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a b s t r a c t

Theoretical frameworks to estimate the tolerance ofmetabolic networks to various failures
are important to evaluate the robustness of biological complex systems in systems biology.
In this paper, we focus on a measure for robustness in metabolic networks, namely,
the impact degree, and propose an approximation method to predict the probability
distribution of impact degrees from metabolic network structures using the theory of
branching process.Wedemonstrate the relevance of thismethodby testing it on real-world
metabolic networks. Although the approximation method possesses a few limitations, it
may be a powerful tool for evaluating metabolic robustness.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Robustness is a key feature in the analysis of complex systems, especially for complex biological systems.Many organisms
have strong adaptability to environmental changes or failures in some of their components, and can live even if some of
their genes are mutated. In particular, it is known that cancer cells are very robust [1]. Therefore, understanding the origin
of robustness of living cells has become an important research topic.

In particular, extensive studies have focused on the analysis of structural robustness of metabolic networks. Structural
robustness refers to the tolerance of the system’s behavior to changes in the structure of networks, andmost existing studies
focus on changes caused by knockout of gene(s) or enzyme(s). One of the reasons why extensive studies have been done on
structural robustness of metabolic networks is that rather accurate data of metabolic networks are available via databases
such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) [2] and the Encyclopedia of Escherichia coli K-12 Genes and
Metabolism (EcoCyc) [3], and kinetic parameters, which are not necessarily available, are not required.

In order to analyze the structural robustness of metabolic networks, the flux balance analysis (FBA) methods have been
widely used. In many of these approaches, elementary flux modes (EFMs) play a key role, where an EFM is a minimal set of
reactions that can operate at a steady state [4]. Based on FBA and/or EFM, several studies have focused on finding aminimum
reaction cut [5–8], that is, a minimum set of reaction (or enzyme) removals which prevent the production of a specified set
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of compounds. Other FBA-basedmeasures of robustness have also been proposed. Behre et al. proposed ameasure based on
the number of remaining EFMs after knockout versus the number of EFMs in the unperturbed situation [9]. Deutscher et al.
proposed another measure using the Shapley value from the game theory [10].

Other approaches have been proposed based on Boolean models of metabolic networks in which reactions and
compounds are modeled as AND and OR nodes, respectively. Handorf et al. analyzed robustness of metabolic networks
by introducing the concept of scope [11]. Li et al., Sridhar et al., and Tamura et al. developed integer programming-based
methods for finding a minimum reaction cut in Boolean models of metabolic networks [12–15]. Smart et al. defined the
topological flux balance (TFB) criterion based on a Boolean model of metabolic networks and analyzed the damage (number
of reactions) caused by knockout of a single reaction under TFB [16]. Jiang et al. defined and analyzed the impact degree,
which is the number of reactions inactivated by knockout of a specific reaction [17]. Although there are some differences in
the treatment of reversible reactions, the damage and the impact degree are very similar concepts. Cong et al. extended the
impact degree for knockout of multiple reactions [18].

In this paper, we study the distribution of the impact degree caused by random knockout of a single reaction using the
theory of branchingprocess [19,20]. In order to analyze earthquakes, Saichev et al. proposed abranchingprocesswith power-
law distributions of offspring d : P(d) ∝ 1/dγ+1, where γ is some constant, and approximately derived the distribution of
the total number of offsprings [20]. We regard propagation of the impact of knockout of a reaction as a branching process,
and apply their method to estimate the impact degree distribution, where the impact degree in our problem corresponds
to the total number of offsprings in the branching process. In order to apply this method, we develop a simple method for
estimating the offspring distribution in a metabolic network. Although Smart et al. have already applied percolation theory
and branching process to the analysis of the size distribution of rigid clusters, defined as clusters of contagion nodes that do
not contain any branchedmetabolite nodes (see Fig. 3A in Ref. [16]), they did not explicitly estimate the damage distribution
(i.e., the impact degree distribution). We finally show an estimation method for the damage distributions. The proposed
method is applied to the analysis of metabolic networks of four species: Escherichia coli, Bacillus subtilis, Saccharomyces
cerevisiae and Homo sapiens. The results show good agreement of impact degree distributions between empirical results
and theoretical estimates.

2. Impact degree

Jiang et al. proposed the impact degree as a measure of the importance of each reaction in a metabolic network [17]. The
impact degree is defined as the number of inactivated reactions caused by knockout of a single reaction. However, they did
not consider the effect of cycles in metabolic networks. Since cycles play an important role in metabolic networks, Cong
et al. extended the impact degree so that the effect of cycles is taken into account [18] by using a concept of the maximal
valid assignment [15]. Here, we briefly review the definition of this extended impact degree [18].

As in other works, we regard each metabolic network as a bipartite directed graph. Let Vc = {C1, . . . , Cm} and Vr =
{R1, . . . , Rn} be a set of compound nodes and a set of reaction nodes, respectively, where Vc ∩ Vr = {}. Ametabolic network is
defined as a directed graph G(Vc ∪ Vr , E) in which either (u ∈ Vc) ∧ (v ∈ Vr) or (u ∈ Vr) ∧ (v ∈ Vc) holds for each edge
(u, v) ∈ E.1 Each reaction and compound take one of the two states: 0 or 1, where 0 and 1 correspond to inactive and active
reactions (compounds), respectively. Reverse reactions are treated as two irreversible reactions.

In order to define the impact degree of a reaction, we proceed as follows. Suppose that reaction Ri is knocked out. Then,
we start with the global state where all compounds are active (i.e., Ck = 1 for all Ck ∈ Vc) and all reactions but Ri are active
(i.e., Rj = 1 for all Rj ∈ Vr \ {Ri} and Ri = 0). Then, we alternatively update the states of reactions and compounds by the
following rules.

(1) For each reaction, there are three different compounds: consumed compounds (i.e., substrates), produced compounds
(i.e., products), and directly unrelated compounds.

(2) A reaction is inactivated if any of its consumed or produced compound is inactivated.
(3) For each compound, there are three different reactions: consuming reactions, producing reactions, anddirectly unrelated

reaction.
(4) A compound is inactivated if all of its consuming reactions or all of its producing reactions are inactivated.

Since no activation is possible in this process, the procedure converges to a stable state in a finite number of iterations.
The impact degree of reaction Ri is defined as the number of inactivated reactions in the stable state. This procedure
simultaneously gives the definition of the impact degree and an algorithm to compute it.

Let us illustrate the above process with the metabolic network shown in Fig. 1. Suppose that reaction R2 is knocked out.
Then, the states of nodes change as shown in Table 1. Since four reactions (including R2) are inactivated in the stable state,
the resulting impact degree is four. Next, suppose that reaction R6 is knocked out. In this case, the states of nodes change as
shown in Table 2 and the resulting impact degree is two. It is to be noted that C4 is not inactivated because R2 is still active
in this case.

1 A ∧ B means logical AND of A and B.
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Fig. 1. Example of a metabolic network. Boxes and circles correspond to reactions and compounds, respectively.

Table 1
Impact degree calculation when R2 in Fig. 1 is knocked out.

R1 R2 R3 R4 R5 R6 R7 C1 C2 C3 C4 C5 C6 C7

1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 0 1 0 1 1 1
1 0 0 1 1 0 1 1 0 1 0 1 1 1
1 0 0 1 1 0 1 1 0 1 0 1 0 1
1 0 0 1 1 0 0 1 0 1 0 1 0 1
1 0 0 1 1 0 0 1 0 1 0 1 0 0

Table 2
Impact degree calculation when R6 in Fig. 1 is knocked out.

R1 R2 R3 R4 R5 R6 R7 C1 C2 C3 C4 C5 C6 C7

1 1 1 1 1 0 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 0 1
1 1 1 1 1 0 0 1 1 1 1 1 0 1
1 1 1 1 1 0 0 1 1 1 1 1 0 0

3. Branching process approximation

We here explain the branching process approximation for estimating the impact degree distributions of metabolic
networks.

The branching process is a stochastic process in which each progenitor generates offsprings according to a fixed
probability distribution called the offspring distribution. We propose that the branching process approximation is useful
for estimating the impact degree distribution because the propagation of an impact on a network is essentially similar
to cascading failures, which is a sequence of failures caused by an accident. The branching process model of cascading
failure is a standard Galton–Watson branching process [21]. The approximation method using branching process has been
already applied to loading-dependent cascading failure, and its relevance has been shown [22,23]. However, the branching
process approximation needs the assumption of tree structure of networks; thus, this is a limitation of the branching process
approximation because metabolic networks generally have cycles.

3.1. The number of offsprings in metabolic networks

To estimate the impact degree distributions using the branching process approximation, we need to define the notion of
offsprings for each reaction node in metabolic networks, and the distribution of the number of offsprings.

For that purpose,we consider the reaction network obtained as the unipartite projection of themetabolic network,where
we draw an edge from reaction A to reaction B when at least one product of A is a substrate of B [24–27]. Fig. 2 shows the
reaction network obtained from the metabolic network of Fig. 1 by this procedure.

As an easy example,we consider 2metabolic reactions, A andB. In this case, the edge is drawn fromA to B (i.e., A → B) if at
least 1 product of reaction A corresponds to at least 1 substrate of reaction B (e.g., the case of a → A → b → B → c , where
a, b, and c are chemical compounds). Through a similar procedure, we obtain a reaction network from a given metabolic
network (see Fig. 2).

We now observe that the number of reactions inactivated by the failure of a given reaction, which we want to model
in the branching process, does not correspond to its outdegree (i.e., the number of out-going edges from a reaction node)
in the reaction network because the spreading of an impact is depressed when there are alternative synthetic pathways.
For example, assuming that the reaction R1 is inactive (or disrupted), the cascading of the impact does not occur because
the reaction R4 remains active due to the chemical compound generated through the reaction R2. In contrast, the cascading
of the impact continues when the reaction R2 becomes inactive for instance because the reaction R6 is dependent on this
reaction only. In short, the impact spreads though reactionswhose substrates are synthesized via uniquemetabolic reactions
(i.e., reaction nodes with the indegree of 1) when assuming tree structures of networks.
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Fig. 2. The reaction network transformed from the metabolic network in Fig. 1.

Based on this analysis, we define the number of offsprings for each reaction node in metabolic networks as follows:

di =
�
kouti (if kini = 1)
0 (otherwise), (1)

where kouti and kini are the outdegree and indegree of reaction node i in the reaction network, respectively.

3.2. Branching process models

To analytically estimate the impact degree distributions, it is useful to assume that the number of offsprings for each
node follows a probability distribution. We here consider two types of distributions, which are frequently observed in real
worlds.

3.2.1. Poisson model
The simplest case of branching processes is a Poisson branching process (hereafter called the Poisson model) in which the

number of offsprings d for each progenitor follows the Poisson distribution: µde−µ/d!, where µ corresponds to the mean
of this distribution. In this model, the total number of offsprings (i.e., impact degree) r is distributed according to the Borel
distribution [28]:

P(r) = (µr)r−1 e
−µr

r! . (2)

Using Stirling’s formula (i.e., r! ≈
√
2πrrre−r ), the above equation leads to the approximation

P(r) ∝ r−3/2e−r(lnµ−µ+1). (3)

In particular, when µ = 1 (i.e., the critical case), the impact degree follows a power-law distribution with exponent −3/2.

3.2.2. Power-law model
In addition to the Poisson case, we consider the case where the number of offsprings is determined based on a power-

law distribution (hereafter called the power-law model). Indeed, the number of offsprings for each reaction node is based on
the outdegree in metabolic networks. Since real-world complex networks including metabolic networks have power-law
degree distributions [24,29,30], the number of offsprings for each reaction node may also obey a power-law distribution.

Saichev et al. [20,31] showed analytical asymptotic approximations for the distribution P(r) of the total number of
offsprings (i.e., impact degree) r in the case where the number of offsprings d for each progenitor follows asymptotically a
power-law distribution P(d) ∝ 1/dγ+1 and themean number of offsprings has a given valueµ. In particular, they derive the
following approximation for large impact degree r , in the case 1 < γ < 2 where the variance of the number of offsprings is
infinite:

P(r) � µ

νr1+1/γ ϕγ

�
(1 − µ)r − µ − 1

νr1/γ

�
, (4)

where

ϕγ (x) =
� ∞

0
exp

�
uγ cos

�πγ

2

��
cos

�
uγ sin

�πγ

2

�
+ ux

�
du, (5)

and ν = µ(γ − 1)γ 1/γ−1�(−γ )1/γ , where �(x) is the Gamma function.
When µ = 1 (i.e., the critical case), in particular, the distribution of the total number of offsprings obeys the power-law

distribution: P(r) ∝ 1/r1+1/γ .
In addition, P(r) in the case of γ > 2 is approximately similar to that in the case of the Poisson model (i.e., Eq. (2)) [20].
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Table 3
Model parameters extracted from real metabolic networks. The character # indicates
‘‘the number of’’. The number of reaction nodes corresponds to the number of parents
in branching processes.

Species #Reaction nodes Mean µ Exponent γ

Escherichia coli 1467 0.68 1.52
Bacillus subtilis 1279 0.60 1.65
Saccharomyces cerevisiae 1172 0.54 1.73
Homo sapiens 1982 0.58 1.50

3.2.3. Empirical model
The above probability distributions may be unsuitable to approximate real-world offspring distributions. In addition, we

also consider a branching process model using empirical offspring distributions (hereafter called the Empirical model). This
way, we can estimate the distribution P(r) of the total number of offsprings (i.e., impact degree distributions) without the
approximation of offspring distributions, although themodel is analytically intractable. Moreover, we can evaluate whether
the prediction accuracy of the proposed method is influenced by the approximation of offspring distributions or the fidelity
of branching processes.

Let F(s) be the probability generating function of the impact degree r (i.e., the total number of offsprings), the function
F(s) satisfies the recursive relation [20,21]:

F(s) = f (sF(s)), (6)

where f (s) denotes the probability generating function of the number d of offsprings of each node.
Using the Lagrange expansion and the relation of P(r) = (1/r!)dr F(s)/dsr |s=0, the distribution P(r) (i.e., impact degree

distribution) is derived from the above implicit equation as the following explicit equation [20,21]:

P(r) = 1
r!

dr−1

dsr−1

�
f r(s)

df (s)
ds

�����
s=0

(r > 0), (7)

where f (s) = �dmax
d=0 P(d)sd. The value dmax indicates themaximumof d, and the function P(d) corresponds to the probability

density function of empirical d (i.e., empirical offspring distribution). In addition, P(r) = f (0) when r = 0.

3.2.4. Parameter extraction
To apply the Poisson and the power-law models, we need to estimate the model parameters, namely the mean µ and

the exponent γ , from real metabolic networks.
We estimate the mean of the number of offsprings for each reaction node by the empirical average:

µ = 1
N

N�

i=1

di, (8)

where N is the total number of reaction nodes in a metabolic network.
We estimate the exponent of a power-law offspring distribution using themaximum likelihood estimationmethod [32]:

γ = |N∗|
�
�

i∈N∗
ln

di
dmin

�−1

, (9)

where N∗ is the set of reaction nodes with di > 0, and |N∗| indicates the total number of such reaction nodes. dmin is the
minimum of di in the set of N∗.

4. Evaluation of the branching process approximation

We evaluated the above estimation methods for the impact degree distributions on several real metabolic networks.
We selected two bacteria (Escherichia coli (eco) and Bacillus subtilis (bsu)) and two eukaryotes (Saccharomyces cerevisiae

(sce) and Homo sapiens (hsa)) whose metabolic pathways have been well-identified. We downloaded the data of their
metabolic networks, represented as bipartite networks as shown in Fig. 1, from the KEGG database (version 0.7.1) [2,33].
The parenthetic three-letter codes correspond to KEGG organism identifiers [34].

Based on the KEGG metabolic network data, the impact degree distributions in the metabolic networks were calculated
using the method explained in Section 2. Moreover, we constructed the reaction networks of these species, and obtained
the offspring distributions. Using Eqs. (8) and (9), the model parameters µ and γ were extracted (see Table 3). All metabolic
networks show 1 < γ < 2, implying that the assumption of the power-law model is suitable.

To test the validity of the offspring distribution models, we compared the fitting results on empirical offspring
distributions in real metabolic networks between the power-law distribution and the Poisson distribution. Fig. 3 shows
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Fig. 3. Cumulative offspring distributions of Escherichia coli (A), Bacillus subtilis (B), Saccharomyces cerevisiae (C), andHomo sapiens (D). Pcum(x) is defined as
P(X ≥ x). Note that Pcum(1) < 1 because the cumulative distributions also consider the case of d = 0. Pcum(0) is not shown due to the logarithmic display.
The symbols indicate observed data. The black solid lines and dashed lines correspond to the cumulative representations of the power-law distribution
with the exponent estimated by Eq. (9) and the Poisson distribution with the mean obtained from Eq. (8), respectively.

the cumulative offspring distributions from the real metabolic networks and the cumulative representation of theoretical
distributions. The figure clearly indicates that the power-law distributions are more appropriate for modeling offspring
distributions than the Poisson distributions. However, the power-law distributions may not be the best model because of
the poor fittings for the larger d in the case of H. sapiens (Fig. 3(D)).

Using Eqs. (2), (4) and (7), we obtained the estimated impact degree distributions using the branching process
approximation. Fig. 4 shows the comparison between the observed cumulative impact degree distributions and estimated
ones. The theoretical predictions (lines) are in good agreement with the real impact degree distributions (symbols),
suggesting the relevance of branching process approximations. Note that the impact degree distributions does not follow a
clear power law and show an exponential cut-off for larger impact degrees because µ < 1 (i.e., not the critical case). Eq. (3)
or (4) can explain this distributional tendency.

To evaluate the prediction accuracy for impact degree distributions between the power-law model and the Poisson
model, we evaluated the distributional distance (i.e., Kolmogorov–Smirnov (KS) statistics) between the observed
distributions and theoretical distributions (Table 4). The power-lawmodel is better than the Poissonmodel on all networks.
The empirical model outperforms the power law model on both bacterial networks. Surprisingly, the power law model
outperforms the empirical model on both eukaryote’s networks.

5. Discussion and conclusion

We proposed a model to estimate the impact degree distributions in metabolic networks, using a branching process
approximation, and demonstrated its validity on real data.

The power-law model could more accurately estimate the impact degree distributions in real metabolic networks than
the Poissonmodel because the number of offsprings for each reaction node is assumed to follow the power-law distribution.
Especially, the power-law model showed the significant agreements between the predicted distribution and the observed
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Fig. 4. Cumulative impact degree r distributions of Escherichia coli (A), Bacillus subtilis (B), Saccharomyces cerevisiae (C), and Homo sapiens (D). The symbols
indicate observed data. The black solid lines and dashed lines correspond to the cumulative representations of theoretical distributions of the power-law
model and the Poisson model, respectively. The gray solid lines are the cumulative representations of theoretical distributions from the empirical model.
Note that Pcum(x) is defined as P(X ≥ x).

Table 4
Prediction accuracy for the impact degree distributions: Kolmogorov–Smirnov (KS) distance, defined as supx |R(x) − M(x)|, where R(x) and M(x) are
empirical distributions and theoretical distributions, respectively. The parenthetic values indicate the logarithmic P-values p from the KS test, defined as
− log10(p). The emphasized values correspond to the best accuracy.

Species Poisson model Power-law model Empirical model

Escherichia coli 0.11 (2.06) 0.08 (0.86) 0.05 (0.27)
Bacillus subtilis 0.18 (4.65) 0.08 (0.75) 0.05 (0.15)
Saccharomyces cerevisiae 0.14 (2.76) 0.07 (0.40) 0.07 (0.54)
Homo sapiens 0.12 (3.12) 0.09 (1.86) 0.14 (5.09)

distribution although the case of H. sapiens represented the small P-value for the KS test (i.e., the low probability that the
distribution is similar between models and observed data).

However, there is no great difference of the prediction accuracy for estimating the impact degree distributions between
the power-law model and the Poisson model; thus, the Poisson model may be useful for a rough estimate of the impact
degree distributions.

Intrinsically, the distribution of the total number of offsprings (i.e., P(r)) is not significantly different between the power-
lawmodel and the Poisson model in the case of smaller r . As a simple example, we here consider the case of µ = 1 (i.e., the
critical case). In this case, the impact degree distributions P(r) of the power-law model and the Poisson model correspond
to ∝ r−(1+1/γ ) and ∝ r−3/2, respectively. Especially, P(r) of the power-law model is the power-law distribution with the
exponent ranging between −2 and −1.5 because of 1 < γ < 2; thus it is not critically different from r−3/2 of the Poisson
model for smaller r . Since the impact degrees of real metabolic networks (i.e., r) were relatively small (r < 60), there might
be no great difference of the prediction accuracy between these models.
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The similarity of predicted distributions of the total number of offsprings between the Poissonmodel and the power-law
model is also explained usingOtter’s theorem (Theorem13.1 in Ref. [21]). This theorem indicates that the distribution P(r) of
the total number of offsprings has the universal property of a power-law tail with the exponent−3/2 as r → ∞ undermild
conditions on offspring distributions, and it implies that the types of offspring distributions hardly influence the distribution
of the total number of offsprings (i.e., impact degree distributions). Note that Otter’s theorem does not contradict with the
analytical distribution P(r) of the power-lawmodel because this theorem is not directly applicable to the power-lawmodel
due to the different assumptions in the derivation of P(r) between the power-law model and Otter’s theorem.

The prediction performance is influenced by the assumption of offspring distributions and the fidelity of branching
processes. To purely evaluate the validity of branching process approximation, the empirical model is useful because of
no assumption of offspring distributions. It is expected that the empirical model show the best prediction accuracy because
of using empirical offspring distributions. In the case of bacteria (i.e., E. coli and B. subtilis), this expectation is true, suggesting
that the branching process approximation is useful for estimating the impact degree distributions. In the case of eukaryotes
(i.e., S. cerevisiae and H. sapiens), on the other hand, we observed the unexpected results: the empirical model shows the
relatively-low prediction accuracy. Especially, the prediction accuracy of the empirical model is lowest in the case of H.
sapiens (human). This result implies limitations to the estimation of impact degree distributions based on the branching
process approximation in the case of metabolic networks of eukaryotes (i.e., higher organisms).

A limitation of the branching process approximation is that we need to assume tree structures of networks (i.e., no
cycles). The presence of cycles may lead to an overestimation of the number of offsprings di for each reaction, because
some offsprings of a progenitor (reaction node) may have already been inactivated due to cycle structures. From this reason,
the models may overestimate the impact degree distributions. On the other hand, however, some reactions with more than
one incoming edge may be inactivated in the presence of cycles, if all their parents are inactivated through different paths.
In this case, the number of offsprings is underestimated. The estimation of the number of offsprings depends on the relative
importance of these two effects, and it may be not simple. The difficulty in this estimation is also a limitation of the model.

The branching processmodel needs to be improved by considering additional assumptions other thanmetabolic network
structures in order to obtain better predictions. For example, the assumption of variable propagations in the branching
process [35], in which the mean of offspring distributions differs at each propagation stage, may be useful because the
degree of propagation may depend on metabolic dynamics such as gene expressions and metabolite concentrations. To
apply this modified branching process model, time-series data on metabolic dynamics after gene disruptions, which are
obtained bymetabolomic analysis, are necessary for estimating themean of offspring distribution at each propagation stage
(i.e., time after gene disruptions). Since such data are unavailable at present, however, it is difficult to apply this modified
branching processmodel. Similarly, other biologically-suitable assumptions are hardly determined because of few observed
data on metabolic dynamics. Although there are above constraints on observed data on metabolic dynamics, we believe
that the consideration of the additional information improves the prediction of impact degree distributions. In the future,
the improvement of the prediction of the impact degree distributions using the branching process approximation may be
possible with the available data on metabolic dynamics.

The branching process approximation is useful for estimating the impact degree distributions in metabolic networks
although it has the above limitations; thus, it may be a powerful tool for evaluating a robustness of biological systems.
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