 � xl4� wF;c=n
T ;FðxlÞ

D F;c=n

T

� �

¼ � wF;c=n
T ;FðxlÞ � FðzÞ

D E
� wF;c=n

T ;FðzÞ
D E

þ bF;c=nT

	 

4tþ a;

i.e., xl5maxf0; 1 � t� ag: Let us suppose that 1 � t� a50: Then by the
definition of Fn we get

1

n

X
xl2A

xl5ð1 � tþ aÞð1 � tÞ 1 �
iþ 1

2m

� �
PX ðAÞ þ ð1 � t� aÞð1 � tÞ

i
2m
PX ðAÞ

¼ ð1 � tÞ2 1 �
1

2m

� �
PX ðAÞ þ að1 � tÞ 1 �

2iþ 1

2m

� �
PX ðAÞ

5ð1 � tÞ2 1 �
1

2m

� �
PX ðAÞ

since ð2iþ 1Þ2�m51 and a50: On the other hand, if 1 � t� a50 we have
1 � tþ a > 2 � 2t and this, together with ð2iþ 1Þ2�m51; implies

1

n

X
xl2A

xl5ð1 � tþ aÞð1 � tÞ 1 �
iþ 1

2m

� �
PX ðAÞ

> ð1 � tÞ2 2 �
2iþ 2

2m

� �
PX ðAÞ

> ð1 � tÞ2 1 �
1

2m

� �
PX ðAÞ:
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Thus, we finally obtain

1

n

X
l2Iji

xl ¼
1

n

X
A2Aj

i

A\Eji=|

X
xl2A

xl5ð1 � tÞ2 1 �
1

2m

� � X
A2Aj

i

A\Eji=|

PX ðAÞ:

Now we prove inequality (14). For this let A 2 A
j
i with A\ Eji ¼ |: Then for

fixed z 2 A\ X =Eji
� �

we define a :¼ � wF;c=n
T ;FðzÞ

D E
þ bF;c=nT

	 

: Without loss

of generality we may assume j ¼ �1; i.e., a50: For an index l with xl 2 A
and yl ¼ �1 we thus obtain

1 � xl4 � wF;c=n
T ;FðxlÞ

D E
þ bF;c=nT

	 


¼ � wF;c=n
T ;FðxlÞ � FðzÞ

D E
� wF;c=n

T ;FðzÞ
D E

þ bF;c=nT

	 

4tþ a;

i.e., xl5maxf0; 1 � t� ag: Analogously, for an index l with xl 2 A and yl ¼
1 we obtain

1 � xl4 wF;c=n
T ;FðxlÞ

D E
þ bF;c=nT

¼ wF;c=n
T ;FðxlÞ � FðzÞ

D E
þ wF;c=n

T ;FðzÞ
D E

þ bF;c=nT

4t� a;

i.e., xl51 � tþ a > 0: Let us suppose that 1 � t� a50: From the definition
of Fn we get

1

n

X
xl2A

xl5ð1 � t� aÞð1 � tÞ 1 �
iþ 1

2m

� �
PX ðAÞ þ ð1 � tþ aÞð1 � tÞ

i
2m
PX ðAÞ

¼ ð1 � tÞ2 1 �
1

2m

� �
PX ðAÞ � að1 � tÞ 1 �

2iþ 1

2m

� �
PX ðAÞ

5ð1 � tÞ2
i

2m�1
PX ðAÞ

since ð2iþ 1Þ2�m51 and a41 � t: On the other hand, if 1 � t� a50 we
have 1 � tþ a > 2 � 2t and this implies

1

n

X
xl2A

xl5ð1 � tþ aÞð1 � tÞ
i

2m
PX ðAÞ5ð1 � tÞ2

i
2m�1

PX ðAÞ:
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Therefore, we obtain

1

n

X
l2Iji

xl ¼
1

n

X
A2Aj

i

A\Eji¼|

X
xl2A

xl5ð1 � tÞ2
i

2m�1

X
A2Aj

i

A\Eji¼|

PX ðAÞ:

Now we treat inequality (15). For this let A 2 A�1
2m�1�1

and fix z 2 A:

Moreover, we define a :¼ � wF;c=n
T ;FðzÞ

D
bF;c=nT

	 

: Suppose that we have an

index l with xl 2 A and yl ¼ �1: Then we obtain

1 � xl4 � wF;c=n
T ;FðxlÞ

D E
þ bF;c=nT

	 

¼ � wF;c=n

T ;FðxlÞ � FðzÞ
D E

� wF;c=n
T ;FðzÞ

D E
þ bF;c=nT

	 

4t� a;

i.e., xl5maxf0; 1 � t� ag: Analogously, we check that yl ¼ 1 implies xl5
maxf0; 1 � tþ ag for all l with xl 2 A: If a 2 ½�ð1 � tÞ; 1 � t� we thus obtain

1

n

X
A2A�1

2m�1�1
xl2A

xl5 ð1 � t� aÞð1 � tÞ
1

2
�

1

2m

� ��

þ ð1 � tþ aÞ ð1 � tÞ
1

2
�

1

2m

� ��
PX ðK2m�1�1Þ

5ð1 � tÞ2 1 �
1

2m�1

� �
ðPX ð *KK2m�1�1Þ � 2tÞ:

On the other hand, if a > 1 � t we have 1 � tþ a > 2 � 2t and therefore
inequality (15) also follows. Finally, for a5� ð1 � tÞ we get 1 � t� a >
2 � 2t and thus we obtain inequality (15) in this case, too. Having proved
(13)–(15) we may now estimate

1

n

Xn
l¼1

xl5ð1 � tÞ2
X2m�1�2

i¼0
j2f�1;1g

1 �
1

2m

� � X
A2Aj

i

A\Eji=|

PX ðAÞ

0
BBB@

0
BBBB@

þ
2i
2m

X
A2Aj

i

A\Eji¼|

PX ðAÞ

1
CCCAþ 1 �

2

2m

� �
PX ð *KK2m�1�1Þ � 2t

1
CCCCA
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¼ ð1 � tÞ2

 
X2m�1�2

i¼0
j2f�1;1g

 
1 �

2iþ 1

2m

� � X
A2Aj

i

A\Eji=|

PX ðAÞ:

þ
2i
2m

X
A2Aj

i

PX ðAÞ

!
þ 1 �

2

2m

� �
PX ð *KK2m�1�1Þ � 2t

!

5ð1 � tÞ2
 X2m�1�2

i¼0
j2f�1;1g

1 �
2iþ 1

2m

� �
PX Eji
� �

�
t

2m

	 

þ

2i
2m
PX ð *KK

j
i Þ

� �

þ 1 �
2

2m

� �
PX ð *KK2m�1�1Þ � 4t

�
:

Moreover, since inequality (8) we have

X2m�1�2

i¼0
j2f�1;1g

2i
2m
PX *KK

j
i

	 

þ 1 �

2

2m

� �
PX *KK2m�1�1

� �

5
X2m�1�2

i¼0

2i
2m

PX ðXiÞ �
2t
2m

� �
þ 1 �

2

2m

� �
PX ðX2m�1�1Þ �

2t
2m

� �

¼
X2m�1�1

i¼0

2i
2m
PX ðXiÞ �

X2m�1�1

i¼0

2i
2m

2t
2m

52RP � 3t

and thus we may continue the above estimate to

1

n

Xn
l¼1

xl

5ð1 � tÞ2
X2m�1�2

i¼0
j2f�1;1g

1 �
2iþ 1

2m

� �
PX Eji
� �

�
t

2m

	 

þ 2RP � 7t

0
B@

1
CA: ð16Þ
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Furthermore, we also getX2m�1�2

i¼0
j2f�1;1g

1 �
2iþ 1

2m

� �
PX Eji
� �

�
t

2m

	 


¼
X2m�1�2

i¼0

1 �
2i
2m

� �
PX E1

i [ E�1
i

� �
�

X2m�1�2

i¼0

1 �
2i
2m

� �
2t
2m

�
X2m�1�2

i¼0
j2f�1;1g

1

2m
PX Eji
� �

þ
X2m�1�2

i¼0

2t
22m

5
X2m�1�2

i¼0

1 �
2i
2m

� �
PX E1

i [ E�1
i

� �
� 2t

and therefore inequality (16) yields

c
n

Xn
l¼1

xl5ð1 � tÞ2c 2RP þ
X2m�1�2

i¼0

1 �
i

2m�1

� �
PX E1

i [ E�1
i

� �
� 9t

 !
: ]
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