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Classification methods allow for the development of structaetivity relationship models when the target
property is categorical rather than continuous. We describe a classification method which fits descriptor
splines to activities, with descriptors selected using a genetic algorithm. This method, which we identify as
SFGA, is compared to the well-established techniques of recursive partitioning (RP) and soft independent
modeling by class analogy (SIMCA) using five series of compounds: cyclooxygenase-2 (COX-2) inhibitors,
benzodiazepine receptor (BZR) ligands, estrogen receptor (ER) ligands, dihydrofolate reductase (DHFR)
inhibitors, and monoamine oxidase (MAO) inhibitors. Only 1-D and 2-D descriptors were used. Approximately
40% of compounds in each series were assigned to a test set, “cherry-picked” from the complete set such
that they lie outside the training set as much as possible. SFGA produced models that were more predictive
for all but the DHFR set, for which SIMCA was most predictive. RP gave the least predictive models for
all but the MAO set. A similar trend was observed when using training and test sets to which compounds
were randomly assigned and when gradually eliminating compounds from the (designed) training set. The
stability of models was examined for the random and reduced sets, where stability means that classification
statistics and the selected descriptors are similar for models derived from different sets. Here, SIMCA produced
the most stable models, followed by SFGA and RP. We show that a consensus approach that combines all
three methods outperforms the single best model for all data sets.

INTRODUCTION ologies employed to obtain the activities. In QSAR studies,
compounds with activities expressed in indeterminate form
(e.g. 1Go > 1 uM) are often discarded. These can be included
in the development of classification models that benefit from
the increased extent of chemical space covered by the training
set. For compounds predicted to be active by the classifica-
tion model, the prediction can be refined with a conventional
QSAR model®

Most classification methods are based on clustering,
partitioning, or statistical approacheStatistical-based meth-
ods, by which a model of activity is developed, include linear
discriminant analysigLDA), soft independent modeling by
class analogd? (SIMCA), recursive partitioniny'* (RP),

Quantitative structureactivity relationships (QSAR) at-
tempt to correlate the biological activities of compounds with
their structural attributes, to help elucidate the mechanism
by which they act and to predict the activities of novel
derivatives. Traditionally, QSAR has been applied to a
relatively small number ofctive congeneric compounds
(<100), with activities varying continuously. These studies
have often been retrospective or used to make predictions
on similar derivatives. With the advent of combinatorial
chemistry and high-throughput screening (HTS), the focus
of QSAR has shifted toward virtual screening of compound

libraries at the early stages of the drug discovery protess. ‘ ol ; 314
This has been coupled to the increasing use of diversity- ECUrSive mean partitioning,and binary QSAR?*LDA,
based approaches for assembling the libr@fedTS data SIMCA, and RP are well-established methods that have been

sets are larger and contain more diverse structures than thos@Pplied to a large number of SAR studies. In a comparative
used in conventional QSAR, with biological activities often classification study, LDA and RP were found to perform
expressed in categorical form (e.g. active or inactive). This Petter than hierarchical clusterifg. o
has stimulated the development of classification methods Nonlinear effects are more prominent in classification sets
capable of dealing effectively with such data sets. than in QSAR .sets contammg only active compounds. For
In addition, classification methods can be useful for €xa@mple, activity may be linearly related to the volume of a
studying more traditional QSAR sets for which activities are cOmpound within the chemical space of active compounds.
categorical in nature (e.g. taste, toxicity) or when they are When inactive compounds are included, the relation may be

compiled from a variety of sources, with different method- Subject to threshold effects, as compounds with volumes
above or below certain values may not fit within the binding
*Corresponding author fax: (902)494-1310; e-mail: weaver@ Site. Activity may require the simultaneous presence of
Ch?giﬁgﬁﬁéﬁ'ffchem-su Queen's Universit multiple features. For this reason, classification methods
Istry, Qu [\ Ity. . B . .
* Department of Pathology. Queen’s University. applied to virtual screening must be able to handle nonlinear
§ Dalhousie University. effects.
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Because of difficulties encountered in developing predic- 1Cso values range from 0.034 nM te-1000 uM (83
tive RP models for classificationwe have implemented a compounds have indeterminate values). We have selected
genetic algorithm-based classification method that is similar pICso = 6.0 as the threshold for activity.
in philosophy to that of RP but replaces its incremental  (iv) ER. A set of 1009 estrogen receptor (ER) ligands has
approach to variable selection with a best-subset approachbeen assembled from multiple sources. A compilation of
In multivariate analyses such as QSAR, it is well-known that binding affinities for 616 nonredundant compounds has been
incremental approaches for variable selection often find prepared by the National Toxicology Program at the National
suboptimal solutions when applied to large sets of variables Institute of Environmental Health Sciences. The data have
(e.g. stepwise multiple linear regression). This has beenbeen reported using the relative binding affinity (RBA) scale,
recognized to be a limitation of RP by others; simulated which measures affinities with respect fhestradiol. A
annealind® and artificial ant coloni€€ have been used for  further 393 compounds of pharmaceutical interest were culled
descriptor selection. In this method, which we designate from the chemical literature. The activity threshold RBA
spline-fitting with a genetic algorithm (SFGA), the GFA 1 (after rounding to the nearest integer) was selected for
algorithm® is used to select combinations of descriptor designating compounds as active or inactive, a value that is
splines that partition the compounds into active and inactive useful for toxicological prioritization rather than pharma-
groups. This differs from the typical application of the GFA ceutical screening.
algorithm in conventional QSAR!®2%n which splines and/ (v) MAO. A set of 1641 monoamine oxidase (MAO)
or higher order terms are sometimes added to linear termsinhibitors has been obtained from the RP demo distributed
to account for nonlinear behavior in a series of compounds with Cerius2, a set that has been analyzed with other
having a continuous distribution of activities. The method classification method¥-142! Activities are classified from
is implemented in Tcl scripting language for use with the 0 (inactive) to 3 (highly active). Compounds with activities
Cerius2 molecular modeling package. To validate the of 1-3 have been grouped together into the active class.
method, we developed classification models for five data setsThe demo file provides only precomputed descriptors and
and compare these to the models obtained with SIMCA and MACCS keys?? not the structures of the compounds.
RP. When converting continuous activities or activity ranges
into active and inactive groups, the selection of thresholds
METHODS is arbitrary. The thresholds should not be viewed as
) . parameters for optimizing models; rather the choice of
Data Sets.Data sets obtained from various sources have ,resholds should be determined by practical considerations.

been use(_j for developing cIassific_ation models. Thg five sets ¢ may depend on the quality and quantity of leads discovered
are described below, ordered by increasing “HTS-likeness”. ¢ far, with lower thresholds used at the early stages of a

An HTS-like set contains greater structural diversity than a screening project. We did not investigate the effect of
traditional QSAR-like set and contains fewer actives than i,-esholds on classification models.
inactives. The data sets are given in the Supporting Informa- Computational Methodology. This work was performed

tion, both as tables of compounds and in electronic form gty with the molecular modeling package Cerius2 version
(except for the MAO set). 4.6 (Accelrys Inc.: San Diego, CA), automated with Tcl
(i) COX-2. A set of 467 cyclooxygenase-2 (COX-2)  gcripts.
inhibitors has been assembled from the published work of a  (j) Training and Test Set Assembly It was the objective
single research group, with in vitro activities against human of this work to simulate a real virtual screening process. To
recombinant enzyme expressed ag)Malues ranging from  thjs end, it was necessary to eliminate redundancy in the
1nMto >100u4M (53 compounds have indeterminatesdC  data sets, as virtual screening is usually applied to libraries
values). A 314 compound subset of these inhibitors has beenyf diverse compounds. Using 2-D (structural) fingerprints
studied with QSAR and classification by Kauffman and Jurs. yith the Tanimoto coefficieRt (T,) to calculate fingerprint
They used plG = 6.5 as the threshold for classifying sjmilarity, a subset from each data set was selected using
compounds as active or inactive, guided by a histogram plot the coverage-based diversity algorifdi#f implemented in
of compound counts vs ple Here, we employ the same  cerius2. This gave sets for which all pairs of compounds
threshold. haveT, values that fall below a selected threshold. For the
(i) BZR. A set of 405 ligands for the benzodiazepine ER and MAO sets, we usell = 0.85, a value that is often
receptor (BZR) has been assembled mostly from the work recommended for virtual screenidBecause of the greater
of Haefely et al. and Cook et al. No differentiation of similarity within the other sets, it was necessary to select
agonists, antagonists, and inverse agonists is made. In vitrohigher values to retain a sufficient number of compounds.
binding affinities as measured by inhibition 8H] diazepam The excluded compounds were not used in any model
binding are expressed assivalues, ranging from 0.34 nM  development or evaluation.
to >70uM (65 compounds have indeterminate values). We  The remaining compounds were divided between training
have selected pkg = 7.0 as the threshold for activity by  and test sets. Approximately 40% were selected by “cherry
considering a histogram plot of compound counts vsspIC  picking” with a maximum dissimilarity algorithA%28 and
and the resulting balance of active and inactive compounds.assigned to the test set, with the remaining 60% assigned to
(i) DHFR. A set of 756 inhibitors of dihydrofolate the training set. The sets were structured this way to examine
reductase (DHFR) has been assembled from the work ofthe predictive accuracy of classification methods when
Queener et al. In vitro activities fdP. carinii DHFR are extrapolating outside the training set. The maximum dis-
reported as 16 values for the inhibition of the enzymatic  similarity algorithm (the MaxMin function in Cerius2)
reduction that converts dihydrofolate to tetrahydrofolate. The maximizes the minimum squared distance from each com-
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Table 1. Number of Compounds, Average Tanimoto Coefficients, and Descriptors Used for Data Sets

COX-2 BZR DHFR ER MAO
before reduction 467 405 756 1009 1641
T. threshold for reduction 0.95 0.95 0.90 0.85 0.85
after coverage-based reduction 303 306 393 446 1366
train set (1/0) 178 (87/91) 181 (94/87) 233 (84/149) 266 (110/156) 816 (132/684)
test set (1/0) 125 (61/64) 125 (63/62) 160 (42/118) 180 (70/110) 550 (100/450)
[Tc[n train/test sets 0.46/0.43 0.34/0.32 0.38/0.38 0.23/0.22 0.25/0.29
[T.[For most similar train set-test set pair 0.86 0.80 0.80 0.67 0.66
descriptors used for deriving models 35 36 33 36 38

2 Actives are identified as 1, inactives as’’he average value df; between all pairs of compounds, calculated separately for the training and
test sets¢ The average value df; between each test set compound and the most similar training set compdinede are duplicate compounds
between the NTP and literature compilations.

pound to all other compounds in the selected subset, with y
pairwise distances determined using-The optimization 4
uses a Monte Carlo proceddt¢hat we have coupledtoa |
simulated annealing protocol implemented in Tcl (up to 2.
100 000 trial sets per pseudotemperature, which is lowered

in 10% increments from 5000 to 10 K). For the ER and BZR 11

sets, this procedure gave very different proportions of actives 0 y= <X-a>
and inactives between the training and test sets (the more -11

structurally diverse inactives were concentrated in the cherry- } >X

picked test sets). For those sets and all reduced training sets a

(see below), the MaxMin function was optimized under Figure 1. The truncated power spline= X — alJ

restraint, with a penalty applied when the ratio of actives

and inactives in the selected subset differs from the ratio 15% of training set compounds. The active and inactive

calculated over the complete set. The composition of sets atclasses were given equal weight in determining misclassi-
all stages of their preparation is summarized in Table 1.  fication costs. Scaled pruning factors of-8 incremented

(i) Descriptor Generation. A number of “traditional” by 0.5 were used when working with the full training sets
descriptors were calculated from the atomic composition (e.g. but reduced when using subsets of the full training set (i.e.
molecular weight) and graph-theoretic representations of during cross-validation and training set reduction; see below).
molecules (e.gy indices?® E-state indice¥). In total, 90 The scaled pruning factor used in Cerius2 is the complexity
descriptors were calculated (the combichem defaults andparametero in ref 10 multiplied by the number of com-
E-state indices). Some descriptors were removed by examinpounds in the training set. The reduction of the scaled pruning
ing each data set separately. The first reduction eliminatedfactor when using smaller sets was done suchdhamains
descriptors having the same value for more than 90% of independent of training set size. Using the same scaled
compounds. The second reduction eliminated one descriptorpruning factor instead of the saraevalue gives smaller trees
from each pair having a pairwise correlation coefficient ~ when using subsets of the full training set. All parameters
satisfying|r| > 0.95. The number of remaining descriptors combinations were examined systematically.
is indicated in Table 1. (v) SFGA Model Development. Spline-fitting with a

(i) SIMCA Model Development. The SIMCA metho8?® genetic algorithm (SFGA) uses the GFA algoritfito select
applies principal component analysis (PCA) separately to combinations of descriptor splines for fitting activities
each class of objects and uses the principal components (PCs3xpressed in binary form. As for RP trees, splines partition
to define (hyper)volumes in the descriptor space. Classifica-the data set into groups having similar features and can
tion of test objects is achieved by comparing the orthogonal account for nonlinear behavior. The truncated power spline
projection distance to each class model with the PCA X — allequals zero if the value ok — a is negative,
residuals of objects within each class. The Sybyl implemen- otherwise, it equalz — a (Figure 1). The descriptor splines
tation (Tripos Inc.: St. Louis, MO) used in this work differs ~are selected using crossover, mutation, and knot-shift opera-
somewhat, as discussed in a recent evaluation of its applications. The algorithm can use the same descriptor for multiple
tion in drug desigrit Descriptors were autoscaled, and no splines, enabling it to capture complex nonlinear behavior.
column filtering was used. The use of internal leave-one- A SFGA model has the general form
out cross-validation in Sybyl produced models with as many
components as input descriptors. Therefore, we varied the A = by + Zby [, — a [ 1)
number of components systematically from 2 to 15.

(iv) RP Model Development.The RP method categorizes whereA; is the activity of compound igix is the value of
objects by deriving a binary decision tree in which descriptors descriptor k for compound ia is the spline knot. The
are used to split the data set into smaller, homogeneousconstantb, and coefficientsby are determined by least-
subsets. We have used the CART algorithimplemented squares fitting, in which the active and inactive classes are
in Cerius2. Trees were developed using the gini splitting rule, given equal weight? This is required to ensure that the
trying 40 evenly spaced splits per descriptor, and were split models are balanced in their predictive accuracy for each
until terminal nodes contained at least 2.5%, 5%, 10%, and category. Activities returned by a SFGA model are continu-
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Figure 2. Frequency at which descriptors occur in the population vs the number of crossover operations performed for (A) the DHFR set
and (B) the MAO set.

ous in nature. They are converted to discrete values by optimal complexity of models was assessed using 10 cycles
designating as active (1) those with predicted activites  of leave-20%-out cross-validation (CV). Model complexity
0.5 and inactive (0) those with predicted activitie®.5. refers to the number of components, splits, and splines used
Fixed-complexity models having between 2 and 15 splines by the SIMCA, RP, and SFGA methods, respectively. For
were evolved separately (we have found that the lack-of-fit each cycle, the training set was divided into five groups that
fitness function in GFA is not suitable for automatically were used in turn as prediction sets for models derived with
identifying the optimal number of splines). The number of the other four groups. The selection of descriptors was
crossovers, population size, mutation probability, and knot- repeated for each CV model (referred to as “full” cross-
shift probability are parameters required by the GFA validation). In addition to CV, we used the test set accuracy
algorithm. For all but the MAO set, we used 15000 of models to determine the optimal complexity. We stress
crossovers with a population of 500. For the MAO set, we this amounts to nothing more than comparing a faval

used the less expensive parameters of 10 000 crossovers witmodels having different feature counts, and that the test set
a population of 200. The mutation and knot shift probabilities compounds have no influence on the development of these
were set to 10% and 100%, respectively. These values weremodels. The measure of predictive accuracy used in clas-
selected by systematic variation for models with eight splines sification is theclassification rateor percentage of com-
generated from the DHFR and MAO sets. The combination pounds from each class that are correctly classified. These
of low mutation and high spline shift probabilities lead to are denoted by, for the active class (true positive rate, or
populations with greater average fitness at 10 000 crossoverssensitvity) and Cy for the inactive class (true negative rate
This seems to achieve a reasonable balance between rapidr specificity).

maturation of the population (which low mutation and knot Typical plots of classification rates vs complexity are
shift probabilities enhance) and maintaining sufficient di- shown in Figure 3 for the RP and SFGA methods applied to
versity (which high mutation and knot shift probabilities the BZR set. We use two criteria to identify the optimal
enhance). In practice, the predictive accuracy of models doescomplexity: the number of features at which the average
not depend strongly on the mutation and knot shift prob- [, C.Ois maximized, and the number of features at which
abilities: the fittest individual has usually been found by min{c,, C;} is maximized. For CV, the term “maximized”
about 5000 crossovers, and it is the only model that is myst sometimes be replaced with an arbitrary rule because
retained at the end of evolution. The use of 10 000 crossoversihe classification rate increases continuously as it approaches
can be seen to be more than adequate when using thesgs high complexity value (e.g. Figure 3D). This is typical
parameters (Figure 2). _ of scv vs complexity observed in conventional QSAR. Here,
Run times for SFGA are roughly 30 times longer than for \ye yse the permissive value of 1% per feature. Admittedly,
SIMCA and RP. For the MAO set, the development of the Figyre 3D is the most ambiguous of the (successful) CV
optimal SIMCA, RP, and SFGA models requires 0.59, 0.52, yyns; in many cases there was a clear maximum that could
and 17.1 min on a R14K-400 MHz processor. The smaller pe ysed to identify the optimal number of features. In other
sets require 58 min when using the more expensive GFA  ¢ases, especially for the RP CV results (e.g. Figure 3B), it
parameters. Once the model is developed, predictions areygs not possible to identify the optimal complexity &,

substantially faster with SFGA (0.1 s per 1000 compounds ¢, and mif C;, Co} were either constant or decreased with
compared to 33 and 11 s for SIMCA and RP, respectively). increasing number of features.

RESULTS The use of cross-validation and (large) test sets ha§ peen
found to give equally reliable estimates of the true predictive
Cross-validation and the use of test sets are two approacheaccuracy of models, but the use of test sets was deemed
for assessing the ability of a model to generafiz&he wasteful for small data seté Consistent with those results,
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Figure 3. Classification rates of activeS; (dashed lines), inactiveG, (dotted lines), andC;, Co(solid lines) for the BZR data set.

Values correspond to (A) RP and designed test set, (B) RP and cross-validation sets, (C) SFGA and designed test set, and (D) SFGA and

cross-validation sets.

Table 2. Identification of Optimal Model Complexity Using Test shown) results from the stochastic nature of the GFA
and CV Classification Ratés algorithm.

SIMCA RP SFGA Classification statistics for the optimal models are sum-

test cv test cv test cv marized in Table 3; the models are given in the Supporting

COX-2 6/6 46 8/7 - 6/6 5/5 Information. The training set classification rates are mostly

BZR 6/5 717 5/5 -I- 6/6 817 similar. For the DHFR and ER sets, the active and inactive
DHFR 12/12 F9 6/9 -4 6/6 797 classes are poorly fit by RP and SIMCA, respectively.
R AT~ - o SIMCA fits the MAO set less well for both activity classes.

The SFGA method yields models with higher test set

axly: x features maximizeC;, Col] y features maximize m{rCy, classification rates for all but the DHFR data set, for which

Co}; - indicates that the classification rate was flat or decreased with SIMCA performs better (Figure 4A). For all but the BZR
L“%\?;SL“% Of;atgr:Zi-tsT\t‘virgeéi‘féi?egogpt'ﬁ:i?’agz Jﬂqdifeéﬁgégebo'd- set, the (test set) difference betwe@randC, is substantially
below) is sigelificantly greater for 12 than 9 componeftSix smaller for SFGA than for SIMCA and RP.‘.RP. gives the
components were selected because the decrea®e, iB;was small. lowest and most unbalanced test set classification rates for
four data sets.

we have found that the optimal number of features deter- To investigate the stability of models when varying the
mined using either CV or the test set is very similar (Table composition of the training set, compounds were randomly
2). Interestingly, the optimal number of features is generally assigned to training and test sets, with each set containing
similar among the three classification methods. Because ofthe same number of compounds as the corresponding
the large difference in computing time between test set designed sets. This was repeated 50 times, giving 50 pairs
validation and CV (50-fold in this work), the former may of random training and test sets. For each random training
be preferable when analyzing large data sets with CPU- set, a classification model was developed using the optimal
intensive methods. In this work, using the test set classifica- parameters? Both the training and test set classification rates
tion rates instead of the corresponding CV rates leads to moreshow the greatest variability for RP and the smallest
prominent maxima, making the identification of optimal variability for SIMCA (Table 3, Figure 4B). SFGA has the
complexity more intuitive. It has been suggested that this highest classification rate on the random test sets, except
reflects the particular composition of the test set. While this for the COX-2 and BZR sets for which SIMCA performs
could be true if one used a randomly assembled test set, thebetter. Trends in CV classification rates and their variability
use of series designed to ensure that it effectively spansare similar (Table 3). It is important to note that the same
descriptor space minimizes this possibility. The greater sequence of (pseudo) random sets was used for all methods,
“noise” in classification rates vs complexity for SFGA including those used in CV. As such, classification rates are
(Figure 3C) compared to RP (Figure 3A) or SIMCA (not directly comparable.
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Table 3. Classification Rates and Parameters for SIMCA, RP, and SFGA Models
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COX-2 BZR DHFR ER MAO
SIMCA
no. of compds 6 6 12 6 5
train 86/82 82/78 85/81 93/69 62/63
test 75167 68/76 74171 81/73 60/65
CVv 79+ 9/77+9 73+ 10/70+ 12 57+ 10/70+ 9 83+ 8/67+7 54+ 9/64+5
random train 85k 3/80+ 3 83+ 3/80+ 4 84+ 4/77+ 4 90+ 4/69+ 4 70+ 5/63+ 4
random test 7% 4/73+£5 75+ 5/72+ 6 62+ 8/69+ 6 83+ 5/64+5 58+ 6/61+ 4
RP
prune factor/min. samples 2.0/5 3.0/5 3.5/12 3.5/7 3.5/41
splits 8 5 6 3 4
train 91/81 82/81 69/85 89/75 67/75
test 79/63 64/74 57/73 76174 63/72
CVv 724+ 12/67+ 12 68+ 12/65+ 12 57+ 12/65+ 12 79+ 9/72+9 67+ 12/60+ 8
random train 88t 5/85+ 5 80+ 7/83+7 78+ 7/76+£5 87+ 4/78+5 76+ 7/71+5
random test 68 9/67+ 8 67+ 9/66+ 10 59+ 9/66+ 8 79+ 9/71+7 60+ 8/67+7
SFGA
no. of splines 6 6 6 3 6
train 83/87 81/76 80/75 87/76 71/67
test 75172 70/81 71/66 77180 71/70
CcVv 76+ 9/72+ 10 69+ 11/68+ 13 65+ 11/64+ 10 83+ 8/70+ 8 64+ 10/68+ 5
random train 83t 3/78+ 4 80+ 5/78+ 6 76+ 4/73+ 3 87+ 3/74+5 71+ 4/67+6
random test T&E6/70+7 71+ 9/69+ 9 67+ 7/66+5 82+ 5/72+ 6 64+ 6/66+ 7

a Classification rates for actives (sensitivity) and inactives (specificity) are indicat€gd@sfor the designed training and test sets an€Cas-
01/Co £ 0y for CV and random sets.
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for clarity.
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Figure 4. Classification rates for SIMCA (gray), RP (black), and selecting the compounds to be discarded; this serves the
552@ o(rrlgihg?\)d:rt)g”e(li fttg) :Xg ((:jaE?i Sh'st;sfolrz?,g? tﬂzirdggimr?é%hmg purpose of maintaining as much as possible an effective
test set andFEB) the ai/erage over %O r%ndom test sets. Forg(B), errm.goverage of descriptor space while the numb(_ar_of compounds
bars correspond to the standard deviation. is reduced. For the MAO set, the full training set was
decremented by 20 compounds until 96 remained. For the
Another approach for introducing training set variation other sets, the full training set was decremented by five
consists of gradually eliminating compounds from the compounds (10 for ER), until about 50 remained. The
designed training set and assessing the effect on the designedptimal parameters were used for generating models. Figure
test set (which does not vary). A series of nested subsets of5 shows the results obtained for the MAO set. To quantify
compounds was assembled from the full training set using trends in the variation of classification rates with training
the maximum dissimilarity algorithm, as described in the set size, linear regression was used to fit a line to each series
methods section for test set design. The compounds to bein Figure 5 and the corresponding series for the other data
retained were selected from the previous set, as opposed tsets. The slopes (expressed as % decreaskdrper 100

50
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Table 4. Effect of Training Set Reduction on Test Set 0.4
Classification Ratés A
SIMCA RP SFGA 0.3
m(1/0) s(1/0) m(1/0) s(1/0) m(1/0) s(1/0) 0.2 [
L 2
COX-2 —0.8/0.4 24/3.1 6.8/41 4.2/49 6.6/49 3.9/35 % < ‘
BZR —6.9/11.7 3.7/3.6 —3.2/6.0 9.0/5.1 8.0/12.1 5.2/3.6 0.1 e
DHFR* 6.7~1.1 4.3/4.3 —5.6/5.2 10.2/5.7 2.0/2.6 5.6/4.2 o M
ER 100-35 3.9/3.1 ~3.1/40 4.7/44 —02/09 5841 800 %
MAO 3.7-3.0 5.8/33 1.1/0.1 7.2/7.2 240.7 5.7/3.3 2} ﬁ@
-0.1 e -
2The slopem from linear regression is expressed as the percent ol *o &
decrease irCyo per 100 compounds removed from the training set; 0.2 %
negative values indicate an increaseCiiy; s is the standard error of oo 2
regressionx/y correspond to the active/inactive classeSets with 58 03 ®©
and 53 compounds were excluded, as SIMCA and RP had extremely
low values ofC;. 0.4
compounds removed from the training set) and standard error 013 0.05 O'Oic 1 0-15 0-25

of regression about the fit lines are given in Table 4.

By comparing the standard errors of regression, it emerges 08
that SIMCA classification rates are the least variable upon
training set reduction, and RP classification rates are the most 50‘
variable by a wide margin. The slopes indicate that SIMCA §
suffers the smallest decrease in classification rates. One mightg
also conclude that the RP classification rates decrease lessg g 3
than those for SFGA. The increases seen for the COX-2 @
inactives, and especially the BZR and DHFR actives, are So.2
coupled to large standard errors; those series are not well- g
described by linear regression. Indeed, if only the largest 11 0.1
of 27 sets are considered for BZB, decreases by 58% per
100 compounds removed for RP. The RP slopes with lower
standard errors are similar to those for SFGA. On average, 4 eactor’

both methods appear to be similarly affected by training set Figure 6. Variability of descriptors in 50 MAO random training

reductiop: o o o set models from SIMCA (gray), RP (black), and SFGA (hashed).
In addition to examining the effect of training set variation (A) The 38 descriptors used for developing models represented in

on classification rates, it is instructive to compare the E)f}eci'?c?g;ni% S?gcgrggrt]g? tf(i)r?:];\/\:‘?epﬂgﬁiga;%?ghnlt?r?ésdgsh;iatrgra
consistency of model features (i.e. the des_crlptorS_ that ar€occurs amor?g t?]e 50 models. Thgcircleys for RP and SFGA Fr)1ave
selected). Because SIMQA models are deflned using _Iatentbeen shifted by—0.05 and+0.05 for clarity. (B) Descriptor
structures, the top descriptors ranked by “discriminating  frequencies converted to eight varimax-rotated factors. See text for
power” were selected for comparisons with RP and SFGA, details.

wherex corresponds to the number of components included

in the model. For the 50 models corresponding to the 50 The consistency of the models was quantified using the
randomly assembled training sets, the number of occurrencegollowing procedure. Factor analySisvas used to obtain

of each descriptor was determined and divided by the total eight varimax-rotated factors from the autoscaled descriptor
number of features present in the 50 models (e.gx56 matrix; eight factors account for roughly 80% of its variance.
for six feature models). The consistency of models must be Varimax-rotated factors differ from PCA factors in that the
considered in light of the correlations among the descriptors, rotated factors have high correlations with one smaller set
as it is reasonable to expect that highly correlated descriptorsof descriptors and little or no correlation with another set of
will be used interchangeably. A qualitative picture of model descriptors, making the factors more interpretable and distinct
consistency can be obtained by applying principal componentfrom each other. For each factor, the fraction of a descriptor’s
analysig to the autoscaled descriptor matrix and representing variance that it explains was multiplied by the descriptor’s
the frequency of occurrence of descriptors in the loading observed frequency; the products between a given factor and
space corresponding to the first 2 or 3 principal components all descriptors were summed and divided by the total for all
(Figure 6A). Proximity of descriptors within this space eight factors. The final result can be viewed as observed
indicates that they represent similar molecular properties. A descriptor frequencies expressed compactly in terms of eight
classification method that produces consistent models will independent factors. A histogram of factor frequencies leads
give a limited number of descriptors or descriptor clusters to similar conclusions for the MAO set (Figure 6B). A set
that account for most of the features from the 50 models. In of maximally inconsistent models would have equal frequen-
Figure 6A, this corresponds to large circles or clusters of cies for all eight factors, while a set of consistent models
intermediate circles. A method which produces less consistentwould have higher frequencies for certain factors. Figure 6B
models will yield smaller circles distributed throughout the can therefore be summarized by calculatingghgoodness-
loading space. It can be seen that for the MAO random sets,of-fit statistic for SIMCA, RP, and SFGA, using the null
SIMCA produces the most consistent models followed by hypothesis of equal factor frequencies. A set of consistent
SFGA and RP. models will have a high value gf?. The same procedure

0.0

1 2 3
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Figure 7. Graphical representation of test set classification r&@teand C, from SIMCA (gray), RP (black), and SFGA (dashed) in each

of the three distance bins that describe the extent of extrapolation from the training set. The axis label “bin1-0" corre§poiod to
distance bin 1; similar definitions apply to the other five axes. Numbers in parentheses indicate the number of compounds of a given
activity class in each bin. (A) COX-2 (0.09, 0.15), (B) DHFR(0.18, 0.24), and (C) MAO (0.27, 0.38); the thresholds used for defining bins
are indicated.

Table 5. 2 Representation of Descriptor Consistency among Table 6. Classification Rates Obtained from a Consensus of
Models from Random and Reduced Training Sets SIMCA, RP, and SFGA Models
random training setg? reduced training setg consensus % of compds with
SIMCA RP SFGA SIMCA RP  SFGA C/Co prediction (1/0)
cox-2 066 023 042 070 032 072 COX-2 90771 69777
BZR 76/92 65/63
BZR 0.99 0.50 0.76 2.39 0.52 0.69 DHER 89/87 45/47
DHFR 0.87 0.78 0.91 1.21 0.73 1.84
ER 93/84 64/74
ER 0.67 0.44 0.92 0.73 0.62 0.87 MAO 72179 76/72
MAO 1.92 0.97 1.24 1.81 1.44 1.88

SFGA gives more balances values @f and Co, even as
distance to the training set increases.

While it is important to assess differences between the
classification methods, it should be noted that they are most
powerful when applied in concert. Substantially improved
classification rates can be obtained when using a unanimous

greement consensus scheme, in which all three methods

ust agree on the activity of a compound for a prediction
to be registered (Table 6). Consequently, predictions are not
available when the methods do not agree on a predicted
activity. This should not be a severe limitation. In situations

For the random training sets, it emerges that SIMCA 4 :
. . for which the number of compounds to be synthesized and
produces the most consistent models for 3 sets, while SFGAtested must be minimal. then onlv the consensus-bredicted
produces the most consistent models for the other 2 sets. ’ Y P

For training set reduction, SFGA produces the most consis—ﬁqcig\sﬁs C;;Ii(\j/ebsens]ﬁr;eg]:?ﬁigimsg dOt?he;nth?, {Lz)hsee r::sokmo_f
tent models for all but the BZR set. There is a higher degree oundg that are Consensus- rediéted inacgve could be
of correlation among the reduced training sets than the P preat L

random sets, and the difference betwgvalues for SIMCA excluded. A consensus scheme using a majority agreement

and SFGA tend to be greater when SIMCA produces the (ie. 2 actives, 1 inactive: active) wogld give prediqion_s
larger value. Thus, it is clear than SIMCA is generally more for all compounds. Unfortunately, this gives classification

consistent than SEGA when training set variation is exten- rates intermediate to those obtained from the most and least

sive. In all cases, RP produces the least consistent modelsprediCtive models. It does, however, give classification rates

The predictive accuracy of the classification methods when Slightly greater than the average among the three methods.
extrapolating from the training set was examined. The values DISCUSSION
of 1-T. were calculated between each test compound and all
training compounds (for the designed sets), and the smallest In this paper, we have compared soft independent model-
value was used to represent the compound’s distance froming by class analogy (SIMCA), recursive partitioning (RP),
the training set. The distances were binned into three and spline-fitting with a genetic algorithm (SFGA) in their
intervals, and test set classification rates were calculated forclassification performance for five data sets. The use of latent
each (Figure 7). In this representation, each pair of axesvariables for defining SIMCA classification models results
representC; and Cy in one distance bin; a method which in classification rates and model features that are insensitive
gives balanced values &@; and C, that are similar across  to variations in the training set. The addition or elimination
all distance bins will give a hexagonal shape; larger of compounds may significantly alter the profile of values
“hexagons” indicate greater predictive accuracy. In general, for some descriptors, but the underlying latent variables are

was repeated using models obtained from training set
reduction, with results given in Table 5. It should be noted
that this procedure would not be appropriate if the individual
models actually contained eight completely orthogonal
features; a set of identical models would then have a low
value of y2. The use of eight factors for representing the
descriptors is a reasonable compromise between representin
the descriptor pool more accurately and maintaining suf-
ficient “occurrences” for each factor to allow statistics such
asy? to be applicable.
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less affected because of their relationship to multiple extent, the present study validates their point of view. This
descriptors. Some limitations of SIMCA can be deduced from is most evident in the moderate increasetriaining set

the present work. First, SIMCA cannot handle distinct classification rates as the number of model features increases.
clusters of active compounds embedded within a larger space~or the MAO set, the difference between the highest and
of inactive compounds. This may be partly responsible for lowest values ofC,;, ColJlamounts to 8%, 11%, and 7% for
the lower classification rates observed for the MAO set, as SIMCA, RP, and SFGA, despite large increases in complex-
the diverse group of active compounds may elicit their ity by 12—18 features. Despite the limitations of traditional
biological response through multiple binding modes. A 1-D and 2-D descriptors, they remain useful for developing
limitation in the Sybyl implementation of SIMCA is the classification models and confer the important advantage of
inability to fix separately the number of components used requiring no structural optimization of molecules. High-
for each category. This can be observed in the variation of dimensional descriptors such as molecular fingerprints

the classification rate€,; (for actives, sensitivity) an@y (excluding low-complexity variants such as the 166 MACCS
(for inactives, specificity) with the number of components keys?and minifingerprint¥) that are often used in clustering
for the ER and DHFR sets (data not shown). For ERis are clearly not applicable for developing classification

maximized at three components, althoughrequires six models. The BCUT metrié% and the interclass distance
components. A similar situation occurs for DHFR, where parametée® represent recent efforts for developing descriptors
C,; andCy are maximized at 7 and 12 components, respec- more suitable for classification. However, the use of BCUT
tively. It should be possible to vary the components metrics with the binary QSAR meth&eproduced models
separately in Sybyl by implementing a “custom” SIMCA of predictive accuracy similar to those obtained with
using SPL and the factor analysis routine. Alternatively a traditional descriptord’
model could be derived for the active class alone, and
compounds falling outside the active model are assigned to CONCLUSIONS
the inactive clas8. Because of the shift toward combinatorial chemistry and

RP produces models that are more interpretable thanhigh-throughput screening in drug discovery, the use of
SIMCA models, because of their intuitive treelike structure classification methods is likely to continue increasing. The
using the original descriptors. It can be applied to extremely present work further establishes their usefulness in screening,
large data sets by virtue of its spe®dlhe short run times  for which efficiency can be increased by directing physical
of RP derive from its use of an incremental approach for resources to those compounds predicted to be active. We
choosing descriptor splits. However, it is responsible for RP’s have described spline fitting with a genetic algorithm
sensitivity to the composition of the data set. Once a split (SFGA), a method that uses descriptor splines to partition
has been made, it cannot be changed later during tree growtrtcompounds into active and inactive classes. SFGA was
even if another descriptor would achieve a higher classifica- compared to soft independent modeling by class analogy
tion rate. This limitation is less acute for simple models, as (SIMCA) and recursive partitioning (RP), two well-
shown by the performance of RP on the ER data set. established classification methods, by using five data sets
Attempts to improve on the incremental approach invariably designed to maximize their diversity. SFGA produced the
cause increases in the time required for deriving models (e.g.most predictive models for four of five designed test sets.
optimizing descriptor combinations by simulated annealing Similar results were obtained when using sets assembled by
takes 30 times longer than traditional RP random selection. The stability of SFGA classification

SFGA represents our attempts to retain RP’s partition- statistics upon training set variation was found to be
based approach to classification while replacing its incre- intermediate to those of RP and SIMCA, with SIMCA giving
mental descriptor selection with a best-subset selection. Inthe most stable model statistics. A similar trend was observed
general, the predictive accuracy of SFGA models developedwith respect to the features used in the models. Despite the
in this work exceeded those of SIMCA and RP models. inevitable rankings that such comparisons produce, we
Using a genetic algorithm yields models with greater showed that a consensus approach involving all three
consistency of features and stability of classification statistics classification methods outperforms the best single method
than the corresponding RP models when the composition ofin all cases.
the training set is varied. The SFGA classification rafgs
andC, are also more balanced than those from SIMCA and ACKNOWLEDGMENT
RP. The run times for SFGA are substantially longer. Itis  D.F.W. acknowledges support from the Natural Sciences
possible to decrease it by using only 5000 crossover and Engineering Research Council (NSERC), the Canadian
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