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Consistency of Support Vector Machines and
Other Regularized Kernel Classifiers

Ingo Steinwart

Abstract—It is shown that various classifiers that are based on
minimization of a regularized risk are universally consistent, i.e.,
they can asymptotically learn in every classification task. The role
of the loss functions used in these algorithms is considered in detail.
As an application of our general framework, several types of sup-
port vector machines (SVMs) as well as regularization networks
are treated. Our methods combine techniques from stochastics, ap-
proximation theory, and functional analysis.

Index Terms—Computational learning theory, kernel methods,
pattern recognition, regularization, support vector machines
(SVMs), universal consistency.

I. INTRODUCTION

WE treat the statistical classification problem which have
been studied in both statistics and machine learning (cf.

[1] for a throughout treatment). For recalling this problem let
be a nonempty set, and . A classifier is a rule
that assigns to every training set

a measurable function . Here, it is always assumed
that is independent and identically distributed (i.i.d.) with re-
spect to an unknown distribution on . In order to “learn”
from the samples of , the decision function
should guarantee a small probability for the misclassification of
an example drawn from independently to . Here, mis-
classification means . To make this precise the
risk of a measurable function is defined by

The smallest achievable risk

measurable

is called the Bayes risk of . A classifier is said to be universally
consistent if

(1)

holds in probability for all distributions on . It is
strongly universally consistent if (1) even holds almost surely.
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The type of classifiers for which we will establish consistency
results is based on one of the following optimization problems:

(2)

or

(3)

respectively. Here,
is a training set, is a regularization parameter, is
a reproducing kernel Hilbert space (RKHS), is a regulariza-
tion function, and is a loss function (cf. the Appendix and
Section II for precise definitions). The additional term in (3)
is called offset. The corresponding decision functions of the
considered classifiers are or , respectively,
where and are arbi-
trary solutions of (2) and (3) (cf. Lemma 3.1 and 3.10 for the
existence). Various recently proposed algorithms including reg-
ularization networks and several variants of support vector ma-
chines (SVMs) belong to this type of classifiers (see the exam-
ples below). In particular, if and is
the hinge loss then (3) becomes the
well-known primal optimization problem

minimize

subject to

(4)

of the so-called L1-SVM with offset. For L1-SVMs without
offset, we only have to drop the in the constraints. Further-
more, if one considers the squared hinge loss function (L2-
SVM) instead, then in the above sum has to be replace by .

Instead of minimizing over the whole space in (2) and (3),
it suffices to consider a small subspace. Indeed, by the repre-
senter theorem [2, proof of Theorem 1] there exists a solution

of (2) which has the form

where is the reproducing kernel of . Hence,
it suffices to consider (2) over the subspace

. Furthermore, we have
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for . Thus, once one has found a minimizer
of

a solution of (2) is given by . A simi-
larly argument can be employed for (3). However, for

and specific convex loss functions the dual of (2) or (3) is
usually solved instead (cf. [3] and [4]). For example, if is the
hinge loss then the dual problem becomes

maximize

subject to (5)

Recall that if (3) is considered instead, then the additional con-
straint appears in (5). Finally, for the squared
hinge loss function the dual problem is similar (see [3]).

Since the above introduced framework is very general, we
first give some examples that show how the theory developed
in this paper can be applied to many algorithms of practical in-
terest. Throughout these examples, we assume that is a com-
pact metric space, e.g., a bounded and closed subset of . The
first group of examples we consider consists of almost clas-
sical types of SVMs. These classifiers have been introduced by
Vapnik and his coauthors between 1992 and 1995. A good in-
troduction to these SVMs is provided in [3]. We begin with the
most common SVM.

Example 1.1: Let , be the hinge loss func-
tion , , and be a
positive sequence with . Then the classifiers based on
either (2) or (3) are called L1-SVMs (cf. [5]). We will show that
the L1-SVM based on (2) is universally consistent whenever a
universal kernel (see the following examples and Section II
for a definition) is used and satisfies . If the
L1-SVM is based on (3) we can only establish consistency under
the slightly stronger condition . Note, that
this condition actually ensures strong universal consistency for
L1-SVMs with and without offset. Furthermore, for both clas-
sifiers these conditions can be improved by using smoothness
properties of . In particular, if is even a universal -kernel
on a closed ball of —e.g., the Gaussian radial basis function
(RBF) kernel or Vovk’s infinite
polynomial kernel (see [6] and Ex-
ample 3.7)—it suffices to use a sequence with

for some arbitrary small in order to ensure strong uni-
versal consistency. For a Gaussian RBF kernel, the latter condi-
tion can be further weakened to if one
is only interested in universal consistency.

As mentioned, in practice (3) is treated by solving the dual
problem (5). In this case, the arising equality constraint in the
dual problem can cause some algorithmic difficulties. Instead
of omitting the offset as in (2), it is also possible to consider the
optimization problem of the form

(6)

It is easy to see that this approach is equivalent (2) using the
kernel instead of .

Finally, note that all the conditions on presented in this
example are derived from our general results using the facts

, , and for
(see Section III for a definition of these quantities and the men-
tioned results).

The above conditions on are stronger than those de-
rived in [7] for the L1-SVM without offset. However, they sig-
nificantly improve the only known conditions (cf. [8]) for the
L1-SVM with offset. Furthermore, for both SVMs the condi-
tions almost coincide with the condition in [7] if the used kernel
is smooth.

Recall, that there exists another well-known variant, the
so-called -SVM, which is also based on the hinge loss func-
tion. However, the regularization of this classifier is different
to that of the algorithms in consideration. Indeed, the (almost)
optimal value for the regularization parameter is determined
by the Bayes risk of the underlying measure (see [9]).

Let us now treat the so-called L2-SVM.

Example 1.2: Let , be the squared hinge
loss function , and be a pos-
itive sequence with . Then the classifiers based on ei-
ther (2) or (3) are called L2-SVMs. The L2-SVM based on (2)
is universally consistent whenever a universal kernel is used
and satisfies . If the L2-SVM is based on (3) we
can only establish consistency under the slightly stronger condi-
tion . Note that this condition actually ensures
strong universal consistency for L2-SVMs with and without
offset. Furthermore, for both classifiers these conditions can be
improved by using smoothness properties of . In particular, if

is even a -kernel it suffices to use a sequence with
for some arbitrary small in order to en-

sure strong universal consistency. Again, for a Gaussian RBF
kernel on this condition can be further weakened to

if one is only interested in universal
consistency.

Moreover, in [10], Mangasarian and Musicant proposed an-
other variation of the theme, called Lagrangian SVM, which is
based on the optimization problem (6) with and

. The corresponding consistency
conditions on are obvious. As indicated in [4, Sec. 10.6.2]
it is open whether this modification has a significant influence
on the generalization performance. Our work shows that asymp-
totically there is only a small difference in the kernel-indepen-
dent conditions on which ensures consistency. Further-
more, considering smooth kernels this difference vanishes.

Finally, note that all the conditions on presented are
derived from our general results using ,

, and .

The two classifiers in the next example are based on the
square loss function. Interestingly, the first has been inspired
by the SVM approach but the second has been introduced
independently from SVMs.

Example 1.3: Least square SVMs (LS-SVMs) proposed in
[11] are based on the minimization problem (3) with
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and . The analogous classifiers based
on (2) are called regularization networks or kernel ridge regres-
sion classifiers and were introduced in [12]. Since ,

, and for , the conditions
for both classifiers coincide with those of the corresponding
L2-SVMs.

Since many SVMs for classification are actually based on a
regression-like approach, it is rather natural to use the following
SVM variants that were originally constructed for regression
problems for classification tasks. These algorithms are treated
in the following example.

Example 1.4: Support vector machines with -regression
loss function (R1-SVMs) are based on the minimization
problem (3) with and

for some fixed . Since , , and
for , the conditions ensuring universal

consistency coincide with those of the L1-SVMs with offset. It
is clear, that one can also consider this type of classifier without
offset.

If one replaces the R1-SVM loss function by

for some one obtains SVMs with -regression loss
function (R2-SVMs). Since , , and

for , the conditions ensuring universal
consistency coincide with those of the L2-SVMs with offset.
Again, one can also consider this type of classifier without offset
or with optimized offset.

The following example provides an SVM that is not univer-
sally consistent.

Example 1.5: Support vector machines with asymmetric loss
function are sometimes proposed in order to penalize errors in
each class differently. In particular, this approach is sometimes
recommended for unbalanced classification problems. Let us
first consider an asymmetric hinge loss function, i.e.,

for , . Unfortunately, it can be
easily checked that is admissible (see Section II) if and only
if , i.e., if and only if is symmetric. It will thus turn
out, that the classifiers using cannot be universally consistent
if .

However, there are various other asymmetric loss functions
that are admissible. For example, defined by

and

is such a function. It is easily seen that the corresponding condi-
tions on ensuring universal consistency coincide with those
of the L2-SVM.

The following two examples consider the logistic and the
AdaBoost loss function, respectively.

Example 1.6: The logistic loss function
is a convex regular loss function. For

we have , , and if
. Therefore the conditions on , for classifiers based

on (2) or (3) with respect to and are equal to the conditions
for the corresponding L1-SVM.

Example 1.7: Another example of a convex and admis-
sible loss function is the AdaBoost loss function

. Obviously, for we have

and

if . Classifiers based on (2) with , , and a universal
kernel are therefore universally consistent by Theorem 3.20 if

fulfills and . An
easy calculation shows that the fastest decreasing sequences

satisfying these conditions are essentially of the form
for . By our techniques, this rate cannot

be significantly improved for smooth kernels. Finally, our tech-
niques can also be adapted to classifiers based on (3). The re-
sulting conditions are very similar.

Several other loss function can also be treated by our results
including (see, e.g., [13] and [14]) the sigmoid loss function, a
truncated hinge loss function, and some smooth approximations
of the margin loss functions of the above examples.

The following last two examples are mainly of theoretical
interest. Historically, they were considered in order to “explain”
the generalization performance of SVMs.

Example 1.8: In order to motivate SVMs, the regularization
function defined by in combina-
tion with the structural risk minimization method with respect
to the hinge loss function was con-
sidered in [15]. Using Proposition 3.3, this approach actually
yields universal consistency for classifiers with the above in
terms of structural risk minimization. Moreover, our results also
yield another method making these classifiers universally con-
sistent. Indeed, since , all of the above results on
SVMs which do not depend on Theorem 3.20 can be directly
applied to this modification.

Example 1.9: In [16, Sec. 10.2] SVMs were interpreted
as an approximation of the minimization of the number
of misclassified samples: the admissible loss function

, , approximates the
loss function for . Since error
minimization in with respect to is NP-hard whenever
the training set cannot be linearly separated (cf. [17], [18]), it
was proposed to replace by for small . Moreover,
in order to apply results on empirical risk minimization it
was assumed to use , or—as an
approximation— . Unfortunately, using universal
kernels on infinite spaces the motivation in [16] cannot
work since the corresponding function classes always have
infinite Vapnik–Chervonenkis (VC) dimension. However, the
classifiers based on are universally consistent for suitable
sequences . This can be seen by our theorems and the fact
that is -Hölder-continuous.

As discussed in [1], there cannot exist a uniform rate of
convergence in (1) for any classifier. Hence, there are roughly
speaking two alternatives for investigating the generalization
performance of classifiers: an asymptotic approach which treats
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universal consistency for specific classifiers and a sample de-
pendent approach that estimates the risk of decision functions
in terms of observed data on the training set. For SVMs, mainly
the latter approach has been followed so far. Unfortunately, it is
shown in [19] that the existing bounds cannot explain the gen-
eralization performance of SVMs and thus, a sample-dependent
theory still has to be developed (cf. [20] for the best known
results in this direction). On the other hand, there are only a few
works dealing with consistency of classifiers based on (2) or (3).
Some preliminary results in [21] and [22] show consistency of
L1-SVMs for restricted classes of distributions. Furthermore,
there exist two results establishing universal consistency for
classifiers based on (2) or (3). As already mentioned, the first
result [8] in this direction showed that L1-SVMs with offset
are universally consistent if the used kernel is universal and the
regularization parameter tends “very slowly” to . In [7],
this condition on was significantly improved for classifiers
based on (2) and specific continuous convex loss functions in-
cluding some standard choices listed in the above examples. In
this work, we establish universal consistency for very general
functions and . Namely, we prove both kernel-independent
and kernel-dependent conditions on that ensure universal
consistency of the corresponding classifiers. Unlike [7], our
results neither make any convexity assumption on nor they
are restricted to (2). On the one hand, the shortcomings of this
generality are sometimes stronger conditions on . On the
other hand, however, this generality gives us the opportunity to
select and with respect to computational issues.

The algorithms treated in this work are based on a regulariza-
tion approach. Regularization techniques are well known and
have a broad range of applications. In particular, for statistical
problems they have been intensively studied in the literature (cf.,
e.g., [23] and the references therein). However, the classifiers
based on (2) or (3) differ from the commonly considered regu-
larization scenarios in statistics.

• In general, using the loss function of interest in (2) or (3),
i.e., , leads either to overfitting (cf.
[22]) or to combinatorial optimization problems which are
hardly solved efficiently (cf. [17], [18]). Therefore, one
usually solves (2) or (3) with respect to a loss function

different from . However, the classifier should still
be universally consistent with respect to . In order to
guarantee this, a necessary condition on is that the target
function with respect to should have the same sign
as the optimal Bayes decision function

Surprisingly, we can show in this work that for continuous
loss functions this is even a sufficient condition.

• Common techniques such as those used in [23] assume
that the target function is in a space which is re-
lated to in order to estimate corresponding norms of

. Unlike in regression, this assumption is
too restrictive in classification. Indeed, considering, e.g.,
continuous kernels, and only contain continuous

functions. However, for the hinge loss function, the target
function (almost) coincides with the Bayes decision func-
tion which, in general, is far from being continuous.

These differences show that the existing techniques of [23]
cannot be applied to the classifiers based on (2) or (3). There-
fore, in this work we develop a new ansatz. Although this
ansatz is rather simple, it might be hidden by technical issues,
and hence we like to give a brief roadmap, now. Since for
both (2) and (3) the techniques are almost identical besides
technical details we restrict ourselves to (2). Then given a loss
function and a probability measure we define the -risk
of a measurable function by

(7)

The smallest possible -risk is denoted by . Furthermore,
given a regularization function and an RKHS the regular-
ized -risk is defined by

(8)

for all and all . If is an empirical measure with
respect to , we write and ,
respectively. Note, that is the objective function in
(2). Now, the first step in our approach is to show that there
always exists an element minimizing the regularized

-risk (see Lemma 3.1). In the next step (see Proposition 3.2)
we show

(9)

if the used RKHS is rich enough, i.e., universal. We then prove
that approximating the minimal -risk is sufficient to approx-
imately achieve the Bayes risk. More precisely, we show (see
Proposition 3.3) that for all sequences of measurable functions

we have

(10)

if is admissible. In the final step, we correlate the -risk of
with the empirical -risk of by certain concentration

inequalities. If, e.g., is the hinge loss, and
we have (see Lemma 3.21 and 3.22)

(11)

where is a constant depending on the kernel . Hence,

in probability whenever . The rest of the proof
consists of plugging (9)–(11) together (see the proof of
Theorem 3.5). Note, that instead of using (11) we can and will
also employ several other concentration inequalities. Unlike
(11) that is based on a stability argument due to [20], most of
them depend on covering numbers of certain operators related
to . It turns out that each tuple of concentration inequality,
loss function, and RKHS gives a condition on ensuring

. Some of these conditions
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have already been listed in the preceding examples. The general
theory can be found in Section III.

Our approach is somehow modular: if, e.g., there is a new
concentration inequality for specific situations, one simply can
use it together with (9) and (10) to obtain new consistency re-
sults. Furthermore, if one is interested in problems of the form
(2) or (3) for function spaces different from RKHSs, one only
has to establish (9) and a concentration inequality in the spirit
of (11). Finally, note that (10) is completely algorithm indepen-
dent and thus it can be used in many other settings as well.

The rest of this work is organized as follows: In Section II, we
introduce some notions for , , and which are essential for
our further work. In Section III, we present our general theory
which leads to the examples discussed in the Introduction. The
proofs of this theory can be found in Section IV. Finally, there is
a small Appendix explaining kernels and some concepts from
functional analysis.

II. PRELIMINARIES

In the following, let , , and
. Given two functions we

write if there exists a constant with
for all sufficiently small . We write if both
and . Analogously, we write for two positive
sequences and if there exists a constant such
that for all . Again, means that both

and hold. Furthermore, we always assume
.

Throughout the paper, let be a compact metric space. For
a positive semidefinite kernel , we denote the
corresponding RKHS (cf. [24], [25, Ch. 3], and the Appendix)
by or simply . For its closed unit ball we write . Re-
call that the map , fulfills

by the reproducing property. We will often use
the quantity

Recall that is the smallest ball in centered at the origin
that contains the image of under . Moreover, is continuous
if and only if is. In this case, can be continuously embedded
into the space of all continuous functions via

defined by , . Since we always
assume that is continuous, we often identify elements of as
continuous functions on . If the embedding
has a dense image we call a universal kernel. Besides many
other examples, the Gaussian RBF kernel

is universal for fixed on every compact, i.e., closed and
bounded, subset of (cf. [22, Sec. 3]).

Besides the regularization function , we
sometimes also consider (cf.
Example 1.8 and 1.9), and therefore, let us fix the properties of

which we will need in the following.

Definition 2.1: Let be an increasing
function which is continuous in with respect to the first vari-

able and unbounded with respect to the second variable. More-
over, let us assume that for all there exists a such
that . We call a regularization function if for all

, , , and for all sequences with
and we have and

.

Recall, that for a given Borel probability measure on
there exists a map from into the set of all
probability measures on such that is the joint distribution
of and the marginal distribution of (cf. [26,
Lemma 1.2.1.]).

In order to treat the -risk for a given loss function
we write for
and . This function can be used to compute the

-risk (7) of a function by

Roughly speaking, it turns out that the solutions of (2) or (3)
tend to a function that minimizes this -risk (see [27] for
details). Hence, the following definition is fundamental in order
to guarantee that these solutions tend to have the same sign as
the Bayes decision rule.

Definition 2.2: A continuous function with
is called an admissible loss function if for every

and every with

(12)

we have if and if .

A similar notion together with some sufficient conditions can
be found in [28]. Besides the asymmetric hinge loss function
discussed in Example 1.5, all loss functions treated in the
examples of the Introduction are admissible. We will see in
Lemma 4.1 that there always exists a measurable version of

. For specific loss functions, such minimizing functions
can be found in [13]. As indicated earlier, the admissibility of

is necessary in order to get universally consistent classifiers
based on (2) or (3). To see this, it suffices to consider a space

which only consists of one point. Then, assuming that the
admissibility condition is violated for some it is
easy to check that there exists a classifier based on (2) or (3),
respectively, that is not consistent for the probability measure

with .

III. RESULTS

In this section, we develop the general theory which leads to
the examples discussed in the Introduction. It is organized as fol-
lows: In Section III-A, we mainly formalize the results (9) and
(10) discussed in the roadmap. In Section III-B, we present con-
sistency results in terms of covering numbers. These results are
kernel dependent. In the following subsection, we establish con-
sistency results based on localized covering numbers that lead
to a kernel-independent condition on ensuring universal
consistency. Finally, for convex loss functions and classifiers
without offset the latter condition is improved in Section III-D.
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A. Some Results Mentioned in the Roadmap

To simplify notations we fix some technical definitions: let
be a positive semidefinite kernel, be an admissible loss func-
tion, and a regularization function. For we define

Note, that we have for all and

Moreover, we even obtain for . The main
purpose of which is a key quantity throughout this work is
that it gives a simple upper bound on the norm of the solutions
of (2) as we see in the following lemma.

Lemma 3.1: Let be an admissible loss function, a reg-
ularization function, and be a continuous kernel on . Then
for all Borel probability measures on and all ,
there is an with

Moreover, for all such we have .

The proof of this lemma can be found in Section IV. Note,
that Lemma 3.1 in particular ensures that there always exists a
solution of (2). The following proposition formalizes (9). Again
a proof can be found in Section IV.

Proposition 3.2: Let be a universal kernel on , be an
admissible loss function, and be a regularization function.
Then for every Borel probability measure on we have

The next result shows that it suffices to approximate the min-
imal -risk in order to approximate the Bayes risk, i.e., it for-
malizes (10). Again, the proof is worked out in Section IV.

Proposition 3.3: Let be an admissible loss function and
be a Borel probability measure on . Then for all
there exists a such that for all measurable
with we have .

B. Consistency Results Based on Covering Numbers

So far, we have established (9) and (10) of the roadmap. As
described in the Introduction, we finally need some concentra-
tion inequalities in the spirit of (11). To this end, let us first recall
that for a metric space the covering numbers of are
defined by

Here denotes the closed ball with center and radius
. For a bounded linear operator between Banach spaces

and we define where denotes
the closed unit ball of . Usually, it is more convenient to con-
sider the logarithmic covering numbers

and

instead. Finally, recall, that there also exists a concept—the
so-called entropy numbers—which is “inverse” to the above
notions. For details we refer to [29].

In the following, we also have to measure the continuity of a
given loss function . To this end, we use the inverted modulus
of continuity which is defined by

where

denotes the modulus of continuity of . Analogously, the
(inverted) modulus of continuity of is defined.
Note that in our specific situation the modulus of continuity
is continuous in (see [29, Proposition 5.4.2]). In particular,
the supremum in the definition of is attained, i.e., we
have for all . This also holds for
restrictions of to , .

Now we can state a concentration inequality for classifiers
based on (2). The proof of this inequality which is similar to
the methods of [30] for the square loss function in regression
scenarios can be found in Section IV.

Lemma 3.4: Let be a continuous kernel on , be an
admissible loss function, and be a regularization function.
Then for all Borel probability measures on , all ,

, and all we have

where denotes the canonical embedding and
is the outer probability measure of .

Now, we can establish our first consistency result.

Theorem 3.5: Let be a universal kernel on , be an ad-
missible loss function, and be a regularization function. Sup-
pose we have a positive sequence with and

for all . Then the classifier based on (2) with respect to ,
, , and is universally consistent. If we additionally have

for all , then the classifier is even strongly universally
consistent.

Proof: Let us define

where is defined as in Section III-A. For later purpose we note
that

(13)
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Now, let . We fix according to Proposition 3.3.
Then by Proposition 3.2, there exists an integer such
that for all we have

(14)

Moreover, (13) guarantees that we can assume without loss of
generality that there exists a such that for all we
have

Therefore, by our assumption on together with Lemma 3.4
and Hoeffding’s inequality applied to we may ad-
ditionally assume

or

(15)
for all . Now, if belongs to set of samples considered
in inequality (15) we find

where the last estimate is due to (14). The definition of then
gives the first assertion. The second assertion follows by the
specific form of the tail bound in Lemma 3.4 and Hoeffding’s
inequality.

Our next goal is to simplify the above theorem. To this end,
let us first introduce some notions for loss functions: we say
that an admissible loss function is convex if is convex
for . Note that almost all loss functions considered in
the examples are convex. Moreover, is said to be -Hölder-
continuous if

In this case, we denote the supremum by . Analogously,
we say that is locally -Hölder-continuous if is

-Hölder-continuous for all . Recall, that convex functions
on are locally -Hölder-continuous and hence convex loss
functions are locally -Hölder-continuous. Furthermore note,
that for locally -Hölder-continuous we have

for all

and hence,

for all

In view of the announced simplification we also have to recall
that for various “smooth” kernels (see the Appendix for the dif-
ferent notions of smoothness) there exist bounds on the covering
numbers of the embedding (see Lemma 4.2).
Applying these bounds to Theorem 3.5 we now obtain the fol-
lowing corollary whose proof can be found in Section IV.

Corollary 3.6: Let be a universal kernel on the closure of a
bounded -domain , be an admissible loss function

which is locally -Hölder-continuous, and a regularization
function. Suppose we have a positive sequence with

and

if is -H lder-

continuous

if

if

for some if

Then the classifier based on (2) with respect to , , , and
is strongly universally consistent.

Examples of kernels that satisfy one of the above smoothness
assumptions can be found in [31]. Here, we only consider a spe-
cific class of universal kernels:

Example 3.7: Let and be a function
that can be expressed by its Taylor series in , i.e.,

for all . Let . If we
have for all then defines a
universal kernel on every compact subset of (cf. [22]). More-
over, we obviously have . Furthermore, these
statements also hold for the normalized version

of .
Besides the Gaussian RBF kernel, Vovk’s infinite polynomial

kernel is a well-known example
from this class of kernels (cf. [6] and [22]).

Example 3.8: As already mentioned, the Gaussian RBF
kernel on also fits into the framework of Example
3.7. For this kernel, however, a sharper upper bound for the
covering numbers of was recently shown in [32]. Namely,
there was proved that

Consequently, the classifier considered in Corollary 3.6 is uni-
versal consistent if and

Finally, we consider classifiers based on (3). As already in-
dicated, we only have to replace Proposition 3.4 by a suitable
concentration inequality. It turns out that the main difficulty for
this is to derive bounds for the offset (cf. Lemma 4.3). To this
end we need the following definition:

Definition 3.9: An admissible loss function is called reg-
ular if is locally -Hölder-continuous, is monotone
decreasing and unbounded on , is monotone
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increasing and unbounded on , and for all there
exists a constant such that for all we have

Note that all loss functions considered in the Examples 1.1–
1.6 are regular. The next lemma states the result of Lemma 3.1
for modified regularized risks of the form (3). Its proof can be
found in Section IV.

Lemma 3.10: Let be a regular loss function, a regular-
ization function, and be a continuous kernel on . Then for
all Borel probability measures on and all there
is a pair with

(16)

Moreover, for all such pairs we have .

Now we can state the announced concentration inequality for
classifiers based on (3).

Lemma 3.11: Let be a universal kernel on , be a regular
loss function, and be a regularization function. Then for all
Borel probability measures on there exists a constant

such that for all , , and all we
have

where again is the outer probability measure of .

The proof of this lemma can be found in Section IV. Pro-
ceeding as in the proof of Theorem 3.5, the result for classifiers
based on (3) now reads as follows.

Theorem 3.12: Let be a universal kernel on , be a reg-
ular loss function, and be a regularization function. Suppose
we have a positive sequence with and

for all . Then the classifier based on (3) with respect to ,
, , and is universally consistent. If we additionally have

for all , then the classifier is even strongly universally
consistent.

Using known estimates for covering numbers which are
collected in Lemma 4.2 we can immediately derive the results
of Corollary 3.6 for classifiers with offset and regular loss
functions.

C. Consistency Results Based on Localized Covering Numbers

Instead of using a concentration inequality that is based on
the covering numbers of , we can also use con-
centration inequalities which are based on localized covering
numbers. Let us first recall their definition. To this end, let
denote the space equipped with the maximum norm. Then,
for a given set of functions from to the localized cov-
ering numbers of are defined by

for all and . Here, is

considered as a subset of . Analogously to the definition of
covering numbers, we also define and ,
where is an operator mapping into a space of functions. Now,
the announced concentration inequality reads as follows.

Lemma 3.13: Let be a continuous kernel on , be an
admissible loss function, and be a regularization function.
Then for all Borel probability measures on , all ,

, and all we have

The proof of this lemma which is mainly due to [33] can be
found in Section IV. The consistency result that is derived from
the above lemma is stated in the following theorem. Its proof is
obvious.

Theorem 3.14: Let be a universal kernel on , be an
admissible loss function, and be a regularization function.
Suppose we have a positive sequence with and

for all Then the classifier based on (2) with respect to ,
, , and is universally consistent. If we additionally have

for all then the classifier is even strongly universally
consistent.

Using the dual version of the Maurey-Carl inequality (see
[34]) we obtain the next corollary which provides a kernel inde-
pendent condition on . Details of its proof can be found in
Section IV.

Corollary 3.15: Let be a universal kernel, be an admis-
sible, locally -Hölder-continuous loss function, and be a reg-
ularization function. Suppose we have a positive null sequence

with

Then the classifier based on (2) with respect to , , , and
is strongly universally consistent.
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Let us now demonstrate how specific properties of the kernel
can be used to derive sharper bounds on the localized covering
numbers of the corresponding embedding .

Example 3.16: Let be a universal kernel that can be ex-
pressed by a series of the form

where are continuous functions that are uni-
formly bounded with respect to the -norm and
is a strictly positive sequence. Examples of such kernels can be
found in [22]. If we even have for some
then it was shown in [35] that

In particular, the classifier considered in Corollary 3.15 is
strongly universally consistent if and

We now present consistency results using localized covering
numbers for classifiers that are based on (3). The used concen-
tration inequality is as follows.

Lemma 3.17: Let be a universal kernel on , be a regular
loss function, and be a regularization function. Then for all
Borel probability measures on there exists a constant

such that for all , , and all we
have

The proof of this lemma is in Section IV. The consistency
result corresponding to Lemma 3.17 is as follows.

Theorem 3.18: Let be a universal kernel on , be a reg-
ular loss function, and be a regularization function. Suppose
we have a positive sequence with and

for all . Then the classifier based on (3) with respect to ,
, , and is universally consistent. If we additionally have

for all then the classifier is even strongly universally
consistent.

Again it is possible to show the results of Corollary 3.15 and
Example 3.16 for classifiers with offset. Here, we only state the
following.

Corollary 3.19: Let be a universal kernel on , be a
regular loss function, and a regularization function. Suppose
we have a positive sequence with and

Then the classifier based on (3) with respect to , , , and
is strongly universally consistent.

D. Consistency Results Based on Stability

In practice, one usually considers convex loss functions and
the regularization function in order to solve
(2) efficiently. Since in this case the corresponding classifier is
stable (cf. the definition below) it turns out that there also exists
a kernel-independent condition for the regularization sequence
which is usually slightly milder than that of Corollary 3.15.

Theorem 3.20: Let be a universal kernel on , be a
convex admissible loss function, and . Suppose
we have a positive sequence with and

Then the classifier based on (2) with respect to , , , and
is universally consistent.

In order to prove this kernel-independent condition on
we have to recall the notion of stable classifiers (cf. [36]): let

and . Moreover, let denote the training
set that is identical to apart from the th sample which is
replaced by . A classifier based on the optimization
problem (2) is called stable with respect to the sequence if
for all , , , and all

, we have

For stable classifiers there exists a kernel-independent way of
estimating the deviation of from as the
following result in [36] shows.

Lemma 3.21: Let be a -stable classifier based on (2)
with respect to , , , and . Then for all we have

Hence, for the proof of Theorem 3.20 we mainly have to
check whether our classifiers are -stable for a suitable se-
quence . This is done in the following lemma which is
proved in Section IV.

Lemma 3.22: Let be a classifier based on (2) with respect
to a convex loss function , , and regularization
sequence . Then is -stable.

Proof of Theorem 3.20: Again, it suffices to replace the
tail-bound of the probability of
in Lemma 3.4 by another suitable result. To make this precise,
by Lemma 3.21, Lemma 3.22, and the proof of Theorem 3.5 we
only have to ensure

Since we always have and
this follows by the assumption on .
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Unfortunately, we cannot prove a kernel-independent condi-
tion on for classifiers based on (3) in the spirit of Theorem
3.20. The reason for this lack is that Theorem 3.20 is based
on the notion of stability. Unlike classifiers that are based on
(2), classifiers based on (3) are not sufficiently stable, in gen-
eral. This can be easily checked for the L1-SVM with offset (cf.
Example 1.1) on .

IV. PROOFS

Proof of Lemma 3.1: For all
we fix an element with

Since

there exists a with . Now by the Eberlein–
Smulyan theorem and the Bolzano–Weierstraß theorem there
exist elements , , and a sequence
such that and weakly. In particular, by
the continuity of and the reproducing property of we obtain

for all . Moreover, we have and
hence is bounded by the continuity of . There-
fore, Lebesgue’s theorem implies

(17)

Thus, for a fixed , there exists an index such that for
all we have both and

where for the latter inequality the definition of was used.
Hence, we find

Moreover, we always have
(cf. [37, Ch. 1 Corollary 2.6.]) and thus,

This together with (17) yields

Since the construction of implies

the first assertion follows. The second assertion is trivial.

For the proof of Proposition 3.2 we need the following tech-
nical lemma.

Lemma 4.1: There is a measurable function
with for all . In particular, we
have

measurable

Proof: Let be a dense sequence in with
and if . We fix a solution of (12) for every

, , and define if is the index such that
is the closest lower bound of in the set . Then

defined by is measurable.
Now fix a real number at which is continuous. By
our construction, there exists subsequences and with

and . The continuity of implies

i.e., is a solution of (12) for . Since is concave it is also
continuous for all but at most countably many points of
(cf. [38, Theorem 1.16]) and, thus, we only have to modify on
countably many points in order to construct .

Proof of Proposition 3.2: Let and with

Since is continuous in there exists such that
for all . This together with the definition

of yields

Thus, in order to prove the assertion, it suffices to show

(18)

For a proof of the first identity recall that is universal. Thus, for
all , and every bounded measurable function
there exists an element with

and . Since is uniformly continuous on
the first identity then follows.

We now show the second identity of (18): let
be defined by if ,

if , and otherwise. More-
over, we define

Note, that for all with this definition
yields
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Since we always have , we
thus find that for all with

. Now, let with . By the definition, we
obtain

(19)

if and

(20)

if . Since is assumed to be continuous on ,
we observe that the right-hand sides of (19) and (20) converge
to if they are finite for all . To check the latter let us first
consider the case with . Then we have

and thus, , . Hence,
in this case. Obviously, this also holds for with

. Recalling our convention we also
have or if or

, respectively, and thus, we can ensure the above
convergence in these cases as well. Because of the specific form
of the right-hand sides of (19) and (20), we even obtain that
converges uniformly to on . To-
gether with the dominated convergence on the complement we
therefore find

bounded, measurable

Proof of Proposition 3.3: For , the set of points
misclassified by is defined as

and

and

Given a measurable function according to
Lemma 4.1 we obtain

In order to estimate the second term from below let
be a function with if

and if
. Using the technique of the proof of Lemma 4.1, we may

additionally assume that is measurable. Moreover, since
is admissible we find for all

and therefore, defined by

is a strictly positive function on
. Furthermore, recall that

holds (cf. [1, p. 10]), where denotes the noise level of , i.e.,
. Since is also

strictly positive on the measures , , and
are absolutely continuous to each other on . This yields

the assertion.

Proof of Lemma 3.4: We write
By the definition of the modulus of continuity

every -net of defines an -net
of with respect to the supremum

norm. Therefore, we have

Moreover, is a subset of of nonnegative func-
tions that are bounded by . Thus, applying Hoeffding’s
inequality (cf. [1, Theorem 8.1]) yields

Since Lemma 3.1 guarantees , the assertion now
follows.

In order to prove Corollary 3.6, we have to recall some es-
timates for the covering numbers of the embedding

which are summarized in the following lemma.

Lemma 4.2: Given a continuous kernel on the closure of a
bounded -domain we have

if is -Holder-continuous
if
if
for all if

Proof: In the first case, the embedding
is -Hölder-continuous and therefore the assertion follows by

and a result in [39] (see also [29, Ch. 5] and [40]).
If the embedding actually maps into

(see [31, p. 42]. Moreover, the embedding
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factors through by embed-
dings (see [41, Secs. 3.2.4 and 3.3.1]). Thus, we find

by [42, Sec. 3.3.2], i.e., we have shown the second assertion.
In the third case we have to consider the embedding

. Corresponding estimates of the covering
numbers of this embedding can be found in [42, Ch. 3.3].

Finally, the last assertion is a direct consequence of the second
assertion.

Proof of Corollary 3.6: By Lemma 4.2, we obtain that in
every case there exists a with

Moreover, since we find
. This yields

Hence, in order to satisfy the first condition of Theorem 3.5, it
suffices to ensure

This is done by the conditions of the corollary together with
Lemma 4.2. Moreover, the above convergence yields

and since we always have we find

This yields the second condition of Theorem 3.5.

In order to treat classifiers that are based on (3) we say that a
probability measure on is -degenerated for a ,
if

(21)

If is -degenerated for some it is called degenerated.

Proof of Lemma 3.10: As in the proof of Lemma 3.1, we
fix pairs with

for all . Again, we easily get a
such that for all such . Let us first assume

that is not degenerated, i.e., (21) does not hold. Then, for
we find for

all . In particular, there exists a such that for

we have for
all . Moreover, for we find

Therefore, there exists an element with

(22)

Since is regular and the right-hand side of (22) is independent
of there exists a constant such that holds
for all . Moreover, we have and thus
we find for all . Analogously, we can bound

uniformly from above. The rest of the proof follows the lines
of the proof of Lemma 3.1.

Now let us assume that is -degenerated for some
Then, one easily checks that

is a pair fulfilling (16) where , is a func-
tion according to (12).

Finally, the bound on for general solutions of (16) is
trivial.

In order to prove Lemma 3.11 we need the following lemma
that shows that the bound for , which was obtained in the
proof of Lemma 3.10, is rather sloppy in typical situations.

Lemma 4.3: Let be a regular and admissible loss function
and be a nondegenerated probability measure on . Then
there exists a constant such that for all we have

Considering very specific convex loss functions and regular-
ization functions, the preceding lemma can be improved. Since
we are mainly interested in general loss functions we omit the
details.

Proof of Lemma 4.3: Since is nondegenerated, there is
a such that for ,
we have . With
we obtain by Hoeffding’s inequality that

holds for . Now let and be a
training set with . Then we have

Since with and
, this yields
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there exists an index with

Recalling that is regular and is independent of and
we thus find a constant such that
holds for all and all with

. This yields the desired estimate from
below by Lemma 3.10. The estimate from above can be proved
analogously.

The following lemma shows that for degenerated probability
measures there is nothing to be done in view of our desired
tail-bounds.

Lemma 4.4: Let and be a -degenerated probability
measure on . Moreover, let be an admissible loss func-
tion and . Then we have

-degenerated

and .
Proof: The first assertion is trivial. Now let us assume

without loss of generality that is -degenerated. Observing
that

we can easily deduce the second assertion.

Proof of Lemma 3.11: By Lemma 4.4, we may assume
without loss of generality that is not degenerated. Let
be chosen accordingly to Lemma 4.3. We define

and

Moreover, we write and for
short. Now, an easy calculation similar to that of the proof of
Lemma 3.4 shows that

where and are considered as subsets of . Hence, with
the help of Lemma 4.3 and Hoeffding’s inequality we obtain

Since is regular, there also exists a constant indepen-
dent of such that and .
Therefore, we get

for a suitable constant independent of , , and . Since
and is universal, we get rank and thus we

have for all and a suitable constant
independent of . Thus, we finally find a constant

for which the assertion holds.

Proof of Lemma 3.13: As in the proof of Lemma 3.4, we
define . Then Lemma 3.4 in [43]
yields

Now the assertion follows by the arguments used in the proof of
Lemma 3.4.

Proof of Corollary 3.15: By the dual Maurey-Carl in-
equality (cf. [34], [44], and [40]) we have

Therefore, we find

Since , the first condition of Theorem 3.14
follows. The summability condition can be derived as in the
proof of Corollary 3.6.

Proof of Lemma 3.17: With the notions of the proof of
Lemma 3.11 we find

by Lemma 3.4 in [43] (cf. the proof of Lemma 3.13). Again,
there is also a constant with
for all , . Thus, we finally find a constant for
which the assertion holds.

Proof of Lemma 3.22: For differentiable loss functions
the assertion can be found in [4, Theorem 12.4]. In this book,
there are also some remarks concerning nondifferentiable loss
functions. For the sake of completeness, we present a proof
which mainly follows the elegant approach of [45]. For this pur-
pose, we need to recall that for a convex, continuous function

the subdifferential of in is defined by

For basic properties we refer to [37], [38], and in particular [46,
Theorems 23.8 and 23.9]. In the following, denotes the
expectation of with respect to the empirical measure induced
by . We will also use this notation for -valued functions .
Now, recall that the convexity of implies that is locally

-Hölder-continuous. We fix

and write for some fixed and
. Since we actually have to consider finite dimensional
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subspaces of only, an easy calculation using [46, Theorems
23.8 and 23.9] shows , where

and the subdifferential of is with respect to the second
variable only. Recalling that minimizes we also
observe and thus, there exists

, with

(23)

By the Lipschitz continuity of and the norm bound of
which was shown in Lemma 3.1, we actually have

. Moreover,
implies

for all . Recalling the reproducing property of in-
tegration with respect to the empirical measure of then yields

Now, we have

and we thus find

Moreover, minimizes and hence we have

This yields

With the help of (23), we can replace by .
Then we obtain

It can be easily seen that the latter estimate implies the assertion.

APPENDIX

BANACH SPACES, OPERATORS, AND KERNELS

Let be a Banach space and be an arbitrary subset.
The set is closed if for every sequence with

we have . A set is open if its complement is
closed. The closure of is the smallest closed set in that
contains . We say that is dense if . The set is
compact if every open covering of has a finite subcovering. If

is finite dimensional then the compact subset of are exactly
the sets which are both bounded and closed. In contrast to this,
for being infinite dimensional, the closed unit ball of
is closed and bounded but never compact. However, for some
spaces such as Hilbert spaces there is a nontrivial topology on
(smaller than the norm topology) such that is compact with

respect to this topology (Alaoglu’s theorem). Finally, a linear
bounded operator between Banach spaces and

is compact if is compact. This holds if and only if its
covering numbers are finite.

A symmetric function is called positive
semidefinite if for all and all
we have

We say that is positive definite if this inequality is strict for
all mutually different and all

. A symmetric, positive semidefinite function is called a
kernel. Having a kernel one can construct an associated Hilbert
space—the so-called RKHS. Indeed, let

Then by

we can define an inner product on . In general, the space
equipped with this inner product fails to be complete, i.e., some
Cauchy sequences may not converge in . Therefore, instead
of using one considers the completion of , i.e., the
smallest Hilbert space containing . The space is called the
RKHS of . Obviously, the map , , is
well defined. Furthermore, it satisfies the so-called reproducing
property

for all , .
In view of Corollary 3.6 we also need some notions of

smoothness. If is a universal kernel

defines a metric on (cf. [22, Lemma 3]). Due to the
continuity of , the topology generated by coincides with the
topology of the original metric (cf. [22, Lemma 3 and Corol-
lary 7]). Moreover, the embedding is obvi-
ously -Hölder-continuous with respect to , that is, is
uniformly Lipschitz continuous (cf. [29, Ch. 5]). In particular,
is a compact operator and hence its covering numbers are finite.

A kernel is called -Hölder-continuous (with respect to ),
if there exists a constant such that

(24)

for all (cf. [31, p. 135]. Obviously, this condition
means that is -Hölder continuous and
hence is -Hölder continuous with respect to .

In order to consider smooth kernels on bounded -domains
(cf. [41, Sec. 3.2]) we also write ,

for the space of all functions for which
is continuous for all with

(cf. [31, p. 40]). Recall, that the open Euclidian balls in are
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-domains. A function is in
if and only if is continuous and its restriction on is in

. Furthermore, we write if
for all .

Finally, denotes the Sobolev space (cf. [41]) and we
write if is continuous and

.
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