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Summary. When modelling multivariate financial data, the problem of structural learning is com-
pounded by the fact that the covariance structure changes with time. Previous work has focused
on modelling those changes by using multivariate stochastic volatility models. We present an
alternative to these models that focuses instead on the latent graphical structure that is related
to the precision matrix. We develop a graphical model for sequences of Gaussian random vec-
tors when changes in the underlying graph occur at random times, and a new block of data is
created with the addition or deletion of an edge. We show how a Bayesian hierarchical model
incorporates both the uncertainty about that graph and the time variation thereof.
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1. Introduction

Estimating the covariance structure of multivariate data is of fundamental importance in their
statistical analysis. For instance, in empirical finance, the estimation of the variance–covariance
matrix is central to asset pricing, portfolio selection and investment strategies based on his-
torical indicators and market data. However, when modelling multivariate financial data, the
problem of structural learning becomes compounded by the fact that the covariance structure
changes with time. Previous work has focused on modelling those changes by using the so-called
multivariate stochastic volatility models of Jacquier et al. (1994). In this paper, we present an
alternative to those models that focuses instead on the hidden graphical structure that is related
to the precision matrix. The latter is the inverse of the variance–covariance matrix, a natural
parameter in the multivariate normal model, which is intimately related to the coefficients in
the simultaneous regression of each variable on all the remaining variables.

This paper develops a graphical model for sequences of Gaussian random vectors when
changes in the underlying graph, which is specified by zeros in the precision matrix, occur at
random times, and a new block of data is created with the addition or deletion of an edge. We
show how a Bayesian hierarchical model incorporates both the uncertainty about that graph
and the time variation thereof. Our main objective is to learn the graph underlying the most cur-
rent block of data. In fact, our framework allows us to make inference about the whole history
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up to and including the last block. Dahlhaus and Eichler (2003) have developed a related class
of models, termed time series graphs. For stationary time series, conditional independence is
characterized in the frequency domain by zeros in the inverse spectral matrix. Using Gibbs
potentials, Guyon and Hardouin (2002) developed another class of dynamic spatiotemporal
models, which they called Markov chain Markov fields.

The plan of this paper is as follows. Section 2 gives some background. In Section 3, we develop
the statistical model. Section 4 presents our posterior sampling strategy. In Section 5, we use a
simulated data set as a test-case, and, in Section 6, consider a small data set consisting of five
US industry portfolios. Section 7 discusses extensions to our methodology.

2. Covariance selection

As in Koster (1996), we define an undirected graph as a pair g= .V , E/ where V is a set of vertices
V ={1, 2, . . . , d} and E is a set of (undirected) edges

E⊂{{i, j} : i �= j, i∈V , j ∈V},

connecting (unordered) pairs of distinct vertices. Our graphs do not allow for loops from a ver-
tex to itself, nor for multiple edges. Dempster (1972) has pioneered an approach to modelling
the variance–covariance matrix in which some off-diagonal entries in its inverse are set to 0,
thereby exploiting conditional (near) independence relations in the data. The resulting models
are summarized by an undirected graph, whose vertices represent the variables, and whose edges
indicate non-zero off-diagonal entries in the precision matrix.

2.1. Graphical Gaussian models
Let X = .Xi/i∈V be a d-dimensional normal random vector, indexed by the vertices of an un-
directed graph g= .V , E/. For subsets U, W ⊂V , XU denotes the subvector XU = .Xi/i∈U , and
U \W is shorthand for U ∩Wc. The notation Xi ⊥⊥Xj|XV\{i,j} means that Xi and Xj are con-
ditionally independent given XV\{i,j}. The undirected graphs that we consider are so-called
conditional independence graphs (Whittaker (1990), page 60), in that

{i, j} �∈E if and only if Xi ⊥⊥Xj|XV\{i,j}:

Let Σ be the variance–covariance matrix of X and K =Σ−1 its precision matrix. Let the mean
vector µ be zero. In Gaussian graphical models, the absence of an edge between two nodes is
signalled by a zero off-diagonal entry in the precision matrix. The conditional independence
relation Xi ⊥⊥ Xj|XV\{i,j} is read off the corresponding entry kij of K, since the partial cor-
relation coefficient between Xi and Xj given the remaining variables is simply

ρij =−kij=
√

.kiikjj/, .1/

which is 0 if and only if kij =0. Thus, for graphical Gaussian models,

{i, j} �∈E if and only if kij =0:

The log-likelihood for X is given by

log{f.x|K, g/}=−d

2
log.2π/+ 1

2
log |K|− 1

2

∑
i∈V

∑
j∈V

xikijxj:

Isolating the terms involving variable Xi in the quadratic form in the log-likelihood shows that
the conditional distribution of Xi given the
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X−i
def= {Xj, j �= i}

is Gaussian, with

E.Xi|X−i/=− ∑
j �=i

kij

kii
Xj =− ∑

j:{i,j}∈E

kij

kii
Xj

=E.Xi|X{j:{i,j}∈E}/, .2/

and

var.Xi|X−i/= 1
kii

: .3/

Relation (2) corresponds to the regression of Xi onto the X−i, where the coefficients are

βij =−kij

kii
×1{{i,j}∈E,i�=j}: .4/

The multiple-regression coefficient of this regression is R2
i , and the residual variance is

1
kii

=σ2
i .1−R2

i /: .5/

3. Model proposed

In this section, we set out to specify the data-generating mechanism, as well as the priors that
are involved in developing a hierarchical Bayesian model.

3.1. A slowly varying sequence of graphs
Consider the sequence of graphs which arises in blocks as follows:

G1, . . . , G1︸ ︷︷ ︸
N1

, G2, . . . , G2︸ ︷︷ ︸
N2

, . . . , GB, . . . , GB︸ ︷︷ ︸
NB

:

Each graph Gb is an undirected graph with fixed vertex set V = {1, . . . , d} and edge set Eb,
and is repeated Nb times. In our model, the graphs Gb and Gb+1 in successive blocks differ only
by the addition or deletion of at most one edge. Let the corresponding edge sets be Eb and
Eb+1 respectively. The Hamming distance between Gb and Gb+1 is the size of the symmetric
difference

Eb �Eb+1 = .Eb\Eb+1/∪ .Eb+1\Eb/

between their edge sets:

d.Gb, Gb+1/=#.Eb �Eb+1/�1:

To model time variation, we define Markov transition probabilities

P.Gb+1 =g|Gb =h/= 1
#D.h/

1{g∈D.h/},

where

D.h/={g : d.h, g/�1},
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and 1U is the indicator function of a set U. Note that g∈D.h/ if and only if h∈D.g/, and that
h∈D.h/ for all h. The joint probability of a sequence

g
def= .g1, . . . , gB/

is thus

p.g/= p1.g1/

#D.g1/. . . #D.gB−1/
×

B−1∏
b=1

1{gb+1∈D.gb/},

for some initial distribution p1.·/ for the graph G1 in the first block. If we allow all graphs,
then #D.g/ = 1 + d.d − 1/=2 for all g, which does not depend on g. Further, we can take the
initial distribution p1.·/ for the Markov chain to be the uniform distribution p1.·/=2−d.d−1/=2.
This is clearly also the stationary distribution, since the marginals pb.·/ remain uniform. Note
that the uniform distribution p1.·/ puts more mass on graphs with medium-sized edge sets, as
opposed to very sparse or nearly saturated graphs. It can be thought of as the distribution of
an Erdös–Rényi random graph with each of the d.d −1/=2 edges drawn (their indicators set to
1) independently according to a Bernoulli( 1

2 ) distribution.
The resulting joint prior p.g/ becomes a uniform distribution on

{g = .g1, . . . , gB/ :gb+1 ∈D.gb/, b=1, . . . , B−1}:

3.2. Data-generating mechanism
We view the data as a stream of d-dimensional observations

X1,1, . . . , X1,N1︸ ︷︷ ︸
N1

, X2,1, . . . , X2,N2︸ ︷︷ ︸
N2

, . . . , Xb,1, . . . , Xb,Nb︸ ︷︷ ︸
Nb

, . . . ,

where the block lengths N1, . . . , Nb, . . . are random. Conditionally on the number of blocks B,
and a fixed sample size n, the last block observed has only

MB
def= n−

B−1∑
b=1

Nb

observations, whence MB �NB. Henceforth, define Mb ≡Nb for b=1, . . . , B−1.
A sufficient representation of the full data is as follows, where XXX = .X1, . . . , XB/, G = .G1,

. . . , GB/ and M = .M1, . . . , MB/:

.XXX, G, M/={.X1, G1, M1/, . . . , .XB, GB, MB/}:

Xb is a d ×Mb matrix with column vectors Xb,1, . . . , Xb,Mb
. Each graph Gb = .V , Eb/ is repeated

Mb times. Data in block b are assumed independent and identically distributed from Nd.0, Σb/,
with the precision matrix Kb =Σ−1

b ∈M+.Gb/. Here, for any undirected graph g= .V , E/, the
set M+.g/ is defined as the set of all symmetric and positive definite matrices A such that Aij =0
whenever {i, j} �∈E, i �= j.

We condition on B throughout this paper, regarding it as a tuning parameter for the maximum
number of blocks required. Our approach contrasts with that of Barry and Hartigan (1993),
who ascertained the number of blocks B in a sequence of observations a posteriori.

3.2.1. Distribution of block lengths
The length of a block is the interarrival time between structural changes. We model the inter-
arrival times N = .N1, . . . , NB/ as independent and identically distributed geometric random
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variables. Conditionally on the sample size n and the number of blocks B, the vector of block
lengths M = .M1, . . . , MB/, where Mb =Nb, for b=1, . . . , B−1, and MB =n−ΣB−1

b=1 Mb, follows
a uniform distribution u.m/ over the space of vectors{

m = .m1, . . . , mB/ : 0�mb �n,
B∑

b=1
mb =n

}
:

Note that empty blocks are not ruled out.

3.3. Parameterization
For a precision matrix Kb ∈M+.Gb/ and undirected graph Gb = .V , Eb/, we use two parameters
θb and σ2

b , and set regression coefficients (4) and conditional variances (3) to

βb
ij =−kb

ij

kb
ii

= θb

νb
i

1{{i,j}∈Eb,i�=j},

1

kb
ii

= σ2
b

νb
i

.6/

respectively. Here,

νb
i

def= max.1, #{j :{i, j}∈Eb}/

is the degree of vertex i in the graph when i is not a disconnected singleton and is equal to 1
when i is disconnected.

As a result of expression (6), the precision matrix Kb has off-diagonal elements

kb
ij =− θb

σ2
b

1{{i,j}∈Eb,i�=j}: .7/

Restricting θb ∈ .−1, 1/ in equation (7) is sufficient to ensure that the resulting precision matrix
Kb is positive definite, regardless of dimension d, as it makes Kb strictly diagonally domin-
ant:

∑
j �=i

|kb
ij|

kb
ii

= |θb|
νb

i

∑
j �=i

1{{i,j}∈Eb} � |θb|< 1:

However, the partial correlation coefficients for this model are given in equation (1) by

ρb
ij =− kb

ij√
.kb

iik
b
jj/

= θb√
.νb

i ν
b
j /

1{{i,j}∈Eb,i�=j}:

.8/

Since both νb
i and νb

j are at least 1, it follows that the choice of θb ∈ .−1, 1/ is also necessary.

3.3.1. Prior specification in the non-hierarchical model
For tying together the parameters in consecutive blocks, we consider first the case when θb ≡θ1
and σ2

b ≡σ2
1 for all b, and we choose the following convenience priors for θ1 and σ2

1:
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π1.θ1/∝ π=2
cos2.θ1π=2/

,

π1.σ2
1/∝ 1

σ2
1

:

.9/

The improper prior π1.θ1/ corresponds to a uniform prior for tan.θ1π=2/ and is U shaped.

3.3.2. Prior specification in the hierarchical model
A more realistic model allows the strength (8) of persistent edges, as well as volatility at the
nodes, to vary ‘smoothly’ from one block to the next. We let the parameters .θb,σ2

b/ themselves
be governed by appropriately defined autoregressive processes, in the spirit of the stochastic
volatility models of Jacquier et al. (1994). For this, we define the initial distributions π1.θ1/ and
π1.σ2

1/ as in expression (9), and, for b=2, . . . , B, let

tan.θb+1π=2/=φθ tan.θbπ=2/+ "b+1,

log.σ2
b+1/=φσ log.σ2

b/+ "′
b+1,

.10/

where the "b are independent and identically distributed according to an N{.1−φθ/αθ, η2
θ} dis-

tribution and the "′
b according to an N{.1−φσ/ασ, η2

σ} distribution, for some hyperparameters

ψθ
def= .αθ,φθ, η2

θ /,

ψσ
def= .ασ,φσ, η2

σ/:

Thus, our choice of joint prior for

θ
def= .θ1, . . . , θB/

is given by

π.θ|ψθ/∝
{

B∏
b=1

π=2
cos2.θbπ=2/

}
exp

[
−

B−1∑
b=1

{tan.θb+1π=2/−φθ tan.θbπ=2/− .1−φθ/αθ}2

2η2
θ

]
,

.11/

whereas that for

σ2 def= .σ2
1, . . . ,σ2

B/

is given by

π.σ2|ψσ/∝
(

B∏
b=1

σ−2
b

)
exp

[
−

B−1∑
b=1

{log.σ2
b+1/−φσ log.σ2

b/− .1−φσ/ασ}2

2η2
σ

]
: .12/

The priors in expressions (11) and (12) encourage parameter values in successive blocks to be
similar. The prior of independence, which is represented by the Jacobian (product) terms in each
expression, is penalized by a ‘smoothness’ or similarity penalty (the exponential term) which
assigns a higher weight to successive values of the parameters that are close.

3.3.3. Hyperparameters
In the hierarchical prior specification, an extra layer of parameters is added, to determine the
autoregressive behaviour of the θs and the σ2s in expression (10). For that matter, we choose a
triangle function (with height 2 at 1, and 0 at −1) for the hyperparametersφθ andφσ, as we expect
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a typically strong positive autoregressive coefficient. For the trend parameters αθ and ασ, we
assume an N.0, a2/ prior for some choice of a2 (e.g. a2 =1). For the variance parameters η2

θ and
η2
σ, we simply take as prior a χ2

1-distribution, which controls the persistence. Since we only allow
changes in the parameters at the end of each block, and typically consider a small number of
blocks, it is clear that estimation of the hyperparameters ψθ= .φθ,αθ, η2

θ / and ψσ = .φσ,ασ, η2
σ/

is of no particular relevance, as we effectively have B � n ‘observed’ parameters .θb,σ2
b/. We

shall thus marginalize over ψθ and ψσ from the posterior.

3.3.4. Heterogeneous variance parameters
Within each block, model (6) forces the residual variances 1=kb

ii to be the same across the diag-
onal, adjusted only by the degree of the vertex i in the graph Gb. However, from equation (5),
the residual variance from the regression of Xi onto the X−i is given by

1

kb
ii

=σ2
b,i.1−R2

b,i/,

where R2
b,i is the multiple-regression coefficient from that regression. Thus, it is quite natural to

parameterize the residual variances 1=kb
ii by

1

kb
ii

= σ2
b,i

νb
i

.13/

instead, while modifying the parameterization of the regression coefficients as follows:

βb
ij =−kb

ij

kb
ii

= θb

νb
i

σb,i

σb,j
1{{i,j}∈Eb,i�=j}: .14/

This is especially relevant for the industry portfolio returns data that we analyse in Section 6,
since some industries tend to be more volatile, or more sensitive to market shocks, than others.
As a result of equation (14), the precision matrix Kb has off-diagonal elements

kb
ij =− θb

σb,iσb,j
1{{i,j}∈Eb,i�=j}:

4. Posterior inference and sampling strategy

Let f.XXX|g, m, θ, σ2/ denote the likelihood function. The joint posterior distribution is

q.g, m, θ, σ2|XXX/∝f.XXX|g, m, θ, σ2/ p.g/ u.m/

∫
π.θ|ψθ/ ξ.ψθ/ dψθ

∫
π.σ2|ψσ/ ξ.ψσ/ dψσ:

Our aim is to draw a sample from this joint posterior distribution by using the Metropolis–
Hastings algorithm. We start at an arbitrary point in the state space and perturb the state var-
iable one component at a time, marginalizing over the hyperparameters ψθ and ψσ. We refer
the reader to Robert and Casella (1999) for more on Markov chain Monte Carlo methods. We
describe how to generate proposals next, one component of the state variable at a time.

4.1. Perturbing the graph sequence
4.1.1. The e-toggle
Let g= .V , E/ be an undirected graph with vertex set V and edge set E. Let Ec denote the edge
set of the graph gc = .V , Ec/ given by

{i, j}∈Ec, i �= j if and only if {i, j} �∈E, i �= j:
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We define the set E of all possible edges as the set of subsets of E ∪ Ec of cardinality 0 or 1.
Thus, the empty set (of size 0) corresponds to the null edge, which we denote by o. We include
explicitly the null edge here for computational convenience. It follows that #E =1+d.d −1/=2,
regardless of g.

Starting with a graph g= .V , E/, select an edge e∈E , and define a new graph h= .V , E′/ with
vertex set V and edge set E′ given by

E′ =
{

E∪{e}, if e∈Ec,
E\{e}, if e∈E,
E, if e=o.

We call this operation a toggle and call the graph h that is thus obtained the e-toggle of the
graph g (relative to the edge e). We denote by h = g± e the e-toggle of g. By a slight abuse of
notation, we also denote the new edge set E′ by E′ =E± e.

4.1.2. Legalese
If all graphs are allowed, then

D.g/={h : d.g, h/�1}
={h : h=g± e, for some e∈E}:

The subset E.g/ of edges in E for which g±e is in D.g/ are called the legal edges. Here, E.g/≡E
for all g; hence #D.g/=#E.g/≡#E =1+d.d −1/=2. However, when only some subclass G of
the graphs is allowed, then E.g/ is usually a proper subset of E , defined in such a way as to
ensure that G is closed under the e-toggle operation:

h± e=g∈G, e∈E.g/ if and only if g± e=h∈G, e∈E.h/:

Of historical interest is the subclass G of triangulated graphs; see Dirac (1961) and Gavril
(1972). An important result is that the subclass G of triangulated graphs can be traversed via the
toggle operation (Frydenberg and Lauritzen, 1989). We shall not be concerned with triangulated
graphs any further here; however, we point out that our modelling and subsequent inference
strategy are well adapted to such graphs.

4.1.3. The toggle move on a sequence of graphs
Let the current state of the Metropolis chain be a sequence of graphs g = .g1, . . . , gB/, whose
common vertex set is V , and whose edge sets E1, . . . , EB satisfy

Eb+1 =Eb ± eb+1, b=1, . . . , B−1,

where {eb+1}=Eb+1 �Eb. We now describe a strategy for generating a new sequence of graphs
h = .h1, . . . , hB/ which will form a proposed state for the Metropolis chain. We seek to maintain
the property that consecutive graphs hb and hb+1 differ by at most one edge. For that, we simply
choose an edge e∈E such that e∈E.gb/ for all b, and, as illustrated in Figs 1(a) and 1(b), define
the sequence h = .h1, . . . , hB/ by

hb =gb ± e, b=1, . . . , B: .15/

The edge sets E′
b of the hb are such that the relative changes of the Eb are conserved:

E′
b+1 �E′

b = .Eb+1 ± e/� .Eb ± e/

=Eb+1 �Eb ={eb+1}:
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Fig. 1. (a) Current sequence, (b) toggle move, (c) fork move, blocks 2–3, and (d) fork move, block 1: the
toggle move in (b) adds the edge {2, 3} across the whole sequence; the fork move in (c), operating from left
to right, keeps the first graph anchored, toggling both {1, 2} and {1, 4}; the fork move in (d), operating from
right to left, keeps graphs 3 and 2 anchored, toggling edges {2, 5} and {1, 4}

Note that, conditionally on the current state g of the Metropolis–Hasting chain, once the
edge e ∈∩B

b=1 E.gb/ has been chosen, the proposed state h is entirely determined by equation
(15). Hence, the acceptance rate for the toggle move is given by

α.g, h/=min
{

1,
f.XXX|h, m, θ, σ2/ p.h/

f.XXX|g, m, θ, σ2/ p.g/

#∩B
b=1 E.gb/

#∩B
b=1 E.hb/

1{hb=gb±e,e∈E.gb/∩E.hb/,b=1,:::,B}
}

:

When all graphs are allowed, i.e. when E.g/≡E for all g, the toggle move is symmetric: hence
the proposal ratio is equal to 1. This, together with p.g/ being uniform, implies that only the
likelihood ratio enters the calculation of the acceptance probability α.g, h/.

4.1.4. The fork move on a sequence of graphs
The toggle move that we have just described can easily be extended. For b0 >1, suppose that we
want to leave the first b0 − 1 blocks unchanged and to modify the remaining blocks b0, . . . , B.
Now, apply the toggle move on the subsequence .gb0 , . . . , gB/ of g. This defines a new sequence l
with lb =gb for b=1, . . . , b0 −1 and lb =gb ±e, with e∈E.gb/ for b=b0, . . . , B. But, by toggling
only a subsequence of g, the edge sets of the graphs lb0−1 and lb0 now differ by two edges:
{eb0} ≡ Eb0 �Eb0−1 and {e} ≡ .Eb0 ± e/�Eb0 . As a remedy, we (un)toggle the edge e′ ≡ eb0 .
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Note that, conditionally on g and on the edge e, the edge e′ is determined: e′ ≡ eb0 , and e′ must
lie in E.lb/ for all b=b0, . . . , B. Thus, we obtain the acceptance rate

α.g, h/=min
{

1,
f.XXX|h, m, θ, σ2/ p.h/

f.XXX|g, m, θ, σ2/ p.g/

#∩B
b=b0

E.gb/

#∩B
b=b0

E.hb/
1{hb=.gb±e/±e′,e′∈E.gb±e/,e∈E.gb/,b�b0}

}
:

As noted earlier, when all graphs are allowed, only the likelihood ratio enters the calculation of
α.g, h/, which is appealing. We name the toggle–toggle move just described a fork move.

4.2. Perturbing the times between changes
Proposals on the vector of block lengths can be made locally in the sense that only two compo-
nents of m are changed at any given time. Indeed, suppose that some b∈{1. . . B −1} is drawn
at random. Then, a symmetric proposal m′ can be constrained only by

m′
b +m′

b+1 =mb +mb+1: .16/

We generate proposals by selecting a range of values .m′
b, m′

b+1/ with the constraint (16), and
sampling one such proposal uniformly from that range. We have found that taking too small
a range of possible new values .m′

b, m′
b+1/ results in almost sure acceptance of the proposal,

whereas taking too large a range results in unduly low acceptance probabilities. Thus, the range
of proposals that are considered is adjusted to have a moderate acceptance rate, and thence
satisfactory mixing. We call this move on the vector of interarrival times a ‘shift’ move. Indeed,
it consists of shifting forwards or backwards one of the arrival times (poles), while keeping the
arrival time just before and the arrival time just after unchanged.

4.3. Perturbing the parameter matrix
With the parameterization (6) of Kb in terms of .θb,σ2

b/, there are two cases to consider.

4.3.1. Non-hierarchical case
In the simplest case, θb ≡θ and σ2

b ≡σ2 for all b. We make symmetric proposals on the tangent
scale for θ according to

w.θnew|θold/= .2πζ2
θ /−1=2 π=2

cos2.θnewπ=2/
exp

[
−{tan.θnewπ=2/− tan.θoldπ=2/}2

2ζ2
θ

]
,

and on the logarithmic scale for σ2 according to

w.σ2
new|σ2

old/= .2πζ2
σ/−1=2 1

σ2
new

exp
[

−{log.σ2
new/− log.σ2

old/}2

2ζ2
σ

]
,

where the proposal parameters ζθ and ζσ are tuning parameters. In the application that is
explored in this paper, we have found that the values ζθ = 0:9 and ζσ = 0:25 lead to acceptable
convergence rates for the Metropolis chain.

4.3.2. Hierarchical case
In the more flexible hierarchical case, the parameters θb and σ2

b are allowed to vary from block
to block, as described in Section 3.3. We make proposals for the components of the sequences
θ= .θ1, . . . , θB/ and σ2 = .σ2

1, . . . ,σ2
B/ that are symmetric on the tangent scale and logarithmic

scale respectively. As in the previously described fork move, we can choose to perturb only part
of the parameter sequence, leaving the other part unchanged.



Structural Learning with Time-varying Components 331

4.3.3. Perturbing the hyperparameters
For the autoregressive coefficients φθ and φσ, we make symmetric proposals on the tangent
scale. For the variance parameters η2

θ and η2
σ, we work with symmetric proposals on the loga-

rithmic scale. For the trend parameters αθ and ασ, we simply make symmetric proposals on the
natural scale. The variances of such proposal densities are adjusted to have a fast drop in the
autocorrelation function of the resulting Metropolis chain. We have found it more efficient to
update those hyperparameters jointly as ψθ= .φθ,αθ, η2

θ / and ψσ = .φσ,ασ, η2
σ/, since they tend

to be correlated a posteriori, and, for the application at hand, have found it adequate to use an
N.0, ς2

θ / proposal distribution with ςθ = 1:3, for ψθ, and an N.0, ς2
σ/ proposal distribution with

ςσ =1:1, for ψσ.

5. Simulation example

To test the performance of our methodology, we simulate a data set according to the hierarchical
prior specification, allowing for parameters to change at the end of each block.

We generate the data by using the graphs in Fig. 2, and the following parameters:

.θ1,σ2
1/= .0:85, 3/,

.θ2,σ2
2/≈ .0:87, 7:4/,

.θ3,σ2
3/≈ .0:85, 5:3/:

These values are obtained by starting with .θ1,σ2
1/= .0:85, 3/ and drawing subsequent param-

eters according to the autoregression in expression (10), with hyperparameters set to

ψθ = .αθ,φθ, η2
θ /= .4, 0:75, 0:25/,

ψσ = .ασ,φσ, η2
σ/= .1, 0:75, 0:25/:

There are three blocks in our data here, of lengths M1 =400, M2 =200 and M3 =400.
We set B = 4 and study how our methodology recovers the structural changes in the data,

with one more block than necessary. Talih (2003) contains further test cases which the reader
can consult. After 600 burn-in loops, which correspond to 100 iterations in each component
of the state vector .g, m, θ, σ2,ψθ,ψσ/, we carry out 120000 sampling loops, to have marginal
posterior samples of size 20000 in each component. Convergence and mixing of the Metropolis
chain were diagnosed by using trace and autocorrelation function plots. The acceptance rates
for our fork, shift and parameter moves ranged from 10% to 22%, with the exception of an
acceptance rate of 7% for the variance parameters σ2.
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Fig. 2. Test case—1000 independent observations are drawn from a multivariate normal distribution with
mean vector zero and precision matrices in each block constrained by the graphs shown: (a) observations
1–400; (b) observations 401–600; (c) observations 601–1000



332 M. Talih and N. Hengartner
F

re
qu

en
cy

(%
)

1

10
0

200

20
30

10
0

20
30

10
0

20
30

400 600 800 1000

F
re

qu
en

cy
(%

)

1 200 400 600 800 1000

F
re

qu
en

cy
(%

)

1 200 400 600 800 1000

(a) (b) (c)

Fig. 3. Test case—marginal posterior distributions for the first three changepoints: (a) posterior position of
pole 1 (highest posterior density, 30; mean, 80); (b) posterior position of pole 2 (highest posterior density,
400; mean, 398); (c) posterior position of pole 3 (highest posterior density, 606; mean, 606)

Fig. 3 shows the marginal posterior distributions for the position of each pole. The posterior
mode for the first changepoint is at 30, matched closely by modes near 0, which seem to imply
a very small, if not empty, first block. The second changepoint is detected at 400, which is
where the edge {1, 4} is added to form the complete subgraph {1, 4, 5}. The third changepoint
is detected at 606, which is almost exactly where the second structural change occurs in the data
with the addition of the edge {1, 3}.

Histograms of the marginal posterior densities of the parameters are not shown here. How-
ever, both the first change in volatility from 3 to 7:4 and that from 7:4 to 5:3 are detected. The 95%
highest posterior density regions for σ2

4, σ2
3, σ2

2 and σ2
1 are [5:05, 5:75], [6:23, 7:89], [2:68, 4:23]

and [1:25, 6:05] respectively, with posterior modes at 5:25, 6:81, 3:03 and 1:95 respectively. In
fact, the posterior density for σ2

1 turns out to be bimodal, with a second mode around 3, and
skewed to the right, which explains the low acceptance rate of 7% that was noted earlier. Also,
the correlation parameters are well approximated a posteriori. The 95% highest posterior density
regions for θ4, θ3, θ2 and θ1 are [0:83, 0:88], [0:86, 0:91], [0:82, 0:88] and [0:81, 0:95] respectively,
with posterior modes at 0:86, 0:89, 0:85 and 0:91. The posterior density for θ1 is also bimodal,
with a second mode at 0:85.

Fig. 4 shows a posteriori most probable sequences of graphs g= .g1, g2, g3, g4/. For each one
of the sequences presented, the graphs in the last three blocks are indeed the true graphs. In fact,
for the first block, all 11 possible neighbours of the graph in the second block were sampled;
they are not all shown here. Thus, we can marginalize over the first block, according to the
probabilities that are quoted, to obtain, with posterior probability 1, the true graph sequence.
Note that the 4-sequence with highest posterior probability remains the sequence where the last
three graphs are the true graphs, and the first graph is identical to the second. This is evidence
towards merging blocks 1 and 2.

6. US industry portfolios data

For this paper, we choose to work at the portfolio level using five industries, with annu-
ally rebalanced value-weighted monthly returns from July 1926 to December 2001, provid-
ing 906 months of data. The five industry portfolios are given in Table 1. This data set was
obtained from the virtual data library of Kenneth French at Dartmouth: http://mba.tuck.
dartmouth.edu/pages/faculty/ken.french/data library.html. We work with
log-returns so the assumption of normality is not grossly violated. Log-returns have, in theory,
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Fig. 4. Test case—a posteriori most probable sequences of graphs, with matching probabilities: (a) proba-
bility 0.863; (b) probability 0.029; (c) probability 0.024

Table 1. Five industry portfolios, with corresponding main industry groups

Portfolio Industry group†

F Finance (60–69)
M Manufacturing (20–39)
S Shops: wholesale and retail (50–59); some services (70–79)
U Utilities (49)
O Other: agriculture, mines, oil, construction and transportation,

telecommunications, health and legal services

†The standard industrial classifications are given in parentheses.

mean 0. In fact, the 5-vector of industry-specific sample means, using the full sample from July
1926 to December 2001, had entries ranging from 0.69% to 0.84%, which are practically 0.
None-the-less, we centre the observations around their sample mean to focus on the precision
matrix.

We shall not address, here, the issues that are involved in modelling both the mean process
and the precision matrices jointly. Finance theory, in essence, relates the first and the second
moments of asset returns; therefore one should not assume stochastic volatility while assuming
constant, or zero, means. Campbell et al. (1997), section 12.2.3, reviewed some of the most com-
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mon models of changing volatility that link first and second moments. Aguilar and West (2000)
developed a class of dynamic linear factor models to capture both the multivariate stochastic vol-
atility and the factor structure of financial time series. In Talih (2004), we account for such mod-
elling advances in the context of structural learning through precision matrices.

6.1. Preliminary findings
Linear factor models and clustering are the most commonly used statistical techniques for
covariance modelling in the context of stock returns; see for example Brown et al. (1997).
Graphical modelling is an alternative that is most suited to the study of the precision matrix.

A naı̈ve approach to determining the graph structure underlying multivariate stock returns,
during a fixed time period, is as follows. The inverse of the sample covariance matrix estimates
K =Σ−1, and sample partial correlations whose absolute values fall below an arbitrary cut-off
level are set to 0. For instance, we may choose a threshold of 20% to account for multiple testing,
as well as to avoid obtaining an overly complex graph. Note that a Bonferroni-type correction
may yield a different threshold. However, the determination of the graph structure from mere
truncation of the sample precision matrix is not without serious drawbacks. One such difficulty
is the correlation between sample partial correlation coefficients. Indeed, as discussed in Cox
and Wermuth (1990),

cov.k̂i1,j1 , k̂i2,j2/=ki1,i2kj1,j2 +ki1,j2ki2,j1 :

Another problem is that partial correlation coefficients, indeed the whole graph, change with
time. For instance, take a moving window of 151 months, shifting forwards every month. The
observations within each period are assumed independent. Within each window, the underlying
graph is determined by setting to 0 any sample partial correlation whose absolute value falls
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Fig. 5. Naı̈ve determination of the time-varying sequence of graphs (only a subsequence of the graphs
that were obtained is shown here): (a) February 1982–May 1986; (b) June 1986–July 1987; (c) August 1987–
October 1991; (d) November 1991–October 1992; (e) November 1992–July 1997; (f) August 1997–April
1998
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below the threshold of 20%. Consecutive graphs that are identical are grouped into blocks,
and the duration of each block is indicated. Fig. 5 presents a subsequence of the graphs thus
obtained, demonstrating a slowly varying graphical structure.

In Section 3 of this paper, we have developed a hierarchical Bayesian framework for dealing
with both the uncertainty about and the time variation of the graph structure that is evident
in this industry portfolio returns data. Our model resolves the logical inconsistency of using
moving window sample estimates to determine the associated graphs.

6.2. Data analysis
We fix the maximum number of desired blocks at B = 9 here, to have roughly one structural
change for every decade between July 1926 and December 2001. In contrast with the simulation
example of Section 5, we let each industry carry its own variance parameter, since industries
tend to react differently to shocks and changes to the economy. Indeed, using the full sample
from July 1926 and December 2001 reveals heterogeneous sample variances, which are 0.47%,
0.33%, 0.26%, 0.39% and 0.34% respectively for portfolios F, M, O, S and U. Thus, we adopt
the parameterization that is described by equations (13) and (14).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Industry portfolios data—marginal posterior distributions for each of the eight changepoints; (a) pos-
terior position of pole 1 (highest posterior density, May 1940; mean, June 1940); (b) posterior position of pole
2 (highest posterior density, January 1943; mean, December 1942); (c) posterior position of pole 3 (highest
posterior density, February 1968; mean, October 1967); (d) posterior position of pole 4 (highest posterior
density, February 1968; mean, December 1967); (e) posterior position of pole 5 (highest posterior density,
March 1968; mean, January 1968); (f) posterior position of pole 6 (highest posterior density, February 1988;
mean, July 1988); (g) posterior position of pole 7 (highest posterior density, July 1998; mean, July 1998); (h)
posterior position of pole 8 (highest posterior density, December 2000; mean, November 2000)
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After 600 burn-in loops, corresponding to 100 iterations in each component of the state var-
iable .g, m, θ, σ2,ψθ,ψσ/, we carry out 300000 sampling loops, to obtain marginal posterior
samples of size 50000 in each component. The acceptance rates for our fork, shift and param-
eter moves ranged from 7% to 24%, with the exception of the acceptance rates of 5% and 1%
for the hyperparameters ψθ and ψσ respectively.

C
en

tr
ed

 lo
g−

re
tu

rn
s

193001 194001 195001 196001 197001 198001 199001 200001

−
40

0
40

−
40

0
40

−
40

0
40

−
40

0
40

−
40

0
40

C
en

tr
ed

 lo
g−

re
tu

rn
s

193001 194001 195001 196001 197001 198001 199001 200001

C
en

tr
ed

 lo
g−

re
tu

rn
s

193001 194001 195001 196001 197001 198001 199001 200001

C
en

tr
ed

 lo
g−

re
tu

rn
s

193001 194001 195001 196001 197001 198001 199001 200001

C
en

tr
ed

 lo
g−

re
tu

rn
s

193001 194001 195001 196001 197001 198001 199001 200001

(a)

(b)

(c)

(d)

(e)

Fig. 7. Time series of centred log-returns by industry portfolio (when B D 9 (
:::), the posterior modes of the

dates at which the changepoints occur are May 1940, January 1943, February 1968, March 1968, February
1988, July 1998 and December 2000; when B D 7 (

|
|
|) they are at May 1940, November 1940, March 1973,

January 1996, July 1998 and January 2001; the log-returns are on a scale of 1/100): (a) F; (b) M; (c) O;
(d) S; (e) U
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Fig. 6 shows the marginal posterior distributions for the position of each changepoint, hav-
ing conditioned on a maximum number of B = 9 blocks. The posterior modes of the dates at
which the changes occur are as follows: May 1940, January 1943, February 1968, February
1968, March 1968, February 1988, July 1998 and December 2000. Note that the third, fourth
and fifth poles lie on top of each other, which suggests merging them into one changepoint,
thus possibly using seven blocks.

The highest posterior density blocks resulting from B=9 are shown in Fig. 7, which plots the
actual series of centred log-returns in time. As seen from Fig. 7, some of the changepoints that
have been detected mark shifts in volatility across the whole market.

However, it is evident from Fig. 7 that the different industries react in varying degrees to
such shifts of regime, thereby affecting the covariance structure as a whole. This has been our
viewpoint, which we can further bolster by performing simple likelihood ratio tests for the null
hypothesis that the covariance matrices Σb and Σb+1 in consecutive blocks are equal. Let Σ be
their common value under the null hypothesis. Let mb and mb+1 be the (highest posterior den-
sity) lengths of blocks b and b+1. The sample covariance matrices for the centred log-returns
are given by Sb = XbXT

b =.mb − 1/ and Sb+1 = Xb+1XT
b+1=.mb+1 − 1/. Ignoring the graphical

modelling for now, the statistic

−2 log.M/= .mb +mb+1 −2/ log |Sb +Sb+1|− .mb −1/ log |Sb|− .mb+1 −1/ log |Sb+1|

is approximately distributed as .1− c/−1χ2
d.d+1/=2, where

c= 2d2 +3d −1
6.d +1/

(
1

mb −1
+ 1

mb+1 −1
− 1

mb +mb+1 −2

)
:

This is the modified Wilks likelihood ratio test and is reviewed in Seber (1984). The results of
this test lend support to our viewpoint, as seen from Table 2.

Running the same analysis with B = 7 instead of B = 9, the highest posterior density block
lengths for the last two blocks become 30 and 11, instead of 29 and 12 respectively. This change
makes the last test statistic in Table 2 equal to 36 instead of 23, which has an approximate
P-value of 0% instead of 8%. The main effect of going from B = 9 to B = 7 (and indeed to
B = 6) is that the changepoint that is detected in the 1980s when B = 9 is now shifted back to
the mid-1970s, as shown in Fig. 7.

Interestingly, our procedure detects some historical events that have had an influence on the

Table 2. Results of the modified
Wilks likelihood ratio tests for equal-
ity of Σb and ΣbC1, with B D9

b χ2
d.d−1/=2 P-value (%)

1 80 0
2 113 0
3† 202 0
6 62 0
7 202 0
8 23 8

†Block 3 is compared directly with
block 6.
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US economy, such as the American involvement in World War II (1940) and the Asian financial
crisis (1997–1998). A more detailed account can be found in Talih (2003).

As shown in Fig. 7, most changepoints percolate across the whole market, typically indicating
wide changes in volatility, although, on inspection of the estimated posterior densities of the
industry-specific variance parameters, which are not shown here, some shifts in volatility are
especially salient for industries such as finance (F) or manufacturing (M). Such uneven changes
in volatility are accompanied by structural changes in the underlying graph, as seen in the
a posteriori most likely sequences of graphs in Figs 8 and 9 which, together, account for 92%
posterior probability.

In closing, some remarks are in order.
The grouping of companies into five industry portfolios is the coarsest classification that we

can work with. A finer industry classification, into perhaps 17 or more industry portfolios, can
bring about more specifically those industries which are most affected by shocks and changes
to the economy.

Data sampled at a higher frequency than monthly, perhaps daily, or even intradaily data, will
offer a more relevant time frame for the analysis that we propose, at least from the practitioner’s
viewpoint.
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Fig. 8. Industry portfolios data: the a posteriori most probable sequence of graphs (g1, . . . , g9) read from
top left to bottom right, with corresponding posterior probability 0.802
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from top left to bottom right, with corresponding posterior probability 0.121

7. Conclusions and discussion

In this paper, we have developed a graphical model for sequences of Gaussian random vectors
when changes in the underlying graph occur at random times, and a new block of data is created
with the addition or deletion of an edge. We have shown how a Bayesian hierarchical model
incorporates both the uncertainty about that graph and the time variation thereof.

Our main objective was to learn the graph underlying the last, most current, block of data. In
fact, our Bayesian framework has allowed us to make inference about the whole history up to
and including the last block. By carefully designing the proposal distributions, we have ensured
a relatively expeditious exploration of the posterior in each component of our state variable, via
the Metropolis–Hastings algorithm, and have demonstrated our methodology on a simulated
data set. Also, we could recover historically meaningful structural changes for the US industries
data.

An important practical goal is that of on-line learning and prediction of the precision matrix,
updated continually on a daily, or even intraday, basis. The Markov chain Monte Carlo frame-
work is sufficiently flexible to allow for sampling from the posterior predictive distribution of
a future graph or precision matrix given data up to and including the present. Development
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of efficient, easy-to-use computer code implementing our modelling and posterior inference
strategies would be especially useful to an investor who seeks to allocate and re-evaluate the
composition of her portfolio dynamically. The R code that we have written for this paper, which
will be released separately as soon as it is optimized, is a first step in that direction.

Next, treating the number of blocks B in the data as a random variable to be learned a posteri-
ori, instead of a tuning parameter fixed a priori, would make inference and especially prediction
more automatic. However, the changepoint process is not easily separated from that which gen-
erates successive graphs and parameter values; hence great care must be exercised, especially
when attempting to merge neighbouring blocks. In Talih (2004), we address the issue of a
random B and extend our model to allow for more than one structural change in the graph at
the end of each block.

Finally, it would be of great value to adopt a more general parameterization of the precision
matrix. For structural learning, our current parameterization, although appealing for its sim-
plicity, is rather restrictive. Indeed, as seen from equation (8), up to the connectivity indices in
the denominator, the strength of all connections in a graph Gb is determined by one parameter
θb. Our model is biased towards strong associations, and weak associations might be classified
as non-existent. Therefore, the resulting graphs might not reflect the true interaction structure,
and it becomes difficult to interpret such graphs as conditional independence graphs. However,
even a simplistic interaction structure can be useful, and indeed lucrative, in the context of port-
folio allocation. In fact, the market is such that it continually updates itself with the investors’
expectations and (sometimes untrue) beliefs.

Nevertheless, in the case of triangulated graphs, for which a unique decomposition of the
likelihood is available, Dawid and Lauritzen (1993) have developed a class of ‘compatible’
prior distributions on precision matrices. These priors can be used to localize, and ultimately
to speed up, the calculation of the posterior likelihood ratios that are involved in the Markov
chain Monte Carlo proposal evaluations, as in Giudici and Green (1999). However, in the time-
varying graphical model framework that we have put forth in this paper, the requirement of
compatibility is difficult to meet, since we lose the appealing localization property.
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