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1. Introduction

With the rapid growth in the number of published
papers in the scientific fields such as medicine there
has been growing interest in the application of
information extraction (IE) [1,2] to help solve some
ummary

bjective: Support vector machines (SVMs) have achieved state-of-the-art perfor-
ance in several classification tasks. In this article we apply them to the identification
nd semantic annotation of scientific and technical terminology in the domain of
olecular biology. This illustrates the extensibility of the traditional named entity
ask to special domains with large-scale terminologies such as those in medicine and
elated disciplines.
ethods and materials: The foundation for the model is a sample of text annotated
y a domain expert according to an ontology of concepts, properties and relations.
he model then learns to annotate unseen terms in new texts and contexts. The
esults can be used for a variety of intelligent language processing applications. We
llustrate SVMs capabilities using a sample of 100 journal abstracts texts taken from
he {human, blood cell, transcription factor} domain of MEDLINE.
esults: Approximately 3400 terms are annotated and the model performs at about
4% F-score on cross-validation tests. A detailed analysis based on empirical evidence
hows the contribution of various feature sets to performance.
onclusion: Our experiments indicate a relationship between feature window size
nd the amount of training data and that a combination of surface words, ortho-
raphic features and head noun features achieve the best performance among the
eature sets tested.
2004 Elsevier B.V. All rights reserved.
rved.
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of the problems that are associated with informa-
tion overload. IE can benefit the medical sciences by
enabling the automatic extraction of facts related
to prototypical events such as those contained in
patient records or research articles regarding mole-
cular processes and their effect on human health.
These facts can then be used to populate databases,
aid in searching or document summarization and a
variety of tasks which require the computer to have
an intelligent understanding of the contents inside a
document.

Our aim here is to show a state-of-the-art method
for identifying and classifying technical terminol-
ogy. According to the theoretical and practical work
done on terminology extraction [3,4] we can broadly
define ‘term’ and ‘terminology’ as ‘‘a lexical unit
representing one or more words that represents a
concept in a domain’’.

The term extraction task is an extension of the
named entity task defined by the DARPA-sponsored
Message understanding conferences (MUCs) [5] and
is aimed at acquiring the shallow semantic building
blocks that contribute to a high level understanding
of the text. Although our study here looks at shallow
semantics that can be captured using IE, our basic
goal is to join this with deep semantic representa-
tions so that computers can obtain an understanding
of selected events in a text using logical inference
and reasoning. The scenario is that human experts
will create taxonomies and axioms (ontologies) and
by providing a small set of annotated examples,
machine learning can take over the role of instance
capturing though information extraction technol-
ogy.

Recent studies into the use of supervised learn-
ing-based models for the named entity task have
shown that models based on hidden Markov models
(HMMs) [6,7], decision trees [8], and maximum
entropy [9] are much more generalisable and adap-
table to new classes of words than systems based on
hand-built patterns (including wrappers) and
domain specific heuristic rules such as [10].

The method we use is based on support vector
machines (SVMs) [11], a state-of-the-art model that
has achieved new levels of performance in many
classification tasks. In previous work, we have shown
SVMs to be superior to several other commonly used
machine learning methods for named entity in pre-
vious experiments such as HMMs [12] and C4.5 [13].2

On the Bio1 training set which we use in our experi-
ments, the best reported F-scores for accuracy of
annotation were 74.23 (SVM), 73.1 (HMM), and 69.4
(C4.5). A comparison on the MUC-6 dry run data set
2 This study was conducted between one of the authors
(Collier) and Nobata and Tsujii
given in [13] confirmed the trend for HMM and C4.5
with 74.2 (HMM) and 68.5 (C4.5). This paper
explores the underlying SVM model and shows
through detailed empirical analysis the key features
and parameter settings.

To show the application of SVMs to term extrac-
tion in unstructured texts related to the medical
sciences we are using a collection of abstracts from
PubMed’s MEDLINE [14]. The MEDLINE database is an
online collection of abstracts for published journal
articles in biology and medicine and contains more
than nine million articles. The collection we use in
our tests is a controlled subset of MEDLINE obtained
using three search keywords in the domain of mole-
cular biology. From the retrieved abstracts 100 were
randomly chosen for annotation by a human expert
according to classes in a small core domain specific
ontology.

In the remainder of this paper in Section 2, we
outline the background to the task and the data set
we are using; in Section 3, we described the basic
advantages of SVMs and the formal model we are
using as well as implementation specific issues such
as the choice of feature set and report experimental
results. In Section 4, we provide extensive results
and a discussion of four sets of experiments we
conducted that show the best feature sets and
parameter settings in our sample domain.
2. Material

The names that we are trying to extract fall into a
number of categories that are outside the defini-
tions used for the traditional named-entity task used
in MUC. For this reason, we consider the task of term
identification and classification to be an extended
named entity task (NE+) in which the goal is to find
types as well as individuals and where the term
classes belong to an explicitly defined ontology in
a domain [15]. By domain, we refer to a notion of
consensus among a group of people who share a view
on the structure of knowledge in a particular area.
The terms are representative of the domain and can
be considered to form the vocabulary for the
domain.

The use of an ontology allows us to associate
human-readable terms with a set of computer-read-
able classes, relations, properties and axioms [16].
The hierarchical taxonomic relations formed
between classes in the ontology provide a potential
for logical inference in a way that non-hierarchical
disjoint relations commonly used in MUC-style
named entity do not.

Considering types versus individuals, there are
several issues that may mean that NE+ is more
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Table 1 Markup classes used in Bio1 with the number of word tokens for each class

Class # Examples Description

PROTEIN 2125 hUBC9,ATF2, Proteins, protein groups,
MAP kinase/Erk kinase, 4-1BB Families, complexes and substructures.

DNA 358 Cyclic AMP-responsive element DNAs, DNA groups, regions and genes
RNA 30 TAR, transactivation responsive RNAs, RNA groups, regions and genes
SOURCE.cl 93 Leukemic T cell line Kit225 Cell line
SOURCE.ct 417 Peripheral blood T lymphocytes CEM cells, Cell type
SOURCE.mo 21 Schizosaccharomyces pombe Mono-organism
SOURCE.mu 64 Mammalian, Drosophila Multiorganism
SOURCE.vi 90 Human adenoviruses, Viruses

Human immunodeficiency virus
SOURCE.sl 77 Nuclear, nuclei, membrane Sublocation
SOURCE.ti 37 Central nervous system Tissue

3 Available from http://www.research.nii.ac.jp/�collier/
resources/bio1.1.xml.
challenging than NE. The most important is the
number of variants of NE+ expressions due to gra-
phical, morphological, shallow syntactic and dis-
course variations. For example, the use of head
sharing combined with embedded abbreviations in
unliganded (apo)- and liganded (holo)-LBD. Such
expressions will require syntactic analysis beyond
simple noun phrase chunking if they are to be
successfully captured. NE+ expressions may also
require richer contextual evidence than is needed
for regular NEs–—for example knowledge of the head
noun or the predicate—argument structure.

The particular difficulties with identifying and
classifying terms in scientific and technical domains
are the size of the vocabulary [17], an open growing
vocabulary [18], irregular naming conventions as
well as extensive cross-over in vocabulary between
classes. The irregular naming arises in part because
of the number of researchers and practitioners from
different fields who are working on the same knowl-
edge discovery area as well as the large number of
entities that need to be named. Despite the best
efforts of major journals to standardize the termi-
nology, there is also a significant problem with
synonymy so that often an entity has more than
one name that is widely used. In molecular biology,
for example, class cross-over of terms may arise
because many DNA and RNA are named after the
protein with which they transcribe. This semantic
ambiguity which is dependent on often complex
contextual conditions is one of the main reasons
why we need learnable models and why it is difficult
to re-use existing term lists and vocabularies such as
MeSH [19], UMLS [17] or those found in databases
such as SwissProt [20]. An additional obstacle to re-
use is that the classification scheme used within an
existing thesaurus or database may not be the same
as the one in the users’ ontology which may change
from time to time as the consensus view of the
structure of knowledge is refined.
Our work has focussed on identifying NE+ expres-
sions belonging to the classes shown in Table 1 which
are all taken from the domain of molecular biology.
Example sentences from a marked up abstract are
given in Fig. 1. The ontology [21] that underlies this
classification scheme describes a simple top-level
model which is almost flat except for the source
class which shows places where genetic activity
occurs and has a number of sub-types. Further dis-
cussion of our use of deep semantic structures in the
ontology is given elsewhere [22] and we will now
focus our attention on the machine learning model
used to capture low level semantics.

The training set we used in our experiments
called Bio13 consists of 100 MEDLINE abstracts,
marked up in XML by a doctoral-qualified domain
expert for the name classes given in Table 1. The
number of named entities that were marked up by
class are also given in Table 1 and the total number
of words in the corpus is 29940. The abstracts were
chosen from a sub-domain of molecular biology that
we formulated by searching under the terms human,
blood cell, transcription factor in the PubMed data-
base. An example can be seen in Fig. 1
3. Method

In this section, we give a brief summary of SVMs
covering separable and non-separable cases and the
basic motivating ideas. For a tutorial on SVMs we
refer the reader to [23] and details of their formula-
tion can be found in [24].

The named entity task can be formulated as a
type of classification task for supervised learning in
which the computer takes a set of l input-output
pairs Z ¼ fðx1; y1Þ; . . . ; ðxl; ylÞg and attempt to con-

http://www.ncbi.nlm.nih.gov/PubMed/
http://www.ncbi.nlm.nih.gov/PubMed/
http://www.ncbi.nlm.nih.gov/PubMed/
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Figure 1 Example MEDLINE sentence marked up in XML for molecular biology named-entities.
struct a classification function f : X!R that maps N
dimensional input pattern vectors x2 X onto a set of
labels y 2 Y. In the case of a two class pattern
classifier, the labels are simply Y ¼ f
1;þ1g, i.e.

ðx1; y1Þ; ðx2; y2Þ; . . . ; ðxm; ymÞ�RN  f�1g (1)

The goal is then to learn f 2 F which minimizes the
error (fðxÞ 6¼ y) on randomly chosen unseen exam-
ples. These unseen examples are drawn from the
total example data. From now we will consider the
example data to be partitioned into a set of exam-
ples unseen by the model during training known as
testing data and the remainder which is used for
learning known as training data. We consider the
examples to be generated by an unknown probabil-
ity distribution Pðx; yÞ and then make the funda-
mental assumption that the testing data and
training data come from the same underlying dis-
tribution. The average error committed by function
fa on testing data is called the risk.

RðaÞ ¼
Z

1

2
jfaðxÞ 
 yjdPðx; yÞ (2)

where a2L are Lagrange parameters to be esti-
mated in learning.
Since both P and hence R are unknown we
attempt to minimize the empirical risk calculated
using testing data

RempircalðaÞ ¼
1

l

Xl
i¼1

1

2
jfaðxiÞ 
 yij (3)

Empirical risk could be accurately estimated and
minimized if we had enough example data. The
variance of this estimate reduces as the size of
the training data increases.

3.1. Cross validation

Since the example data is almost always limited in
quantity it is common practice to partition the
example data set multiple times, called folds, so
that each example is used in different folds as
training data and as testing data. This approach
which we use in our experiments is known as cross
validation and generally allows us to obtain more
reliable estimates of model error than would be
possible by just partitioning the example set once.
In the extreme case where the number of folds
equals the number of examples (l) this approach
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defaults to the leave-one-out approach which uses
l
 1 examples for training and 1 example for test-
ing.

3.2. Support vector machines

There are several effective and well-studied learn-
ing algorithms available for the classification task
such as naive Bayes, logistic regression, transforma-
tion-based error-driven learning and decision trees.
SVMs are a recent model [11,25] that has been the
focus of intensive research in machine learning due
to its capacity to learn effectively from large sparse
feature sets. SVMs realize the idea of using a kernel
functionF to embed the input space x 2RN in a high
dimensional hypothesis space H where it is possible
to form a linear discrimination function that max-
imizes the geometric margin between the positive
and negative classes. This is often more effective
than other methods which attempt to construct a
possibly far more complex function in the input
space itself. The basic approach is shown in Fig. 2.

Returning to the discussion of risk, as a conse-
quence of the limited number of training examples
we can expect, statistical methods have been devel-
oped which attempt to minimize true risk, as
opposed to the empirical risk of Eq. (3). Since the
real value of true risk cannot be found we have to
estimate bounds for it from training data. SVMs use
one such statistical method called the Structural
Risk Minimization principal [26] which is based on
Figure 2 Mapping from input space to feature space using
separating the two classes (squares and circles) is shown toge
complex non-linear decision function in input space is also sh
the fact that for any a2L and l> h, with a prob-
ability of at least 1
 h the following equation forms
the bound [27],

RðaÞ � RempiricalðaÞ þ f
h

l
;
log ðhÞ

l

� �
(4)

where the confidence termF is defined as

f
h

l
;
log ðhÞ

l

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðlog 2l=hþ 1Þ 
 log ðh=4Þ

l

r
(5)

This basically means that the true risk is dependent
on the empirical risk and on the complexity of the
learning function used as given in Eq. (5). A simple
classification function will generally achieve high
empirical risk and a low complexity whereas a com-
plex function may achieve low empirical risk at the
cost of high complexity, i.e. overfitting. In order to
achieve balance between these two competing
objectives SVMs select a function for which Eq.
(5) is minimized.

The parameter h is known as the VC (Vapnik—
Chervonenkis) dimension of a set of functions and is
defined as the largest number of examples from a
subset of X that the function H can classify correctly.
The aim in SVMs is to find a hypothesis for which we
can guarantee the lowest true risk. In other words,
this is the probability that the hypothesis will make
an error on an unseen randomly selected test exam-
ple. For a given training set Z the support vector
machines use the Structured Risk Minimization prin-
cipal to select the function fan

l
in the subset ffa :
the kernel function F. The maximum margin hyperplane
ther with support vectors and a misclassified instance. A
own.
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4 Tiny SVM is available from http://www.cl.aist-nara.ac.jp/
�taku-ku/software/TinySVM/.
a2Lng for which the true risk bound (given as the
right hand side of Eq. (4) is approximately minimal.
This is done by efficiently controlling h.

3.3. SVM algorithm

In their basic form SVMs use linear threshold func-
tions to discriminate between two classes. This
raises the question of how can they be used to
capture non-linear classification functions: the
answer to this is by the use of the non-linear map-
ping functionFwhichmaps the input space RN into a
hypothesis space H. Commonly used kernel func-
tions include polynomial, sigmoid and radial basis
functions.

Using the notation of [28] we now introduce some
standard notation for describing SVMs. The kernel
function Kðxi; xjÞ defines an inner product in the H
space. The hyperplane decision function given by
the SVM is

fðxÞ ¼ sign
Xl
i¼1

aiyi � Kðxi; xÞ þ b

 !
(6)

where b2R is the bias. A point x is classified as
positive (or negative) if fðxÞ> 0 (or fðxÞ< 0). The
Lagrange parameters ai are estimated using quad-
ratic optimization to maximize the following target
function which is solvable in polynomial time

WðaÞ ¼
Xl
i¼1

ai 

1

2

Xl
i;j¼1

aiajyiyjKðxi; xjÞ (7)

under the constraints that

Xl
i¼1

aiyi ¼ 0 (8)

and

0 � ai; i ¼ 1; . . . ; l (9)

The coefficients ai defined a maximum margin
hyperplane in H space where the data is mapped
through a non-linear function F such that
Kðxi; xjÞ ¼ FðxiÞ �FðxjÞ. The use of a kernel means
that it is possible to construct a linear discrimination
function in H space without the prohibitive expense
of explicitly mapping into it by simply finding the
dual of the function and replacing the dot product
with a kernel. Clearly, the complexity of data being
classified determines which particular kernel should
be used and more complex kernels require longer
training times. The kernel function we explored in
our experiments was the polynomial function
Kðxi; xjÞ ¼ hxi; xjid for d ¼ 2 which we found to be
the best in previously reported experiments [12].

It can be seen from Eq. (7) that the number of
parameters to be estimated in a never exceeds the
number of examples. The influence of ai basically
means that training examples with ai> 0, called
support vectors, define the maximummargin hyper-
plane. The optimization theory used to derive the
SVM ensures that the solution to Eq. (7) is sparse,
with many ai ¼ 0, making the final model very com-
pact and testing (but not training) very fast.

The formulation of a linear discrimination func-
tion with no errors, called a hard margin SVM,
satisfies the inequality yifðxiÞ� 1 for all examples
in the training set. When the training data is separ-
able in H space, the optimal linear threshold func-
tion will be that which maximizes the distance
between the hyperplane and the closest image
FðxiÞ of vector xi in the training data. By maximizing
the margin, we ensure that the classifier minimizes
redundancy and maximizes generality or in other
words it reduces the risk of overfitting.

For non-separable training data one version of
the SVM algorithm can misclassify some training
examples (known as outliers). This is done using a
parameter C to control the tradeoff betweenmargin
maximization and error minimization. When the
training data is relatively small control of C becomes
relatively more important to ensure optimal results.
This approach is known as the soft margin algorithm
[29] method and is generally preferred to using a
more complex Kernel function. Using the control
parameter C the constraint in Eq. (9) then becomes

0 � ai � C; i ¼ 1; . . . ; l (10)

It is shown in [29] that soft margin SVMs can be
considered to be special cases of the hard margin
SVMs by modifying the Kernel (Gram) matrix K as
follows

K K þ 1

C
I (11)

where I is the identity matrix. Essentially, this
implements a control on the influence of outliers
and prevents them from having too large a values.
For further details on the formulation see [24].

3.4. Implementation

We implemented our method using the TinySVM
package from NAIST4 which is an implementation
of Vladimir Vapnik’s SVM combined with several
optimization algorithms based on SVMlight[30].
TinySVM can efficiently support tens of thousands
of training examples and feature vectors with
dimensions in the hundreds of thousands.

http://www.ncbi.nlm.nih.gov/PubMed/
http://www.ncbi.nlm.nih.gov/PubMed/
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The main features of the optimization algorithms
are summarized below. The interested reader is
referred to [30] for further details.
� The solution to the quadratic optimization pro-
T

O

D
S
G
C
T
L
I
L
L
H
B
O

blem of Eq. (7) is found by decomposing it into an
active and inactive part. The active part is known
as the ‘working set’ and is chosen using the
steepest feasible descent algorithm. This ensures
that the size of the SVM problem will fit into the
computer’s memory.
� S
uccessive ‘shrinking’ is applied to the optimiza-
tion problem of Eq. (7).
� A
n LRU cache algorithm is used to store the Kernel
matrix K.

TinySVM extends SVMlight by incorporating a num-
ber of memory management features to make it
more robust for large data sets. It also includes:
� Optimization for handling binary features—esti-
mated to be twice as fast as SVMlight.

� A
 number of well-known model selection criteria

including leave-one-out bound, VC dimension and
Xi-Alpha estimation.

The multi-class model is built up from combining
binary classifiers and then applying majority voting.
This is the p airwise method given by Kreßel [31].
Basically for M target classes MðM
 1Þ=2 binary S-
VMs are constructed in which each classifier decides
whether the example should belong to class i or j
(i 6¼ j). Each classifier has one vote and majority
voting is applied so that the class with the most
votes is selected.

3.5. Generalising with features

In order for the model to be successful, it must
recognize regularities in the training data that
relate pre-classified examples of terms with unseen
terms that will be encountered in testing. There are
able 2 Orthographic features with examples

rthographic feature Example

igitNumber 15
ingleCap M
reekLetter alpha
apsAndDigits I2
woCaps RalGDS
ettersAndDigits p52
nitCap Interleukin
owCaps kappaB
owercase kinases
yphon -
ackslash /
penSquare [
several important aspects to this including the
power of the model, the similarity between the
training and testing sets as well as the type of
features used. In this section, we discuss the feature
set.

Following on from previous studies in named
entity, we chose a set of linguistically motivated
word-level features that include surface word
forms, part of speech tags using the Brill tagger
[32] and orthographic features. Additionally, we
used head-noun features that were obtained from
pre-analysis of the training data set using the FDG
shallow parser from Conexor [33]. A significant pro-
portion of the terms in our corpus undergo a local
syntactic transformations such as coordination
which introduces ambiguity that needs to be
resolved by shallow parsing. For example the c-
and v-rel (proto) oncogenes and NF-kappaB and I
kappa B protein families. In these cases, the head
noun features oncogene and family would be added
to each word in the constituent phrase. Head infor-
mation is also needed when deciding the semantic
category of a long term such as tumor necrosis
factor-alpha which should be a PROTEIN, whereas
tumor necrosis factor (TNF)gene and tumor necrosis
factor promoterregion should both be types of DNA.

Table 2 shows the orthographic features that we
used. Our intuition is that such features provide
evidence that helps to distinguish name classes of
words. Moreover, we hypothesize that such features
will help the model to find similarities between
known words that were found in the training set
and unknown words (of zero frequency in the train-
ing set) and so overcome the unknown word pro-
blem. To give a simple example: if we know that
LMP- 1 is a member of PROTEIN and we encounter
AP- 1 for the first time in testing, we can make a
fairly good guess about the category of the unknown
word ‘LMP’ based on its sharing the same feature
TwoCaps with the known word ‘AP’ and ‘AP’s known
Orthographic feature Example

CloseSquare ]
Colon :
SemiColon ;
Percent %
OpenParen (
CloseParen )
Comma ,
FullStop .
Determiner the
Conjunction and
Other * + #
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Figure 3 Lexical features and context considered by the
SVM model when deciding the class tag T at the focus
position t.
relationship with ‘-1’. The features were chosen to
be as domain independent as possible, with the
exception of Hyphon and GreekLetter which have
particular significance for the terminology in this
domain.

In the experiments, we report below we use
feature vectors consisting of differing amounts of
‘context’ by varying the window around the focus
word which is to be classified into one of the seman-
tic classes. The full window of context considered in
these experiments is �3 about the focus word as
shown in Fig. 3. In order to show the effects of
limiting context during training we tested using a
number of context windows that include 
10,

1þ 1, 
2þ 2, 
3þ 2, 
3þ 3.

Word ordering is captured within the SVM soft-
ware by assigning disjoint sets in the training
vector to features depending on their position in
the context window. Given this formation of the
training vectors, experience with SVMs in other
classification tasks has shown that they may be
well suited to our NE+ task, i.e. using high dimen-
sional sparse feature vectors with few irrelevant
features.
4. Results and discussion

Results are given as F-scores [34], a common mea-
surement for accuracy in the MUC conferences that
combines recall and precision. F-scores are calcu-
lated using the CoNLL evaluation script5 and are
defined as F ¼ ð2PRÞ=ðP þ RÞ. where P denotes pre-
cision and R recall. P is the ratio of the number
of correctly found NE chunks to the number of found
NE chunks, and R the ratio of the number of cor-
rectly found NE chunks to the number of true NE
chunks. All results are calculated using 10-fold cross
validation.
5 Available from http://lcg-www.uia.ac.be/conll2002/ner/.
4.1. Experiment 1: effect of training set size

The effect of total training set size is shown along
the top row of Tables 3 and 4. It can be seen that
without exception more training data results in
higher overall F-scores except at 10% where the
result seems to be biased by the small sample,
perhaps because one abstract is partly included in
the training and testing sets. As we would expect
larger training sets reduce the effects of data spar-
seness and allow more accurate models to be
induced.

The rate of increase in improvement however is
not uniform according to the feature sets that are
used. For surface word features and head noun
features the improvement in performance is con-
sistently increasing whereas the improvement for
using orthographic and part of speech features is
quite erratic. This may be an effect of the small
sample of training data that we used and we could
not find any consistent explanation why this
occurred.

Looking at a class by class break down of the
results allows us to see the influence of features on
specific classes in the data set. Results are summar-
ized for 100% data in Table 5. Comparing the F-
measures between classes and the class frequencies
given in Table 1 it is clear that classes with more
examples such as PROTEIN have higher F-scores and
classes with fewer examples such as RNA have lower
F-scores–—this reflects the usual limit we expect due
to data-sparseness.

As we observed before, the best overall result
comes from using Or hd, i.e. surface words, ortho-
graphic and head features. However the total score
hides the fact that three classes, i.e. SOURCE.mo,
SOURCE.mu and SOURCE.ti actually perform worse
when using anything but surface word forms. One
possible explanation for this is that all of these
classes have very small numbers of samples and
the effect of adding features may be to blur the
distinction between these and other more numerous
classes in the model. However it is interesting to
note that this does not happen with the RNA class
which is also very small.

4.2. Experiment 2: effect of feature sets

The effects of feature sets is of major importance in
modelling named entity. In general, we would like to
identify only the necessary features that are
required and to remove those that do not contribute
to an increase in performance. This also saves time
in training and testing.

The results from Tables 3 and 4 at 100% training
data are summarized in Table 6 and clearly illustrate

http://www.ncbi.nlm.nih.gov/PubMed/
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Table 3 F-scores on Bio1 showing the effects of training set size, feature sets, and context window sizes

Feature set and window size Percentage of data used in experiment

10 20 30 40 50 60 70 80 90 100

Wd 
10 58:52 47.30 51.44 52.40 52.37 52.30 51.29 53.24 55.57 56.06
Wd 
1þ 1 55.35 48:15 53:91 54:50 56:02 55:30 55:92 58:98 60:28 61.55
Wd 
2þ 2 46.87 40.73 47.92 49.64 53.31 53.20 55.01 56.95 59.40 62:04
Wd 
3þ 2 46.12 38.55 44.19 47.93 49.50 50.50 51.21 54.76 56.66 60.25
Wd 
3þ 3 44.83 35.37 42.67 45.24 46.78 49.10 49.66 54.01 55.59 58.83

Or
10 60.33 55.08 63.49 63.41 64.09 63.04 62.97 62.64 64.59 65.63
Or 
1þ 1 65:35 58.69 66:63 68:18 69.20 68.74 69.55 69.32 71.02 72:13
Or 
2þ 2 60.84 58.90 66.44 67.17 69:88 68:81 69:68 69:62 71:41 72.12
Or 
3þ 2 62.48 59:21 65.64 66.69 67.56 67.25 68.37 68.94 69.92 71.69
Or 
3þ 3 59.61 58.65 64.95 65.68 67.11 66.65 67.85 68.84 69.54 71.78

Head 
10 58:51 47.10 51.99 52.74 52.44 52.01 53.09 53.79 55.97 57.01
Head 
1þ 1 57.50 50:00 55:81 57:88 58:03 57:84 58.81 61.08 62.64 63.93
Head 
2þ 2 49.43 45.92 53.40 53.75 57.52 56.94 59:33 61:29 63:36 64:67
Head 
3þ 2 46.51 39.42 49.39 49.75 54.54 54.81 56.95 58.13 59.25 61.96
Head 
3þ 3 45.79 40.81 47.52 48.11 53.58 53.50 55.95 57.02 59.06 61.52

POS 
10 61:62 52.89 61.14 62.04 62.62 61.51 61.05 60.78 62.71 62.63
POS 
1þ 1 61.24 57:25 63:83 62:94 65:35 64:82 67:40 66:47 67:43 68:37
POS 
2þ 2 57.52 53.11 59.39 59.98 62.86 62.16 63.72 64.17 64.56 66.92
POS 
3þ 2 56.81 54.55 56.53 56.26 59.60 59.40 61.42 61.86 63.41 64.90
POS 
3þ 3 54.76 53.28 56.79 55.02 57.46 57.66 59.60 59.89 62.39 63.50

Wd: surface word level features; Or: orthographic features; Head: head noun features; POS: part of speech features.

Table 4 F-scores on Bio1 showing the effects of training set size, feature sets, and context window sizes

Feature set and window size Percentage of data used in experiment

10 20 30 40 50 60 70 80 90 100

Or hd 
10 62.16 57.80 64.31 65.70 65.20 63.84 64.90 64.73 66.46 67.31
Or hd 
1þ 1 64.84 60.52 68.42 68.25 68.82 69.34 71.31 71.88 72.60 73.38
Or hd 
2þ 2 61.16 61.10 68.06 67.42 69.32 69.62 70.91 71.31 72.31 74.23
Or hd 
3þ 2 61.54 60.06 65.87 66.33 67.43 68.36 70.28 70.15 70.81 72.95
Or hd 
3þ 3 59.68 57.03 64.58 65.76 66.84 67.16 69.07 69.22 70.73 72.12

Or POS 
10 61.48 54.04 63.20 63.92 64.11 64.74 63.23 63.62 64.87 66.28
Or POS 
1þ 1 64.57 58.89 66.52 66.77 67.83 67.90 69.32 69.07 70.84 71.70
Or POS 
2þ 2 61.48 58.56 63.37 65.44 67.01 66.74 68.21 68.55 70.09 71.87
Or POS 
3þ 2 61.08 57.14 64.23 63.39 65.53 65.11 67.31 67.78 68.64 71.54
Or POS 
3þ 3 57.92 57.12 62.86 62.36 65.48 64.41 66.10 66.64 68.22 70.46

POS hd 
10 64.90 55.39 61.14 61.65 61.91 61.29 61.88 60.51 63.27 63.82
POS hd 
1þ 1 62.25 57.25 63.66 64.81 64.64 65.57 67.78 67.63 68.69 69.68
POS hd 
2þ 2 58.08 53.23 58.91 60.28 62.55 62.06 64.19 64.51 66.18 67.66
POS hd 
3þ 2 57.09 53.20 56.58 57.75 59.34 59.14 62.19 62.93 64.23 65.41
POS hd 
3þ 3 54.69 51.09 55.67 55.46 58.31 58.28 60.88 61.17 62.94 64.31

Or POS hd 
10 63.70 56.63 63.29 65.11 64.72 64.14 64.40 64.04 66.01 67.41
Or POS hd 
1þ 1 66.20 59.65 66.49 67.91 68.44 68.14 70.01 70.61 71.80 72.95
Or POS hd 
2þ 2 61.62 58.03 64.76 65.16 66.45 67.26 69.00 69.86 70.83 72.56
Or POS hd 
3þ 2 62.06 57.28 63.74 64.50 66.10 66.25 68.01 69.05 69.44 71.59
Or POS hd 
3þ 3 59.12 56.51 62.43 62.61 65.37 65.09 66.89 67.80 69.36 71.25

Wd: surface word level features; Or: orthographic features; Head: head noun features; POS: part of speech features.
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Table 5 Class by class performance using a 
2þ 2 window shown against feature sets

NE+ class Feature set

Wd Or Head POS Or hd Or POS POS hd Or POS hd

DNA 44.53 56.49 50.88 47.33 62.78 58.12 47.30 59.19
PROTEIN 65.07 77.50 67.96 72.10 78.99 77.03 72.89 77.58
RNA 12.12 42.11 12.90 24.24 43.24 37.84 6.67 29.41
SOURCE.cl 52.63 57.14 51.52 54.79 59.21 55.90 56.94 59.87
SOURCE.ct 65.83 66.39 66.22 63.70 69.32 67.03 65.65 68.94
SOURCE.mo 32.00 16.67 9.09 17.39 17.39 16.67 17.39 17.39
SOURCE.mu 61.02 58.41 55.24 57.14 51.92 54.55 53.33 51.92
SOURCE.sl 55.22 62.86 62.69 51.20 68.53 62.41 54.84 63.38
SOURCE.ti 23.26 18.18 0.00 14.63 5.00 14.29 0.00 0.00
SOURCE.vi 76.54 75.16 79.50 73.68 80.25 74.84 75.00 73.33

Wd: surface word level features; O r: Orthographic features; Head: Head noun features; P OS: part of speech features.
the value of surface word level features combined
with orthographic and head noun features. Ortho-
graphic features allow us to capture many general-
ities that are not obvious at the surface word level
such as IkappaB alpha and IkappaB beta both being
PROTEINs and IL-10 and IL-2 both being PROTEINs.

The orthographic-head noun feature combination
(Or hd) gives the best overall performance of 74.23
at 100% training data on a 
2þ 2 window. Overall
orthographic features combined with surface word
features gave an improvement of between 4.9 and
22.0 per cent. at 100% data depending on window
size over surface words alone. This was the biggest
contribution by any feature except the surface
words. Head information, for example, allowed us
to correctly capture the fact that in the phrase N F-
kappaB consensus site the whole of it is a DNA,
whereas using orthographic information alone the
SVM could only say that N F-kappaB was a PROTEIN
and ignoring consensus site. We see a similar case in
the phrase primary NK cells which is correctly clas-
sified as SOURCE.ct using head noun and ortho-
graphic features but only NK cells are found using
orthographic features. This mistake is a natural
consequence of a limited contextual view which
the head noun feature helped to rectify.

Part of speech (POS) when combined with surface
word features gave an improvement of between 7.9
Table 6 Summary of the interaction between window size

Window size Feature set

Wd Or Head POS


10 56.06 65.63 57.01 62.63

1þ 1 61.55 72.13 63.93 68.37

2þ 2 62.04 72.12 64.67 66.92

3þ 2 60.25 71.69 61.96 64.90

3þ 3 58.83 71.78 61.52 63.50

Wd: surface word level features; Or: Orthographic features; Head:
and 11.7% at 100% data. The influence of POS though
does not appear to be sustained when combined
with other features and we found that it actually
degraded performance slightly in many cases. This
may possibly be due to either overlapping knowl-
edge or more likely subtle inconsistencies between
POS features and say, orthographic features. This
could have occurred during training when the POS
tagger was trained on an out of domain (news) text
collection. It is possible that if the POS tagger was
trained on in-domain texts it would make a greater
and more consistent contribution. An example
where orthographic features allowed correct clas-
sification but adding POS features resulted in failure
is p50 in the phrase consisting of 50 (p50)- and 65
(p65)-kDa proteins. Also in the phrase c-Jun trans-
activation domain where only c-Jun should be
tagged as a protein, by using orthographic features
and POS the model tags the whole phrase as a
PROTEIN. This is probably because POS tagging gives
a NN feature value (common noun) to each word.
This is very general and does not allow the model to
discriminate between them.

The fourth feature we investigated is related to
syntactic rather than lexical knowledge. We felt
though that there should exist a strong semantic
relation between a word in a term and the head
noun of that term. The results in Table 6 show that
and feature sets

Or hd Or POS POS hd OrPOS hd

67.31 66.28 63.82 67.41
73.38 71.70 69.68 72.95
74.23 71.87 67.66 72.56
72.95 71.54 65.41 71.59
72.12 70.46 64.31 71.25

head noun features; POS: part of speech features.
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Table 7 Accuracy of term boundary identification given according to the feature set and window size

Feature set Window size


10 
1þ 1 
2þ 2 
3þ 2 
3þ 3

Only words 63.80 68.71 69.14 68.74 67.91
Orthographic 78.10 79.24 79.68 79.05 78.97
Head 66.22 70.68 72.64 71.60 71.02
POS 75.27 75.71 75.08 73.93 73.32
Orth and head 79.48 79.99 80.46 79.78 79.39
Orth and POS 78.86 79.66 79.24 78.29 78.99
POS and head 75.26 76.40 76.00 74.53 74.38
Orth, POS and head 79.33 79.75 79.90 79.53 79.06

Wd: surface word level features; Or: orthographic features; Head: head noun features; POS: part of speech features.
while the overall contribution of the Head feature is
quite small, it is consistent and significant ranging
from about 1.7—4.6% F-score improvement depend-
ing on window size at 100% training data. Moreover,
Head features contribute to improving the overall F-
score when combined with surface words and ortho-
graphic features.

4.3. Experiment 3: effect of window size

The influence of the training window size has a
significant influence on the final result. Our initial
expectation was that a larger training window
(
3þ 3) would prove to be the best as the SVM
model should be free to decide on the contribution
of each part of the window. However from empirical
analysis it is clear that the effects of different parts
of the window do not give a uniform improvement.
For example, in Table 6 we see that comparing
2þ
2 and 
3þ 2 leads to a clear drop in performance
for nearly all feature sets. By including both the 
3
or the +3 features we can expect a drop in perfor-
mance below what we could obtain in just a small

1þ 1 window.

Unexpectedly, we also found a strong relationship
between training set size and window size. At small
data sizes a narrow window is better as shown by
the underlined results in Table 3. It seems therefore
that due to limited training data our model achieved
best performance at 
1þ 1 but a larger window
may achieve better results on larger data sets.

4.4. Experiment 4: effect of boundary
identification

The previous experiments considered a combined
task of identification and classification. Here, we
look at the effect of boundary identification on the
result. By ignoring term class and just measuring
the ability of the model to find the start and end
word tokens for each named entity expression, we
obtained the results shown in Table 7. The results
reflect many of the previously reported findings,
such as a 
2þ 2 window being the best and 
3
and +3 window features being harmful.

What also seems clear from the boundary identi-
fication results is that performance for using surface
or head noun features is quite dependent on the
window size but for POS or orthographic features
there is less correlation. Moreover, while POS fea-
tures seem beneficial at small window sizes their
benefit reduces for larger context windows.
5. Conclusion

The method we have shown for identifying and
classifying technical terms has the advantage of
being portable, not requiring large domain depen-
dent dictionaries and no hand-made patterns were
used. Additionally, since all the word level features
are found automatically there is no need for inter-
vention to create domain specific features. Indeed,
the only thing that is required is a quite small corpus
of text containing entities tagged by a domain
expert.

Our experiments on a molecular biology text
collection of MEDLINE abstracts have shown a num-
ber of underlying factors that should enable better
tools to be built in the future. These include:
� t
he optimal context window size for training may
not be the largest one and seems to be directly
related to the amount of training data. A 
2þ 2
window was found to be best in our tests;
� a
 combination of surface words, orthographic
features and head noun features were found to
give the best results among those tested;
� p
art of speech taggers may need to be trained in-
domain to give any benefit to performance;
� t
he influence of the head noun feature is small but
overall beneficial in helping resolve surface term
transformations such as coordination.
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For future work, we are now looking at how to
balance the scores from SVM for each word-class
over the whole of a sentence using dynamic pro-
gramming. Theoretically, the existing SVM model
cannot consider evidence from outside the context
window, in particular evidence related to named
entity class scores in the history and later in the
sentence. We are also now developing a larger an-
notated test collection of 100 EMBO Journal full
papers using the same top level ontology as used in
these experiments. This will provide a far more
challenging and realistic collection on which to test
our models while hopefully maintaining the high
quality levels of the original Bio1 test collection
which we regard as a key point in constructing ac-
curate NE classifiers.
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