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ABSTRACT
Motivation: Small molecules play a fundamental role in
organic chemistry and biology. They can be used to probe
biological systems and to discover new drugs and other use-
ful compounds. As increasing numbers of large datasets of
small molecules become available, it is necessary to develop
computational methods that can deal with molecules of vari-
able size and structure and predict their physical, chemical and
biological properties.
Results: Here we develop several new classes of kernels for
small molecules using their 1D, 2D and 3D representations.
In 1D, we consider string kernels based on SMILES strings.
In 2D, we introduce several similarity kernels based on con-
ventional or generalized fingerprints. Generalized fingerprints
are derived by counting in different ways subpaths contained
in the graph of bonds, using depth-first searches. In 3D, we
consider similarity measures between histograms of pairwise
distances between atom classes. These kernels can be com-
puted efficiently and are applied to problems of classification
and prediction of mutagenicity, toxicity and anti-cancer activ-
ity on three publicly available datasets. The results derived
using cross-validation methods are state-of-the-art. Tradeoffs
between various kernels are briefly discussed.
Availability: Datasets available from http://www.igb.uci.edu/
servers/servers.html
Contact: pfbaldi@ics.uci.edu

1 INTRODUCTION
Small molecules with at most a few dozen atoms play a fun-
damental role in organic chemistry and biology. They can be
used as combinatorial building blocks for chemical synthesis,
as molecular probes for perturbing and analyzing biological
systems, and for the screening/design/discovery of new drugs,
the majority of which are small molecules, and other use-
ful compounds. As increasing numbers of datasets of small
molecules become available, it becomes important to develop
computational methods for the classification and analysis of
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small molecules and in particular for the prediction of their
physical, chemical and biological properties. Such computa-
tional methods must be capable of dealing with data structures
that go beyond the standard fixed-size vectorial representa-
tion to encompass molecules of variable structure and size.
Here we develop kernels methods for small molecules and
apply them to the prediction of mutagenicity, toxicity and
anti-cancer activity for three publicly available datasets.

Two general classes of methods that have been proposed in
the past to process variable-size structured data and applied
to molecular structures are inductive logic programming
(ILP) (Muggleton, 1992) and graphical models (Pearl, 1988;
Lauritzen, 1996; Heckerman, 1998) together with the associ-
ated recursive neural networks (Micheli et al., 2001, 2003;
Baldi and Pollastri, 2003). Other, related approaches, not
discussed here, include genetic algorithms (Koza, 1994) and
stochastic grammars (Sakakibara et al., 1994). The graphical
model and even more so the ILP approach often suffer from
computational complexity issues, and the recursive neural
network approach requires rooting and orienting molecular
graphs in ways that are not always natural or canonical. Over
the last decade, kernel methods have emerged as a flexible
class of machine learning methods capable of handling struc-
tured data. Kernel methods preserve the advantages of linear
algorithms when modeling complex data characterized by
non-linear properties (Cristianini and Shawe-Taylor, 2000;
Schölkopf and Smola, 2002).

In what follows, for conciseness, we assume that the reader
is already familiar with kernel methods. Intuitively a kernel
defines a similarity measure between two molecules. Most of
the kernels for discrete objects in the literature (Collins and
Duffy, 2002; Leslie et al., 2003; Lodhi et al., 2002; Vert, 2002;
Vishwanathan and Smola, 2003) are special cases of, or related
to, convolution kernels (Haussler, 1999). Spectral kernels, in
particular, are derived by (1) building feature vectors by count-
ing occurrences of particular substructures (subsequences,
subgraphs, etc.) and (2) by defining a similarity measure on
these feature vectors. Convolution graph kernels published
in the literature (Gärtner et al., 2003; Kashima et al., 2003;
Mahé et al., 2004) that can be applied to molecular graphs
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Fig. 1. Three representations for the amino acid Serine (Ser). (a) 1D
SMILES string, (b) 2D representation with graph of bonds and (c)
3D space-filling model. A fourth representation based on fingerprint
vectors is described in the text.

have several limitations, including high computational cost
and/or inclusion of irrelevant or noisy substructures [referred
to as ‘totters’ in Mahé et al. (2004)] at the expense of more
relevant ones. Furthermore, these kernels often do not provide
an easy avenue for the incorporation of chemists’ background
knowledge and experience and are not tuned to the specific
properties of small molecule graphs.

Here we derive efficient spectral and other kernels for
molecules by leveraging their multiple representations in the
form of strings (1D), graphs of bonds (2D) and atom coordin-
ates (3D) (Fig. 1). Although in some sense the three represent-
ations are equivalent, we will give particular emphasis to graph
kernels associated with the 2D representation because of their
novelty and because, in the current state of knowledge, this
representation is the richest, least biased and most accurate, as
will be explained in the Discussion. We will leverage the par-
ticular properties of small molecular graphs: these graphs are
small both in terms of the number of vertices and edges—the
average number of edges per node is typically only slightly
above 2—and are highly constrained by the laws of chemistry.

2 METHODS
2.1 1D kernels based on SMILES strings
Small molecules can be represented in a unique way in
the form of strings over a small alphabet, called SMILES
strings (Weininger et al., 1989; James et al., 2004, http://www.
daylight.com/dayhtml/doc/theory/theory.toc.html) (Fig. 1).
Although SMILES strings require ordering the atoms of a
molecule, they are widely utilized and are particularly use-
ful in database organization and searches since each molecule
can be associated with a unique canonical SMILES string.
Because SMILES strings are sequences of letters, all the ker-
nels that have been developed for sequences can be applied to
SMILES strings. We thus propose applying sequence kernels
to SMILES strings and testing their properties on the same
set of problems. These kernels are usually spectral kernels
counting the occurrence of all possible substrings of a cer-
tain length contained in a sequence. Variations allow for word
mismatches and insertions (Leslie et al., 2004).
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Fig. 2. Molecule represented as an undirected labeled graph. The
labels on the vertices correspond to atom symbols and those on the
edges describe the type of covalent bond between atoms (e.g. ‘s’ for
a single bond, ‘d’ for a double one). Also shown are examples of
labeled paths of length 1 and 2 resulting from a depth-first search
exploration of the graph, starting from one of the carbon atoms.

2.2 2D kernels-based fingerprints
2.2.1 Traditional fingerprints Traditional fingerprints are
bit vectors of a given size l, typically taken in the range 100–
1000 (usually l = 512 or 1024). Given a molecule M with
n atoms and m bonds, a corresponding fingerprint is derived
using depth-first searches from each vertex. Thus the substruc-
tures being considered are labeled paths, which may include
labeled cycles. A path may contain the same vertex twice, but
not the same edge twice. Variations are obtained depending
on whether two paths emanating from the same vertex are
allowed to share edges or not once they have diverged. A hash
value v is computed for each path described by the sequence
of atoms and bonds visited (e.g. C–s–C–d–O, Fig. 2). For each
such path, v is used to initialize a random number generator
and b integers are produced (typically b = 1 or b = 4). The b

integers are reduced modulo l and the corresponding bits are
set to one in the fingerprint. If a bit in the nascent fingerprint
is set to one by a path, it is left unchanged by all the other
paths (i.e. ‘1 + 1 = 1’ in a clash). An attractive feature of tra-
ditional fingerprint vectors is that, if the maximal path length
d is set to +∞, i.e. if we want to extract all the depth-first
paths starting from all the atoms of a molecule, the complex-
ity of the procedure is O(nm) when paths do not share edges
after divergence. In practice, d is often set to a lower value,
typically in the range 8–10. Moreover, since fingerprinting is
commonly used by chemists, typical useful values for l, b and
d are readily available together with additional information,
such as uninformative paths that can be discarded.

2.2.2 Generalized fingerprints based on paths In what fol-
lows we use traditional compact fingerprints but also expanded
fingerprint bit vectors obtained in the same way but without
collapsing them to a relatively short length l. Additional vari-
ations of the fingerprinting approach that we consider include
examining all paths of length up to d as well as consider-
ing integer or real-valued vectors instead of bit vectors. For
instance, one can use actual path counts instead of binary
indicator variables. In this case, each component of the res-
ulting vector corresponds to the number of times a particular
path is encountered in the depth-first search explorations of

i360

http://www


“bti1055” — 2005/6/10 — page 361 — #3

Kernels for small molecules

a molecule. It is also be possible to re-weight the vectors
according to the TF–IDF weighting scheme (Salton, 1991)
commonly used in text retrieval. In this case, a molecule can
be viewed as a piece of text consisting of all the labeled paths
of length up to d that can be retrieved by depth-first search
explorations. Our preliminary experiments using the TF–IDF
approach, however, did not yield significant improvements,
and therefore it is not used here. An alternative to the TF–IDF
scheme to preserve/enhance paths carrying the most relev-
ant information for a given classification task is to consider a
reduced set of paths selected according to the mutual inform-
ation criterion (Yang and Pedersen, 1997; Dumais et al.,
1998). An interesting aspect of this approach, besides that
of reducing path vocabulary size, is that the automatically
extracted paths may be validated (or invalidated) by
chemists.

Thus, to summarize the situation, let P(d) be the set of
all possible atom–bond paths with a maximum of d bonds.
Resorting to the depth-first search strategy, the feature map φ

for a molecule x and a given depth d can be written as

φd(x) = (φpath(x))path∈P(d),

where φpath(x) is equal to 1 if at least one depth-first search
of depth d starting from all the atoms of x produces the path
‘path’. The feature map ϕd , with the corresponding ϕpath,
counting the number of paths found, can be similarly defined.
The feature map giving fixed-size vectors of size l corresponds
to the particular feature map φ̄d,l given by

φ̄d,l (x) = (φγl(path)(x))path∈P(d),

where γl : P(d) → {1, . . . , l}b is a function mapping paths
to a set of indices. Standard chemical fingerprints are a spe-
cial case where the hash function, random generation and
congruence operations are captured by the function φγl(path).

2.2.3 Fingerprint similarity Using these feature maps or
fingerprints, different kernels can be proposed by using dif-
ferent measures of similarity between fingerprints, including
the straightforward inner product kd(·, ·) = 〈·, ·〉d such that,
for two molecules u, v,

kd(u, v) = 〈u, v〉d =
∑

path∈P(d)

φpath(u)φpath(v),

and the corresponding kernel k̄d,l is defined in the same way,
using φ̄d ,l . Here we propose three normalized kernels that are
closely related to what is commonly known as the Tanimoto
similarity (Fligner et al., 2002; Flower, 1998; Gower, 1971;
Gower and Legendre, 1986).

Tanimoto kernel. Let u, v be two molecules and d a positive
integer. Consider the feature map φd and the corresponding

kernel kd . The Tanimoto kernel kt
d is defined by

kt
d(u, v) = kd(u, v)

kd(u, u) + kd(v, v) − kd(u, v)
. (1)

If φ(u) is regarded as the set of features that can be extracted
from u using depth-first search exploration, then kt

d simply
computes the ratio between |φ(u) ∩ φ(v)|, i.e. the number of
elements in the intersection of the two sets φ(u) and φ(v),
and |φ(u) ∪ φ(v)|, i.e. the number of elements in the set
corresponding to the union of φ(u) and φ(v).

We note that, if the feature map used is φ̄d,l , for a given
l ∈ N, instead of φd—and thus, k̄d,l instead of kd—in the above
formula, the corresponding kernel k̄t

d,l is exactly the Tan-
imoto similarity measure that chemists use for fast molecular
comparison and retrieval with fixed-size bit vectors of size l.

MinMax kernel. Let u, v be two molecules andd a positive
integer. Consider the feature map ϕd(·) and the corresponding
ϕpath(·). The MinMax kernel km

d is defined by

km
d (u, v) =

∑
path∈P(d) min(ϕpath(u), ϕpath(v))

∑
path∈P(d) max(ϕpath(u), ϕpath(v))

. (2)

This kernel function is closely related to the Tanimoto kernel in
two different ways. First, it is identical to the Tanimoto kernel
when applied to binary vectors. Second, in a more subtle way,
the MinMax kernel can be viewed as a Tanimoto kernel on
a different set of binary vectors obtained by transforming the
vector of counts. More precisely, for a given d, consider the
two integer-valued feature vectors ϕd(u) and ϕd(v) and an
integer q larger than any count in ϕd(u) and ϕd(v). As we deal
with sets of relatively small-sized molecules, a convenient
value of q can be found easily. Assume that p = |P(d)|.
If ϕd(u) and ϕd(v) are expanded to the two binary feature
vectors ũ and ṽ of size pq such that ũi (resp. ṽi ′ ) is set to
one if and only if i mod q < ũi (resp. i′ mod q < ṽi ′ ), then
(Fig. 3)

km
d (u, v) = 〈ũ, ṽ〉

〈ũ, ũ〉 + 〈ṽ, ṽ〉 − 〈ũ, ṽ〉 .

This similarity measure has the nice property that it can take
into account the actual frequencies of the different paths in a
molecule while still being strongly related to the Tanimoto
kernel and still taking values between 0 and 1. Using path
counts, this kernel produces a more reliable way to assess
the similarity between molecules of different sizes (see Res-
ults). In addition, we also tested a hybrid kernel which include
information about common absent paths (Fligner et al., 2002).

Definition Hybrid kernel. Let u and v be two molecules.
Let d and l be two positive integers, and θ a real number in
the interval [−1, +2]. The Hybrid kernel kh

d between u and v
is defined by

kh
d,l (u, v) = 1

3

[
(2 − θ) · k̄t

d,l (u, v) + (1 + θ) · ¬k̄t
d ,l (u, v)

]
,

(3)

i361



“bti1055” — 2005/6/10 — page 362 — #4

S.J.Swamidass et al.

01

0.4

0 2 1 0 2 1

0 00110 10 0 00101 11

Fig. 3. Connection between the Tanimoto and MinMax kernels. If
the feature vectors ϕ(u) and ϕ(v) are transformed into the bit vectors
ũ and ṽ, then km

d (u, v) is exactly the ratio between the number of bits
set to one both in ũ and ṽ divided by the total number of (unique) bits
set to one in ũ and ṽ. Given a large integer q, each path in P(d) is
associated with a distinct set of q consecutive indices. If ϕpath(u) > 0,
then ϕpath(u) consecutive bits are set to one in ũ starting at the indices
corresponding to ‘path’. The same holds for v and ṽ.

where ¬k̄t
d ,l is the kernel based on the feature map

(¬φ̄d,l (x)) = (¬φ̄γl(path)(x))path∈P(d), where ¬ is a logical
‘not’ and γ : P(d) → 1, . . . , l. Thus the Hybrid kernel is
a convex combination of two kernels, respectively measur-
ing the number of common paths and common absent-paths
between two molecules. When θ = −1, the Hybrid kernel
reduces to the Tanimoto kernel. In practice, θ is typically
set to the average density of the bit vectors, which is in the
interval [0,1]. It should be clear that a hybrid version of the
MinMax kernel is possible along the same lines. However,
in simulations the hybrid kernel did not yield to significant
improvements and therefore is mentioned only briefly in what
follows.

Proposition 1. The Tanimoto kernel, MinMax kernel and
Hybrid kernel are Mercer kernels.

Proof (sketch). The proof that kt
d , km

d , kh
d,l are Mercer

kernels follows from a result given by Gower (1971) show-
ing that, for any integer p and any set of � binary vectors
x1, . . . , x� ∈ R

p, the similarity matrix S = (kt (xi , xj )1≤i,j≤�

is positive semi-definite; thus kt and kt
d are positive definite

kernels or Mercer kernels. Given that, for any Mercer kernel
k ∈ R

χ×χ and any mapping g ∈ χχ ′
, k(g(·), g(·)) ∈ R

χ ′×χ ′

is a Mercer kernel [see, for instance Schölkopf and Smola
(2002)], the MinMax kernel is also a Mercer kernel. Finally,
using the same argument, and the fact that a convex combin-
ation of Mercer kernels is a Mercer kernel, it follows that the
Hybrid kernel is also a Mercer kernel.

2.2.4 Fast computation of 2D kernels At first glance,
the computations of these kernels may appear prohibitive
as the feature vectors produced by the feature map are of
large dimension. However, using a suffix tree data structure
(Ukkonen, 1995; Weiner, 1973; as also proposed in Leslie
et al., 2002; Vishwanathan and Smola, 2003) allows us to com-
pute each of the proposed kernels in time O(d(n1m1+n2m2)),
where d is the depth of the search and ni (resp. mi) is

Table 1. Leave-one-out accuracy (%) results for the Mutag and PTC datasets
using different kernels

Kernel/Method Mutag MM FM MR FR

PD Kashima et al. (2003) 89.1 61.0 61.0 62.8 66.7
MK Kashima et al. (2003) 85.1 64.3 63.4 58.4 66.1
1D SMILES spectral 84.0 66.1 61.3 57.3 66.1
1D SMILES + variants spectral 85.6 66.4 63.0 57.6 67.0
2D Tanimoto 87.8 66.4 64.2 63.7 66.7
2D MinMax 86.2 64.0 64.5 64.5 66.4
2D Tanimoto, l = 1024, b = 1 87.2 66.1 62.4 65.7 66.9
2D Hybrid l = 1024, b = 1 87.2 65.2 61.9 64.2 65.8
2D Tanimoto, l = 512, b = 1 84.6 66.4 59.9 59.9 66.1
2D Hybrid l = 512, b = 1 86.7 65.2 61.0 60.7 64.7
2D Tanimoto, l = 1024 + MI 84.6 63.1 63.0 61.9 66.7
2D Hybrid l = 1024 + MI 84.6 62.8 63.7 61.9 65.5
2D Tanimoto, l = 512 + MI 85.6 60.1 61.0 61.3 62.4
2D Hybrid l = 512 + MI 86.2 63.7 62.7 62.2 64.4
3D Histogram + Gaussian 81.9 59.8 61.0 60.8 64.4

b denotes the number of bits set to one for a given path and MI indicates that paths have
been selected using the mutual information criterion. Depth of search is set to d = 10.
The value of θ used for the Hybrid kernel is the average density of the fingerprints
contained in the training set. Best results are in bold face and second best are italicized.

the number of vertices/atoms (resp. edges/bonds) of the two
molecules considered. The complexity of computing kernels
based on all the paths of depth d, allowing paths emanating
from the same vertex to share edges once they have diverged,
is not much higher, since computing all the paths of length d

has complexity O(nαd), where the branching factor α is typ-
ically only slightly above 1. In short, these kernels and their
variants can be computed very rapidly and hence can be used
to tackle large-scale chemical classification problems.

2.3 3D kernels based on atomic distances
Finally, small molecules are 3D objects described by the xyz

coordinates of each atom. Programs exist, such as CORINA
(Sadowski et al., 1994; Gasteiger et al., 1996), that can derive
fairly accurate 3D coordinates for small molecules starting
from their 1D or 2D representations. We propose represent-
ing a molecule as a small set of histograms, one histogram
per pair of atom labels. For instance, the CC histogram is
the histogram of distances between all pairs of carbon atoms
contained in a given molecule. Likewise, the CO histogram
is the histogram of the distances between all pairs of carbon
and oxygen atoms in the molecule, and so forth. Similarity
between molecules is then measured by measuring similar-
ity between histograms, which can be done in different ways.
One simple approach is to use the sum of squared differences
between histogram bins (squared Euclidean distance). This
squared Euclidean distance v2 can then be used to form a nor-
malized kernel of the form exp[−v2/λ2]. Variations on this
idea are possible, for instance by introducing different weights
for different histogram types (CC, CO, etc).
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Fig. 4. Distribution of the 60 NCI screens. Positive examples correspond to cancer inhibition.

3 DATA
3.1 Mutag dataset
The Mutag dataset (Debnath et al., 1991) consists of
230 chemical compounds along with information indicating
whether they have mutagenicity in Salmonella typhimurium.
Among the 230 compounds, however, only 188 (125 posit-
ive examples and 63 negative) are considered to be learnable
(Debnath et al., 1991) and thus are used in our simulations.
The results from other groups, including those of Kashima
et al. (2003), reported in Table 1, were obtained on the
same subset of 188 molecules. The accuracy reported in
the simulations—which assesses the ability of a classifier to
assign the correct label to a molecule—is estimated through
a leave-one-out procedure.

3.2 Predictive Toxicology Challenge dataset
The Predictive Toxicology Challenge (PTC) dataset (Helma
et al., 2001) reports the carcinogenicity of several hundred
chemical compounds for male mice (MM), female mice (FM),
male rats (MR) and female rats (FR). As with the Mutag data-
set, the accuracies reported in Table 1 are estimated through
a leave-one-out procedure.

3.3 NCI dataset
The Mutag and PTC datasets are useful but somewhat small.
The NCI dataset, made publicly available by the National Can-
cer Institute (NCI), provides screening results for the ability
of ∼70 000 compounds to suppress or inhibit the growth of

a panel of 60 human tumor cell lines. We use the dataset
corresponding to the concentration parameter GI50, essen-
tially the concentration that causes 50% growth inhibition.1

For each cell line, ∼3500 compounds, described by their
2D structures, are provided together with information on
their cancer-inhibiting action. The distributions of positive
examples (associated with cancer inhibition) and negative
examples for the 60 cell lines are reported in Figure 4. Not
only is the NCI dataset considerably larger than the Mutag and
PTC datasets, but overall it is also more balanced. Thus the
trivial background statistical predictor always predicting the
class encountered most frequently has poorer performance on
the NCI dataset, e.g. close to 50%. Performance on the NCI
dataset is analyzed by cross-validation methods using 20 ran-
dom 80/20 training/test splits of each subset. Values reported
are averaged across these 20 splits.

4 RESULTS
We conducted several experiments to compare the various
classes of kernels using different parameter settings. Here
we report representative subsets of results together with the
main findings. In addition to the usual accuracy measure,
we also report the ROC score, which is the normalized area
under the ROC curve plotting the number of true positive
(TP) predictions as a function of the number of false positive

1A complete description of the cell lines is available at http://dtp.nci.nih.gov/
docs/misc/common_files/cell_list.html
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(FP) predictions for varying classification thresholds (Hanley
and McNeil, 1982). Precision [TP/(TP + FP)] and recall
[TP/(TP + FN)] (FN = false negative) measures are also
computed, together with their harmonic mean (F-measure).

4.1 Mutag and PTC datasets
Results on the Mutag and PTC datasets obtained using 1D, 2D
and 3D kernels with various parameter settings are reported
in Table 1. In this table, we also report the results obtained
by Kashima et al. (2003) using their marginalized kernels and
a frequent pattern mining approach (Kramer and De Raedt,
2001). Overall, the three classes of kernels—1D, 2D and
3D—introduced here produce good results, well above chance
level and comparable to, or better than, the state-of-the-art in
the field. In general, the 2D kernels seem to perform best
on these tasks. The 1D SMILES kernels are not far behind
the 2D kernels and both seem to perform better than the
3D kernels. The best 1D kernels results are obtained using
spectral sequence kernels but adding five SMILES string vari-
ants to each molecule by randomly selecting different starting
points (SMILES strings impose an ordering on the atoms of a
molecule and a starting point but the user can force different
starting points and obtain slightly different SMILES strings
for the same molecule). In Table 1, we see also that using the
2D kernels with the traditional molecular fingerprinting pro-
cedure, i.e. using fixed-size bit vectors of length l, still allows
us to obtain acceptable results. In general, however, these res-
ults are not as good as those obtained with unbounded l and the
deterioration in performance is accentuated when l is reduced
from 1024 to 512 (except for MM), most likely as a result of
the increase in the number of clashes.

Among the 2D kernels, the Tanimoto and MinMax kernels
for depth d = 10 always rank among the top two methods
and produce results that are consistently above those repor-
ted previously in the literature. The only exception is on the
Mutag dataset, where the PD (Pattern Discovery) algorithm
achieves 89.1% accuracy versus 87.9% for the Tanimoto ker-
nel. Performances of up to 89.4% have actually been reported
in King et al. (1996). Such a difference, however, may not
be significant, because the Mutag dataset is too small. This is
confirmed by further refining the 2D kernels and implement-
ing an exhaustive search of all possible paths up to depth d,
which can still be efficiently implemented owing to the small
size and small degree of these graphs (the average degree for
the NCI dataset, for instance, is 2.11). The corresponding res-
ults in Table 2 show, for example, that the MinMax kernel
achieves a cross-validated performance accuracy of 91.5%,
higher than all previously reported results (King et al., 1996;
Mahé et al., 2004).

We also conducted tests using a mutual information cri-
terion (Dumais et al., 1998) to select informative paths. We
computed the mutual information between the binary (0–1)
variable associated with a given path and the binary (±1)

Table 2. Classification accuracies (%) obtained on Mutag using exhaustive
paths extraction and the Tanimoto and the MinMax kernel with a depth set to
d = 10

Kernel Type Atom # Val.

Tanimoto 87.8 90.4 90.4
Tanimoto + cycle 86.2 87.8 89.9
MinMax 89.4 91.0 91.5
MinMax + cycle 89.9 91.5 89.4

‘Type’ corresponds to the case where atom descriptions are fully retained (e.g. in the
paths constructed, a carbon connected to two hydrogens is different from one connected
to three), ‘Atom #’ corresponds to the equivalence class where only the atomic numbers
are used to label atoms and ‘Val.’ to the situation where all atoms having the same valence
are considered equivalent. The ‘cycle’ option refers to different ways of including and
counting cycles in molecular graphs.

variable associated with the class. We ranked the paths accord-
ingly and removed those paths with low mutual information.
Surprisingly, for vectors of equal size, the results with mutual
information are not better than those obtained using the simple
limited-size fingerprint approach. We conjecture that this is a
size effect (the set of informative paths that is retained is too
small) and that a difference would become detectable with a
larger value of l.

4.2 NCI dataset
The trends observed on the Mutag and PTC dataset were con-
firmed on the larger NCI dataset. For conciseness, here we
report primarily the results obtained with the 2D Tanimoto
and MinMax kernels since these gave the best preliminary
results on the Mutag and PTC datasets. The results for the 60
screens of the NCI datasets are plotted in Figures 5 and 6 using
Tanimoto and MinMax kernels of depth d = 10. Figure 5
also contains results for 1D SMILES and 3D histogram ker-
nels. Figure 5 plots the results in terms of accuracy and ROC
score, and Figure 6 plots the results in terms of precision and
recall. The mean accuracy for the Tanimoto kernel is 71.55%
versus 72.29% for the MinMax kernel. Likewise, the mean
ROC score is 77.86% versus 78.74%, the mean precision is
72.55% versus 73.02% and the mean recall is 74.90% versus
76.05%.

On the NCI dataset, we observe that these two 2D kernels
have performance accuracies >70% in general, well above
chance level for this balanced set. The MinMax kernel gives
better results than the Tanimoto kernel almost consistently,
albeit by a fairly small margin. We believe this results from
the fact that this kernel uses actual counts rather than binary
indicator variables. Using counts in the future ought to provide
a richer representation and lead to better precision in retrieval,
comparison and classification of molecules.

5 DISCUSSION
We have developed several classes of efficient kernels for
small molecules by extracting corresponding feature vectors
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from their 1D, 2D and 3D representations. We have shown
on several empirical datasets that with the proper tuning
these kernels yield state-of-the-art results that are compar-
able or superior to those previously published in the literature.
Although we do not claim to have conducted exhaustive
comparisons, and ultimately different kernels may be more
appropriate for different tasks, current evidence suggests that,
of all the kernel classes introduced, the 2D kernels may have
a slight advantage. This may seem surprising in light of the
fact that, for instance, the 1D and 2D representations ought
to contain the same implicit information. However, 1D ker-
nels may suffer from the arbitrariness of the vertex ordering
imposed during the construction of SMILES strings. Further-
more, simple k-mers made up of contiguous letters may not
capture well the branching patterns of molecular structures.
Inclusion of other parsing substructures, such as trees, may
lead to better SMILES convolution kernels. In contrast, 3D
kernels may suffer from the loss of information introduced
by the histograms and the fact that the 3D coordinates are
predicted using the CORINA program. Although the predic-
tion of 3D coordinates is much easier for small molecules
than for large molecules, such as proteins, and is believed to
be fairly reliable, one cannot rule out the possibility that the
noise introduced by such predictions weakens the quality of
the corresponding kernels.

The accuracies obtained, for instance in the region of 72%
on the NCI dataset, are very encouraging, but clearly there
is room and hope for improvement in many directions. Even
the better performing 2D path kernels discard information,
for instance regarding the location of the paths (phases) or the
handedness of the molecules. Thus there is room for develop-
ing, testing and combining new 1D, 2D and 3D kernels and
other kernels, such as Fisher kernels (Jaakkola et al., 1999).
For instance, we are currently exploring fingerprints based on
counting shallow trees, rather than paths, using depth-first or
breadth-first searches combined with efficient methods for tree
comparison (Vishwanathan and Smola, 2003). And in applica-
tions where molecular surfaces are the most important, ‘2.5D’
kernels may be developed to characterize molecular surfaces.
Another obvious direction of research is to apply these kernels
to regression problems in chemistry to predict, for instance,
physical properties (e.g. the boiling point of alkanes) or phar-
macological properties (e.g. the quantitative structure–activity
relationship of benzodiazepines) (Cherqaoui and Villemin,
1994; Hadjipavlou-Litina and Hansch, 1994; Micheli et al.,
2003).

Although chemical toxicity and activity in general can vary
significantly by stereochemical isomers of the same chem-
ical, none of the methods described so far actually considers
stereochemistry. To address this problem, 1D SMILES ker-
nels can be augmented by using isomeric SMILES, which
include additional special characters to describe stereocen-
ters. For 2D kernels, we can use additional atom-type labels
indicating whether an atom is a stereocenter and, if so, which

configuration it is in. Likewise, we can construct other 3D ker-
nels that are sensitive to stereochemical properties. However,
the particular datasets used in this study do not include ste-
reochemistry specifications and, thus, such extensions could
not add any value to the analyses presented here. In this
regard, the annotation and public availability of larger datasets
with sterochemistry information would be invaluable for the
development of better predictive machine learning methods in
chemistry. Finally, it is worth noting also that ‘toxicity’ is an
extremely complex and multi-faceted concept that may vary
with multiple dimensions, such as organism (e.g. yeast versus
human), genome (wild-type versus mutant), environment and
so forth. In time, more specialized datasets and predictors are
likely to be developed.

The penetration of computational, artificial intelligence and
machine learning methods in chemistry has been slower than
in physics or biology for many historical and sociological
reasons, including the single-investigator nature of chemical
research and the dominance of high-throughput projects in
physics and biology, such as the human genome project. How-
ever, large datasets of chemical information are progressively
becoming publicly available and large training sets could be
derived over time for a variety of problems. Overall, the results
obtained suggest that automatic classification of compounds
may become a viable alternative to, but not a substitute for,
slower and more expensive experimental characterization in
the near future. Furthermore, even if the performance of indi-
vidual computational filters is not perfect, batteries of such
filters could be assembled for efficient molecular screening
and discovery protocols. We hope that developing efficient
kernels and other machine learning methods for molecular
structures will help to address some of the outstanding prob-
lems in the field and to better understand what remains a rather
sparsely explored chemical space. With current estimates of
a universe containing at least 1060 potential small molecules,
of which only ∼107 have been discovered or synthesized,
computational methods are likely to become a major tool of
chemical astronomers.
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