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Classification methods allow for the development of structure-activity relationship models when the target
property is categorical rather than continuous. We describe a classification method which fits descriptor
splines to activities, with descriptors selected using a genetic algorithm. This method, which we identify as
SFGA, is compared to the well-established techniques of recursive partitioning (RP) and soft independent
modeling by class analogy (SIMCA) using five series of compounds: cyclooxygenase-2 (COX-2) inhibitors,
benzodiazepine receptor (BZR) ligands, estrogen receptor (ER) ligands, dihydrofolate reductase (DHFR)
inhibitors, and monoamine oxidase (MAO) inhibitors. Only 1-D and 2-D descriptors were used. Approximately
40% of compounds in each series were assigned to a test set, “cherry-picked” from the complete set such
that they lie outside the training set as much as possible. SFGA produced models that were more predictive
for all but the DHFR set, for which SIMCA was most predictive. RP gave the least predictive models for
all but the MAO set. A similar trend was observed when using training and test sets to which compounds
were randomly assigned and when gradually eliminating compounds from the (designed) training set. The
stability of models was examined for the random and reduced sets, where stability means that classification
statistics and the selected descriptors are similar for models derived from different sets. Here, SIMCA produced
the most stable models, followed by SFGA and RP. We show that a consensus approach that combines all
three methods outperforms the single best model for all data sets.

INTRODUCTION

Quantitative structure-activity relationships (QSAR) at-
tempt to correlate the biological activities of compounds with
their structural attributes, to help elucidate the mechanism
by which they act and to predict the activities of novel
derivatives. Traditionally, QSAR has been applied to a
relatively small number ofactiVe congeneric compounds
(<100), with activities varying continuously. These studies
have often been retrospective or used to make predictions
on similar derivatives. With the advent of combinatorial
chemistry and high-throughput screening (HTS), the focus
of QSAR has shifted toward virtual screening of compound
libraries at the early stages of the drug discovery process.1

This has been coupled to the increasing use of diversity-
based approaches for assembling the libraries.2,3 HTS data
sets are larger and contain more diverse structures than those
used in conventional QSAR, with biological activities often
expressed in categorical form (e.g. active or inactive). This
has stimulated the development of classification methods
capable of dealing effectively with such data sets.

In addition, classification methods can be useful for
studying more traditional QSAR sets for which activities are
categorical in nature (e.g. taste, toxicity) or when they are
compiled from a variety of sources, with different method-

ologies employed to obtain the activities. In QSAR studies,
compounds with activities expressed in indeterminate form
(e.g. IC50 > 1 µM) are often discarded. These can be included
in the development of classification models that benefit from
the increased extent of chemical space covered by the training
set. For compounds predicted to be active by the classifica-
tion model, the prediction can be refined with a conventional
QSAR model.4,5

Most classification methods are based on clustering,
partitioning, or statistical approaches.6 Statistical-based meth-
ods, by which a model of activity is developed, include linear
discriminant analysis7 (LDA), soft independent modeling by
class analogy8,9 (SIMCA), recursive partitioning10,11 (RP),
recursive mean partitioning,12 and binary QSAR.13,14 LDA,
SIMCA, and RP are well-established methods that have been
applied to a large number of SAR studies. In a comparative
classification study, LDA and RP were found to perform
better than hierarchical clustering.15

Nonlinear effects are more prominent in classification sets
than in QSAR sets containing only active compounds. For
example, activity may be linearly related to the volume of a
compound within the chemical space of active compounds.
When inactive compounds are included, the relation may be
subject to threshold effects, as compounds with volumes
above or below certain values may not fit within the binding
site. Activity may require the simultaneous presence of
multiple features. For this reason, classification methods
applied to virtual screening must be able to handle nonlinear
effects.
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Because of difficulties encountered in developing predic-
tive RP models for classification,5 we have implemented a
genetic algorithm-based classification method that is similar
in philosophy to that of RP but replaces its incremental
approach to variable selection with a best-subset approach.
In multivariate analyses such as QSAR, it is well-known that
incremental approaches for variable selection often find
suboptimal solutions when applied to large sets of variables
(e.g. stepwise multiple linear regression). This has been
recognized to be a limitation of RP by others; simulated
annealing16 and artificial ant colonies17 have been used for
descriptor selection. In this method, which we designate
spline-fitting with a genetic algorithm (SFGA), the GFA
algorithm18 is used to select combinations of descriptor
splines that partition the compounds into active and inactive
groups. This differs from the typical application of the GFA
algorithm in conventional QSAR,5,19,20in which splines and/
or higher order terms are sometimes added to linear terms
to account for nonlinear behavior in a series of compounds
having a continuous distribution of activities. The method
is implemented in Tcl scripting language for use with the
Cerius2 molecular modeling package. To validate the
method, we developed classification models for five data sets
and compare these to the models obtained with SIMCA and
RP.

METHODS

Data Sets.Data sets obtained from various sources have
been used for developing classification models. The five sets
are described below, ordered by increasing “HTS-likeness”.
An HTS-like set contains greater structural diversity than a
traditional QSAR-like set and contains fewer actives than
inactives. The data sets are given in the Supporting Informa-
tion, both as tables of compounds and in electronic form
(except for the MAO set).

(i) COX-2. A set of 467 cyclooxygenase-2 (COX-2)
inhibitors has been assembled from the published work of a
single research group, with in vitro activities against human
recombinant enzyme expressed as IC50 values ranging from
1 nM to >100µM (53 compounds have indeterminate IC50

values). A 314 compound subset of these inhibitors has been
studied with QSAR and classification by Kauffman and Jurs.4

They used pIC50 ) 6.5 as the threshold for classifying
compounds as active or inactive, guided by a histogram plot
of compound counts vs pIC50. Here, we employ the same
threshold.

(ii) BZR. A set of 405 ligands for the benzodiazepine
receptor (BZR) has been assembled mostly from the work
of Haefely et al. and Cook et al. No differentiation of
agonists, antagonists, and inverse agonists is made. In vitro
binding affinities as measured by inhibition of [3H] diazepam
binding are expressed as IC50 values, ranging from 0.34 nM
to >70 µM (65 compounds have indeterminate values). We
have selected pIC50 ) 7.0 as the threshold for activity by
considering a histogram plot of compound counts vs pIC50

and the resulting balance of active and inactive compounds.
(iii) DHFR. A set of 756 inhibitors of dihydrofolate

reductase (DHFR) has been assembled from the work of
Queener et al. In vitro activities forP. carinii DHFR are
reported as IC50 values for the inhibition of the enzymatic
reduction that converts dihydrofolate to tetrahydrofolate. The

IC50 values range from 0.034 nM to>1000 µM (83
compounds have indeterminate values). We have selected
pIC50 ) 6.0 as the threshold for activity.

(iv) ER. A set of 1009 estrogen receptor (ER) ligands has
been assembled from multiple sources. A compilation of
binding affinities for 616 nonredundant compounds has been
prepared by the National Toxicology Program at the National
Institute of Environmental Health Sciences. The data have
been reported using the relative binding affinity (RBA) scale,
which measures affinities with respect toâ-estradiol. A
further 393 compounds of pharmaceutical interest were culled
from the chemical literature. The activity threshold RBA)
1 (after rounding to the nearest integer) was selected for
designating compounds as active or inactive, a value that is
useful for toxicological prioritization rather than pharma-
ceutical screening.

(v) MAO. A set of 1641 monoamine oxidase (MAO)
inhibitors has been obtained from the RP demo distributed
with Cerius2, a set that has been analyzed with other
classification methods.11,14,21 Activities are classified from
0 (inactive) to 3 (highly active). Compounds with activities
of 1-3 have been grouped together into the active class.
The demo file provides only precomputed descriptors and
MACCS keys,22 not the structures of the compounds.

When converting continuous activities or activity ranges
into active and inactive groups, the selection of thresholds
is arbitrary. The thresholds should not be viewed as
parameters for optimizing models; rather the choice of
thresholds should be determined by practical considerations.
It may depend on the quality and quantity of leads discovered
so far, with lower thresholds used at the early stages of a
screening project. We did not investigate the effect of
thresholds on classification models.

Computational Methodology.This work was performed
mostly with the molecular modeling package Cerius2 version
4.6 (Accelrys Inc.: San Diego, CA), automated with Tcl
scripts.

(i) Training and Test Set Assembly.It was the objective
of this work to simulate a real virtual screening process. To
this end, it was necessary to eliminate redundancy in the
data sets, as virtual screening is usually applied to libraries
of diverse compounds. Using 2-D (structural) fingerprints
with the Tanimoto coefficient23 (Tc) to calculate fingerprint
similarity, a subset from each data set was selected using
the coverage-based diversity algorithm24,25 implemented in
Cerius2. This gave sets for which all pairs of compounds
haveTc values that fall below a selected threshold. For the
ER and MAO sets, we usedTc ) 0.85, a value that is often
recommended for virtual screening.26 Because of the greater
similarity within the other sets, it was necessary to select
higher values to retain a sufficient number of compounds.
The excluded compounds were not used in any model
development or evaluation.

The remaining compounds were divided between training
and test sets. Approximately 40% were selected by “cherry
picking” with a maximum dissimilarity algorithm27,28 and
assigned to the test set, with the remaining 60% assigned to
the training set. The sets were structured this way to examine
the predictive accuracy of classification methods when
extrapolating outside the training set. The maximum dis-
similarity algorithm (the MaxMin function in Cerius2)
maximizes the minimum squared distance from each com-
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pound to all other compounds in the selected subset, with
pairwise distances determined using 1-Tc. The optimization
uses a Monte Carlo procedure28 that we have coupled to a
simulated annealing protocol implemented in Tcl (up to
100 000 trial sets per pseudotemperature, which is lowered
in 10% increments from 5000 to 10 K). For the ER and BZR
sets, this procedure gave very different proportions of actives
and inactives between the training and test sets (the more
structurally diverse inactives were concentrated in the cherry-
picked test sets). For those sets and all reduced training sets
(see below), the MaxMin function was optimized under
restraint, with a penalty applied when the ratio of actives
and inactives in the selected subset differs from the ratio
calculated over the complete set. The composition of sets at
all stages of their preparation is summarized in Table 1.

(ii) Descriptor Generation. A number of “traditional”
descriptors were calculated from the atomic composition (e.g.
molecular weight) and graph-theoretic representations of
molecules (e.g.ø indices,29 E-state indices30). In total, 90
descriptors were calculated (the combichem defaults and
E-state indices). Some descriptors were removed by examin-
ing each data set separately. The first reduction eliminated
descriptors having the same value for more than 90% of
compounds. The second reduction eliminated one descriptor
from each pair having a pairwise correlation coefficientr
satisfying|r| > 0.95. The number of remaining descriptors
is indicated in Table 1.

(iii) SIMCA Model Development. The SIMCA method8,9

applies principal component analysis (PCA) separately to
each class of objects and uses the principal components (PCs)
to define (hyper)volumes in the descriptor space. Classifica-
tion of test objects is achieved by comparing the orthogonal
projection distance to each class model with the PCA
residuals of objects within each class. The Sybyl implemen-
tation (Tripos Inc.: St. Louis, MO) used in this work differs
somewhat, as discussed in a recent evaluation of its applica-
tion in drug design.31 Descriptors were autoscaled, and no
column filtering was used. The use of internal leave-one-
out cross-validation in Sybyl produced models with as many
components as input descriptors. Therefore, we varied the
number of components systematically from 2 to 15.

(iv) RP Model Development.The RP method categorizes
objects by deriving a binary decision tree in which descriptors
are used to split the data set into smaller, homogeneous
subsets. We have used the CART algorithm10 implemented
in Cerius2. Trees were developed using the gini splitting rule,
trying 40 evenly spaced splits per descriptor, and were split
until terminal nodes contained at least 2.5%, 5%, 10%, and

15% of training set compounds. The active and inactive
classes were given equal weight in determining misclassi-
fication costs. Scaled pruning factors of 1-5 incremented
by 0.5 were used when working with the full training sets
but reduced when using subsets of the full training set (i.e.
during cross-validation and training set reduction; see below).
The scaled pruning factor used in Cerius2 is the complexity
parameterR in ref 10 multiplied by the number of com-
pounds in the training set. The reduction of the scaled pruning
factor when using smaller sets was done such thatR remains
independent of training set size. Using the same scaled
pruning factor instead of the sameR value gives smaller trees
when using subsets of the full training set. All parameters
combinations were examined systematically.

(v) SFGA Model Development. Spline-fitting with a
genetic algorithm (SFGA) uses the GFA algorithm18 to select
combinations of descriptor splines for fitting activities
expressed in binary form. As for RP trees, splines partition
the data set into groups having similar features and can
account for nonlinear behavior. The truncated power spline
〈x - a〉 equals zero if the value ofx - a is negative;
otherwise, it equalsx - a (Figure 1). The descriptor splines
are selected using crossover, mutation, and knot-shift opera-
tions. The algorithm can use the same descriptor for multiple
splines, enabling it to capture complex nonlinear behavior.
A SFGA model has the general form

whereAi is the activity of compound i,φi,k is the value of
descriptor k for compound i,ak is the spline knot. The
constantb0 and coefficientsbk are determined by least-
squares fitting, in which the active and inactive classes are
given equal weight.32 This is required to ensure that the
models are balanced in their predictive accuracy for each
category. Activities returned by a SFGA model are continu-

Table 1. Number of Compounds, Average Tanimoto Coefficients, and Descriptors Used for Data Sets

COX-2 BZR DHFR ER MAO

before reduction 467 405 756 1009d 1641
Tc threshold for reduction 0.95 0.95 0.90 0.85 0.85
after coverage-based reduction 303 306 393 446 1366
train set (1/0)a 178 (87/91) 181 (94/87) 233 (84/149) 266 (110/156) 816 (132/684)
test set (1/0)a 125 (61/64) 125 (63/62) 160 (42/118) 180 (70/110) 550 (100/450)
〈Tc〉 in train/test setsb 0.46/0.43 0.34/0.32 0.38/0.38 0.23/0.22 0.25/0.29
〈Tc〉 for most similar train set-test set pairc 0.86 0.80 0.80 0.67 0.66
descriptors used for deriving models 35 36 33 36 38

a Actives are identified as 1, inactives as 0.b The average value ofTc between all pairs of compounds, calculated separately for the training and
test sets.c The average value ofTc between each test set compound and the most similar training set compound.d There are duplicate compounds
between the NTP and literature compilations.

Figure 1. The truncated power spliney ) 〈x - a〉.

Ai ) b0 + Σkbk 〈φi,k - ak〉 (1)
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ous in nature. They are converted to discrete values by
designating as active (1) those with predicted activitiesg
0.5 and inactive (0) those with predicted activities<0.5.
Fixed-complexity models having between 2 and 15 splines
were evolved separately (we have found that the lack-of-fit
fitness function in GFA is not suitable for automatically
identifying the optimal number of splines). The number of
crossovers, population size, mutation probability, and knot-
shift probability are parameters required by the GFA
algorithm. For all but the MAO set, we used 15 000
crossovers with a population of 500. For the MAO set, we
used the less expensive parameters of 10 000 crossovers with
a population of 200. The mutation and knot shift probabilities
were set to 10% and 100%, respectively. These values were
selected by systematic variation for models with eight splines
generated from the DHFR and MAO sets. The combination
of low mutation and high spline shift probabilities lead to
populations with greater average fitness at 10 000 crossovers.
This seems to achieve a reasonable balance between rapid
maturation of the population (which low mutation and knot
shift probabilities enhance) and maintaining sufficient di-
versity (which high mutation and knot shift probabilities
enhance). In practice, the predictive accuracy of models does
not depend strongly on the mutation and knot shift prob-
abilities: the fittest individual has usually been found by
about 5000 crossovers, and it is the only model that is
retained at the end of evolution. The use of 10 000 crossovers
can be seen to be more than adequate when using these
parameters (Figure 2).

Run times for SFGA are roughly 30 times longer than for
SIMCA and RP. For the MAO set, the development of the
optimal SIMCA, RP, and SFGA models requires 0.59, 0.52,
and 17.1 min on a R14K-400 MHz processor. The smaller
sets require 5-8 min when using the more expensive GFA
parameters. Once the model is developed, predictions are
substantially faster with SFGA (0.1 s per 1000 compounds
compared to 33 and 11 s for SIMCA and RP, respectively).

RESULTS

Cross-validation and the use of test sets are two approaches
for assessing the ability of a model to generalize.33 The

optimal complexity of models was assessed using 10 cycles
of leave-20%-out cross-validation (CV). Model complexity
refers to the number of components, splits, and splines used
by the SIMCA, RP, and SFGA methods, respectively. For
each cycle, the training set was divided into five groups that
were used in turn as prediction sets for models derived with
the other four groups. The selection of descriptors was
repeated for each CV model (referred to as “full” cross-
validation). In addition to CV, we used the test set accuracy
of models to determine the optimal complexity. We stress
this amounts to nothing more than comparing a fewfinal
models having different feature counts, and that the test set
compounds have no influence on the development of these
models. The measure of predictive accuracy used in clas-
sification is theclassification rateor percentage of com-
pounds from each class that are correctly classified. These
are denoted byC1 for the active class (true positive rate, or
sensitiVity) andC0 for the inactive class (true negative rate
or specificity).

Typical plots of classification rates vs complexity are
shown in Figure 3 for the RP and SFGA methods applied to
the BZR set. We use two criteria to identify the optimal
complexity: the number of features at which the average
〈C1, C0〉 is maximized, and the number of features at which
min{C1, C0} is maximized. For CV, the term “maximized”
must sometimes be replaced with an arbitrary rule because
the classification rate increases continuously as it approaches
its high complexity value (e.g. Figure 3D). This is typical
of sCV vs complexity observed in conventional QSAR. Here,
we use the permissive value of 1% per feature. Admittedly,
Figure 3D is the most ambiguous of the (successful) CV
runs; in many cases there was a clear maximum that could
be used to identify the optimal number of features. In other
cases, especially for the RP CV results (e.g. Figure 3B), it
was not possible to identify the optimal complexity as〈C1,
C0〉 and min{C1, C0} were either constant or decreased with
increasing number of features.

The use of cross-validation and (large) test sets has been
found to give equally reliable estimates of the true predictive
accuracy of models, but the use of test sets was deemed
wasteful for small data sets.33 Consistent with those results,

Figure 2. Frequency at which descriptors occur in the population vs the number of crossover operations performed for (A) the DHFR set
and (B) the MAO set.
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we have found that the optimal number of features deter-
mined using either CV or the test set is very similar (Table
2). Interestingly, the optimal number of features is generally
similar among the three classification methods. Because of
the large difference in computing time between test set
validation and CV (50-fold in this work), the former may
be preferable when analyzing large data sets with CPU-
intensive methods. In this work, using the test set classifica-
tion rates instead of the corresponding CV rates leads to more
prominent maxima, making the identification of optimal
complexity more intuitive. It has been suggested that this
reflects the particular composition of the test set. While this
could be true if one used a randomly assembled test set, the
use of series designed to ensure that it effectively spans
descriptor space minimizes this possibility. The greater
“noise” in classification rates vs complexity for SFGA
(Figure 3C) compared to RP (Figure 3A) or SIMCA (not

shown) results from the stochastic nature of the GFA
algorithm.

Classification statistics for the optimal models are sum-
marized in Table 3; the models are given in the Supporting
Information. The training set classification rates are mostly
similar. For the DHFR and ER sets, the active and inactive
classes are poorly fit by RP and SIMCA, respectively.
SIMCA fits the MAO set less well for both activity classes.
The SFGA method yields models with higher test set
classification rates for all but the DHFR data set, for which
SIMCA performs better (Figure 4A). For all but the BZR
set, the (test set) difference betweenC1 andC0 is substantially
smaller for SFGA than for SIMCA and RP. RP gives the
lowest and most unbalanced test set classification rates for
four data sets.

To investigate the stability of models when varying the
composition of the training set, compounds were randomly
assigned to training and test sets, with each set containing
the same number of compounds as the corresponding
designed sets. This was repeated 50 times, giving 50 pairs
of random training and test sets. For each random training
set, a classification model was developed using the optimal
parameters.34 Both the training and test set classification rates
show the greatest variability for RP and the smallest
variability for SIMCA (Table 3, Figure 4B). SFGA has the
highest classification rate on the random test sets, except
for the COX-2 and BZR sets for which SIMCA performs
better. Trends in CV classification rates and their variability
are similar (Table 3). It is important to note that the same
sequence of (pseudo) random sets was used for all methods,
including those used in CV. As such, classification rates are
directly comparable.

Figure 3. Classification rates of activesC1 (dashed lines), inactivesC0 (dotted lines), and〈C1, C0〉 (solid lines) for the BZR data set.
Values correspond to (A) RP and designed test set, (B) RP and cross-validation sets, (C) SFGA and designed test set, and (D) SFGA and
cross-validation sets.

Table 2. Identification of Optimal Model Complexity Using Test
and CV Classification Ratesa

SIMCA RP SFGA

test CV test CV test CV

COX-2 6/6 4/6 8/7 -/- 6/6 5/5
BZR 6/5 7/7 5/5 -/- 6/6 8/7
DHFR 12b/12 9a/9 6/9 -/4 6/6 7/7
ER 5/6c 5/4 3/3 4/4 3/4 4/4
MAO 5/5 -/- 4/7 -/4 6/6 -/-

a x/y: x features maximize〈C1, C0〉, y features maximize min{C1,
C0}; - indicates that the classification rate was flat or decreased with
increasing features. The selected complexity is indicated in bold.
b Twelve components were selected as the random test setC0 (see
below) is significantly greater for 12 than 9 components.c Six
components were selected because the decrease in〈C1, C0〉 was small.
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Another approach for introducing training set variation
consists of gradually eliminating compounds from the
designed training set and assessing the effect on the designed
test set (which does not vary). A series of nested subsets of
compounds was assembled from the full training set using
the maximum dissimilarity algorithm, as described in the
methods section for test set design. The compounds to be
retained were selected from the previous set, as opposed to

selecting the compounds to be discarded; this serves the
purpose of maintaining as much as possible an effective
coverage of descriptor space while the number of compounds
is reduced. For the MAO set, the full training set was
decremented by 20 compounds until 96 remained. For the
other sets, the full training set was decremented by five
compounds (10 for ER), until about 50 remained. The
optimal parameters were used for generating models. Figure
5 shows the results obtained for the MAO set. To quantify
trends in the variation of classification rates with training
set size, linear regression was used to fit a line to each series
in Figure 5 and the corresponding series for the other data
sets. The slopes (expressed as % decrease inC1/0 per 100

Table 3. Classification Rates and Parameters for SIMCA, RP, and SFGA Modelsa

COX-2 BZR DHFR ER MAO

SIMCA
no. of compds 6 6 12 6 5
train 86/82 82/78 85/81 93/69 62/63
test 75/67 68/76 74/71 81/73 60/65
CV 79 ( 9/77( 9 73( 10/70( 12 57( 10/70( 9 83( 8/67( 7 54( 9/64( 5
random train 85( 3/80( 3 83( 3/80( 4 84( 4/77( 4 90( 4/69( 4 70( 5/63( 4
random test 75( 4/73( 5 75( 5/72( 6 62( 8/69( 6 83( 5/64( 5 58( 6/61( 4

RP
prune factor/min. samples 2.0/5 3.0/5 3.5/12 3.5/7 3.5/41
splits 8 5 6 3 4
train 91/81 82/81 69/85 89/75 67/75
test 79/63 64/74 57/73 76/74 63/72
CV 72 ( 12/67( 12 68( 12/65( 12 57( 12/65( 12 79( 9/72( 9 67( 12/60( 8
random train 88( 5/85( 5 80( 7/83( 7 78( 7/76( 5 87( 4/78( 5 76( 7/71( 5
random test 68( 9/67( 8 67( 9/66( 10 59( 9/66( 8 79( 9/71( 7 60( 8/67( 7

SFGA
no. of splines 6 6 6 3 6
train 83/87 81/76 80/75 87/76 71/67
test 75/72 70/81 71/66 77/80 71/70
CV 76 ( 9/72( 10 69( 11/68( 13 65( 11/64( 10 83( 8/70( 8 64( 10/68( 5
random train 83( 3/78( 4 80( 5/78( 6 76( 4/73( 3 87( 3/74( 5 71( 4/67( 6
random test 77( 6/70( 7 71( 9/69( 9 67( 7/66( 5 82( 5/72( 6 64( 6/66( 7

a Classification rates for actives (sensitivity) and inactives (specificity) are indicated asC1/C0 for the designed training and test sets and asC1 (
σ1/C0 ( σ0 for CV and random sets.

Figure 4. Classification rates for SIMCA (gray), RP (black), and
SFGA (hashed) applied to five data sets. Each pair of matching
bars corresponds toC1 (left) and C0 (right) for (A) the designed
test set and (B) the average over 50 random test sets. For (B), error
bars correspond to the standard deviation.

Figure 5. Effect on MAO test set classification ratesC1 (filled
markers, bottom series) andC0 (open markers, top series) from
reducing the size of the training set for SIMCA (gray), RP (black),
and SFGA (dotted). The top and bottom series have been separated
for clarity.
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compounds removed from the training set) and standard error
of regression about the fit lines are given in Table 4.

By comparing the standard errors of regression, it emerges
that SIMCA classification rates are the least variable upon
training set reduction, and RP classification rates are the most
variable by a wide margin. The slopes indicate that SIMCA
suffers the smallest decrease in classification rates. One might
also conclude that the RP classification rates decrease less
than those for SFGA. The increases seen for the COX-2
inactives, and especially the BZR and DHFR actives, are
coupled to large standard errors; those series are not well-
described by linear regression. Indeed, if only the largest 11
of 27 sets are considered for BZR,C1 decreases by 58% per
100 compounds removed for RP. The RP slopes with lower
standard errors are similar to those for SFGA. On average,
both methods appear to be similarly affected by training set
reduction.

In addition to examining the effect of training set variation
on classification rates, it is instructive to compare the
consistency of model features (i.e. the descriptors that are
selected). Because SIMCA models are defined using latent
structures, the topx descriptors ranked by “discriminating
power” were selected for comparisons with RP and SFGA,
wherex corresponds to the number of components included
in the model. For the 50 models corresponding to the 50
randomly assembled training sets, the number of occurrences
of each descriptor was determined and divided by the total
number of features present in the 50 models (e.g. 50× 6
for six feature models). The consistency of models must be
considered in light of the correlations among the descriptors,
as it is reasonable to expect that highly correlated descriptors
will be used interchangeably. A qualitative picture of model
consistency can be obtained by applying principal component
analysis7 to the autoscaled descriptor matrix and representing
the frequency of occurrence of descriptors in the loading
space corresponding to the first 2 or 3 principal components
(Figure 6A). Proximity of descriptors within this space
indicates that they represent similar molecular properties. A
classification method that produces consistent models will
give a limited number of descriptors or descriptor clusters
that account for most of the features from the 50 models. In
Figure 6A, this corresponds to large circles or clusters of
intermediate circles. A method which produces less consistent
models will yield smaller circles distributed throughout the
loading space. It can be seen that for the MAO random sets,
SIMCA produces the most consistent models followed by
SFGA and RP.

The consistency of the models was quantified using the
following procedure. Factor analysis7 was used to obtain
eight varimax-rotated factors from the autoscaled descriptor
matrix; eight factors account for roughly 80% of its variance.
Varimax-rotated factors differ from PCA factors in that the
rotated factors have high correlations with one smaller set
of descriptors and little or no correlation with another set of
descriptors, making the factors more interpretable and distinct
from each other. For each factor, the fraction of a descriptor’s
variance that it explains was multiplied by the descriptor’s
observed frequency; the products between a given factor and
all descriptors were summed and divided by the total for all
eight factors. The final result can be viewed as observed
descriptor frequencies expressed compactly in terms of eight
independent factors. A histogram of factor frequencies leads
to similar conclusions for the MAO set (Figure 6B). A set
of maximally inconsistent models would have equal frequen-
cies for all eight factors, while a set of consistent models
would have higher frequencies for certain factors. Figure 6B
can therefore be summarized by calculating theø2 goodness-
of-fit statistic for SIMCA, RP, and SFGA, using the null
hypothesis of equal factor frequencies. A set of consistent
models will have a high value ofø2. The same procedure

Table 4. Effect of Training Set Reduction on Test Set
Classification Ratesa

SIMCA RP SFGA

m (1/0) s (1/0) m (1/0) s (1/0) m (1/0) s (1/0)

COX-2 -0.8/0.4 2.4/3.1 6.8/-4.1 4.2/4.9 6.6/4.9 3.9/3.5
BZR -6.9/11.7 3.7/3.6 -3.2/6.0 9.0/5.1 8.0/12.1 5.2/3.6
DHFRb 6.7/-1.1 4.3/4.3 -5.6/5.2 10.2/5.7 2.0/2.6 5.6/4.2
ER 10.0/-3.5 3.9/3.1 -3.1/4.0 4.7/4.4 -0.2/0.9 5.8/4.1
MAO 3.7/-3.0 5.8/3.3 1.1/0.1 7.2/7.2 2.1/-0.7 5.7/3.3

a The slopem from linear regression is expressed as the percent
decrease inC1/0 per 100 compounds removed from the training set;
negative values indicate an increase inC1/0; s is the standard error of
regression;x/y correspond to the active/inactive classes.b Sets with 58
and 53 compounds were excluded, as SIMCA and RP had extremely
low values ofC1.

Figure 6. Variability of descriptors in 50 MAO random training
set models from SIMCA (gray), RP (black), and SFGA (hashed).
(A) The 38 descriptors used for developing models represented in
the loading space of the first two principal components. The area
of circles is proportional to the frequency at which the descriptor
occurs among the 50 models. The circles for RP and SFGA have
been shifted by-0.05 and +0.05 for clarity. (B) Descriptor
frequencies converted to eight varimax-rotated factors. See text for
details.
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was repeated using models obtained from training set
reduction, with results given in Table 5. It should be noted
that this procedure would not be appropriate if the individual
models actually contained eight completely orthogonal
features; a set of identical models would then have a low
value of ø2. The use of eight factors for representing the
descriptors is a reasonable compromise between representing
the descriptor pool more accurately and maintaining suf-
ficient “occurrences” for each factor to allow statistics such
asø2 to be applicable.

For the random training sets, it emerges that SIMCA
produces the most consistent models for 3 sets, while SFGA
produces the most consistent models for the other 2 sets.
For training set reduction, SFGA produces the most consis-
tent models for all but the BZR set. There is a higher degree
of correlation among the reduced training sets than the
random sets, and the difference betweenø2 values for SIMCA
and SFGA tend to be greater when SIMCA produces the
larger value. Thus, it is clear than SIMCA is generally more
consistent than SFGA when training set variation is exten-
sive. In all cases, RP produces the least consistent models.

The predictive accuracy of the classification methods when
extrapolating from the training set was examined. The values
of 1-Tc were calculated between each test compound and all
training compounds (for the designed sets), and the smallest
value was used to represent the compound’s distance from
the training set. The distances were binned into three
intervals, and test set classification rates were calculated for
each (Figure 7). In this representation, each pair of axes
representsC1 andC0 in one distance bin; a method which
gives balanced values ofC1 andC0 that are similar across
all distance bins will give a hexagonal shape; larger
“hexagons” indicate greater predictive accuracy. In general,

SFGA gives more balances values ofC1 and C0, even as
distance to the training set increases.

While it is important to assess differences between the
classification methods, it should be noted that they are most
powerful when applied in concert. Substantially improved
classification rates can be obtained when using a unanimous
agreement consensus scheme, in which all three methods
must agree on the activity of a compound for a prediction
to be registered (Table 6). Consequently, predictions are not
available when the methods do not agree on a predicted
activity. This should not be a severe limitation. In situations
for which the number of compounds to be synthesized and
tested must be minimal, then only the consensus-predicted
actives could be screened. On the other hand, if the risk of
missing actives must be minimized, then only those com-
pounds that are consensus-predicted inactive could be
excluded. A consensus scheme using a majority agreement
(i.e. 2 actives, 1 inactive) active) would give predictions
for all compounds. Unfortunately, this gives classification
rates intermediate to those obtained from the most and least
predictive models. It does, however, give classification rates
slightly greater than the average among the three methods.

DISCUSSION

In this paper, we have compared soft independent model-
ing by class analogy (SIMCA), recursive partitioning (RP),
and spline-fitting with a genetic algorithm (SFGA) in their
classification performance for five data sets. The use of latent
variables for defining SIMCA classification models results
in classification rates and model features that are insensitive
to variations in the training set. The addition or elimination
of compounds may significantly alter the profile of values
for some descriptors, but the underlying latent variables are

Figure 7. Graphical representation of test set classification ratesC1 andC0 from SIMCA (gray), RP (black), and SFGA (dashed) in each
of the three distance bins that describe the extent of extrapolation from the training set. The axis label “bin1-0” correspond toC0 for
distance bin 1; similar definitions apply to the other five axes. Numbers in parentheses indicate the number of compounds of a given
activity class in each bin. (A) COX-2 (0.09, 0.15), (B) DHFR(0.18, 0.24), and (C) MAO (0.27, 0.38); the thresholds used for defining bins
are indicated.

Table 5. ø2 Representation of Descriptor Consistency among
Models from Random and Reduced Training Sets

random training setsø2 reduced training setsø2

SIMCA RP SFGA SIMCA RP SFGA

COX-2 0.66 0.23 0.42 0.70 0.32 0.72
BZR 0.99 0.50 0.76 2.39 0.52 0.69
DHFR 0.87 0.78 0.91 1.21 0.73 1.84
ER 0.67 0.44 0.92 0.73 0.62 0.87
MAO 1.92 0.97 1.24 1.81 1.44 1.88

Table 6. Classification Rates Obtained from a Consensus of
SIMCA, RP, and SFGA Models

consensus
C1/C0

% of compds with
prediction (1/0)

COX-2 90/71 69/77
BZR 76/92 65/63
DHFR 89/87 45/47
ER 93/84 64/74
MAO 72/79 76/72
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less affected because of their relationship to multiple
descriptors. Some limitations of SIMCA can be deduced from
the present work. First, SIMCA cannot handle distinct
clusters of active compounds embedded within a larger space
of inactive compounds. This may be partly responsible for
the lower classification rates observed for the MAO set, as
the diverse group of active compounds may elicit their
biological response through multiple binding modes. A
limitation in the Sybyl implementation of SIMCA is the
inability to fix separately the number of components used
for each category. This can be observed in the variation of
the classification ratesC1 (for actives, sensitivity) andC0

(for inactives, specificity) with the number of components
for the ER and DHFR sets (data not shown). For ER,C1 is
maximized at three components, althoughC0 requires six
components. A similar situation occurs for DHFR, where
C1 andC0 are maximized at 7 and 12 components, respec-
tively. It should be possible to vary the components
separately in Sybyl by implementing a “custom” SIMCA
using SPL and the factor analysis routine. Alternatively a
model could be derived for the active class alone, and
compounds falling outside the active model are assigned to
the inactive class.9

RP produces models that are more interpretable than
SIMCA models, because of their intuitive treelike structure
using the original descriptors. It can be applied to extremely
large data sets by virtue of its speed.35 The short run times
of RP derive from its use of an incremental approach for
choosing descriptor splits. However, it is responsible for RP’s
sensitivity to the composition of the data set. Once a split
has been made, it cannot be changed later during tree growth
even if another descriptor would achieve a higher classifica-
tion rate. This limitation is less acute for simple models, as
shown by the performance of RP on the ER data set.
Attempts to improve on the incremental approach invariably
cause increases in the time required for deriving models (e.g.
optimizing descriptor combinations by simulated annealing
takes 30 times longer than traditional RP16).

SFGA represents our attempts to retain RP’s partition-
based approach to classification while replacing its incre-
mental descriptor selection with a best-subset selection. In
general, the predictive accuracy of SFGA models developed
in this work exceeded those of SIMCA and RP models.
Using a genetic algorithm yields models with greater
consistency of features and stability of classification statistics
than the corresponding RP models when the composition of
the training set is varied. The SFGA classification ratesC1

andC0 are also more balanced than those from SIMCA and
RP. The run times for SFGA are substantially longer. It is
possible to decrease it by using only 5000 crossover
operations, as suggested by Figure 2. Despite longer run
times, a complete set of models can be developed in 2-3 h
on a typical workstation. With the model at hand, SFGA is
substantially faster at making predictions. Nevertheless, the
short times required for developing SIMCA and RP models
may warrant their use over more time-consuming methods
when developing preliminary models. The SFGA classifica-
tion rates are only moderately higher in most cases.

A comparison of classification methods is inherently
dependent on the descriptors employed. Pearlman and Smith
have discussed the limitation of traditional molecular de-
scriptors applied to the active vs inactive problem.36 To some

extent, the present study validates their point of view. This
is most evident in the moderate increase intraining set
classification rates as the number of model features increases.
For the MAO set, the difference between the highest and
lowest values of〈C1, C0〉 amounts to 8%, 11%, and 7% for
SIMCA, RP, and SFGA, despite large increases in complex-
ity by 12-18 features. Despite the limitations of traditional
1-D and 2-D descriptors, they remain useful for developing
classification models and confer the important advantage of
requiring no structural optimization of molecules. High-
dimensional descriptors such as molecular fingerprints
(excluding low-complexity variants such as the 166 MACCS
keys22 and minifingerprints37) that are often used in clustering
are clearly not applicable for developing classification
models. The BCUT metrics36 and the interclass distance
parameter38 represent recent efforts for developing descriptors
more suitable for classification. However, the use of BCUT
metrics with the binary QSAR method13,14produced models
of predictive accuracy similar to those obtained with
traditional descriptors.39

CONCLUSIONS

Because of the shift toward combinatorial chemistry and
high-throughput screening in drug discovery, the use of
classification methods is likely to continue increasing. The
present work further establishes their usefulness in screening,
for which efficiency can be increased by directing physical
resources to those compounds predicted to be active. We
have described spline fitting with a genetic algorithm
(SFGA), a method that uses descriptor splines to partition
compounds into active and inactive classes. SFGA was
compared to soft independent modeling by class analogy
(SIMCA) and recursive partitioning (RP), two well-
established classification methods, by using five data sets
designed to maximize their diversity. SFGA produced the
most predictive models for four of five designed test sets.
Similar results were obtained when using sets assembled by
random selection. The stability of SFGA classification
statistics upon training set variation was found to be
intermediate to those of RP and SIMCA, with SIMCA giving
the most stable model statistics. A similar trend was observed
with respect to the features used in the models. Despite the
inevitable rankings that such comparisons produce, we
showed that a consensus approach involving all three
classification methods outperforms the best single method
in all cases.
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