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Summary

Objective: Protein homology prediction between protein sequences is one of critical
problems in computational biology. Such a complex classification problem is common
in medical or biological information processing applications. How to build a model
with superior generalization capability from training samples is an essential issue for
mining knowledge to accurately predict/classify unseen new samples and to effec-
tively support human experts to make correct decisions.
Methodology: A new learning model called granular support vector machines (GSVM)
is proposed based on our previous work. GSVM systematically and formally combines
the principles from statistical learning theory and granular computing theory and thus
provides an interesting new mechanism to address complex classification problems. It
works by building a sequence of information granules and then building support vector
machines (SVM) in some of these information granules on demand. A good granulation
method to find suitable granules is crucial for modeling a GSVM with good perfor-
mance. In this paper, we also propose an association rules-based granulation method.
For the granules induced by association rules with high enough confidence and
significant support, we leave them as they are because of their high ‘‘purity’’ and
significant effect on simplifying the classification task. For every other granule, a SVM
is modeled to discriminate the corresponding data. In this way, a complex classifica-
tion problem is divided into multiple smaller problems so that the learning task is
simplified.
Results and conclusions: The proposed algorithm, here named GSVM-AR, is compared
with SVM by KDDCUP04 protein homology prediction data. The experimental results
show that finding the splitting hyperplane is not a trivial task (we should be careful to
select the association rules to avoid overfitting) and GSVM-AR does show significant
improvement compared to building one single SVM in the whole feature space.
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1. Introduction

Protein homology prediction between protein
sequences is one of critical problems in computa-
tional biology. Protein sequences are very difficult
to understand and model due to their complex
random length nature. The sequential similarity
measurement is believed to be useful to predict
the structural or functional similarity of proteins
and thus it is helpful to group proteins with similar
function together. Due to this reason, it is a hot
research topic for computational biologists and
computer scientists in recent years. Various algo-
rithms have been developed to measure the
sequential similarity between two proteins [1,2].
From the viewpoint of data mining, protein homol-
ogy prediction could be viewed as a predictive data
mining task [3] because the goal is to predict the
unknown value of a variable of interest given
known values of other variables. More specifically,
it could be modeled as a binary classification pro-
blem. If a protein sequence is homologous to a pre-
specified protein sequence, it is classified to be a
positive case and 1 is output, otherwise it is nega-
tive and �1 is output.

1.1. Binary data classification problems

The formal definition of a general binary classifica-
tion problem is given in [4]. Notice that we assume
there are l training samples, d features, and a
classifier is decided by a function f(x,u). The per-
formance of the classifier is usually measured in
terms of the sum of classification error on unseen
‘‘testing data’’ which is defined in Eq. (1):

Eðy; fðx; uÞÞ ¼ 0; ify ¼ fðx; uÞ;
1; otherwise:

�
(1)

1.2. Binary ranking problems

Protein homology prediction could also be mod-
eled as a binary ranking problem. In some sense, it
is even more natural than a binary classification
modeling. Because of the biological complexity,
it is difficult and arbitrary to say two protein
sequences are absolutely homologous or not
(1 or �1 is output); an output with ‘‘confidence’’
may be more helpful. In this way, many protein
sequences could be ranked by their confidence to
be homologous to the pre-specified protein
sequence. As a result, biologists could quickly
prioritize a list of protein sequences for further
study and thus their working efficiencies could be
enhanced.

A binary ranking problem is similar to a binary
classification problem. The differences are
� t
he output is a real number in the field of [�1,1],

� t
he absolute value of the output is useless. Intui-

tively, a good model should rank the unseen
homologous protein sequences close to the top
and rank unseen non-homologous ones close to
the bottom of the list.

1.3. Support vector machines

SVM is a superior classifier in that SVM embodies
the structural risk minimization (SRM) principle to
minimize an upper bound on the expected risk
[5—9]:

RðaÞ � RempðaÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðlogð2l=hÞ þ 1Þ � logðh=4Þ

l

r
(2)

where

RempðaÞ ¼
1

2l

Xl

i¼1

jyi � fðxi;aÞj is empirical risk (3)

h is non-negative integer called the Vapnik Chervo-
nenkis (VC) dimension, h2[0,1] and the bound holds
with probability 1 � h. a is the vector of unknown
parameters.

Because structural risk is a reasonable trade-off
between the error on the training dataset (the
first factor of Eq. (2)) and the complication
of modeling (the second factor of Eq. (2)), SVM
has a great ability to avoid overfitting and thus
could be confidently generalized to predict
new data that are not included in the training
dataset.

Geometrically, SVM modeling algorithm works for
a binary classification problem by constructing a
separating hyperplane with maximal margin as
showed in Fig. 2. Finding the optimal separating
hyperplane of SVM requires the solution to a convex
quadratic programming problem, the Wolfe dual
nother advantage is that the utility of GSVM-AR is very good because it is easy to be
mplemented. More importantly and more interestingly, GSVM provides a new
echanism to address complex classification problems.
2005 Elsevier B.V. All rights reserved.
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formulation of which is showed in Eqs. (4)—(6)
[5]:
� m
Fi
bi
aximize

LD ¼
X
i

ai �
1

2

X
i; j

aia jyiy jKðxi; x jÞ (4)

subject to
�

0 � ai � C; (5)

X

i

aiyi ¼ 0 (6)

The geometry explanation is that the margin
Figure 2 SVM with maximal margin.
between classes could be maximized by maximizing
LD in Eq. (4). For linear SVM, themargin width can be
calculated by Eqs. (7) and (8):

w ¼
XNs

i¼1

aiyixi (7)

2

margin width ¼

w
(8)

where Ns is the number of support vectors.
Kernel functions are known to be a kind of elegant

dimension-increasing-based methods [5]. Nonlinear
kernel functions are introduced to implicitly map
input sample from input feature space into a higher
dimensional feature space, where a linear classifi-
cation decision could be made. Some most common
nonlinear kernel functions are listed in [5].

However, a SVM halves the whole feature space
(whatever original input feature space or after-
kernel-transformed feature space) by a single con-
tiguous hyperplane. It looks more or less arbitrary.
What if we split the whole feature space into a set of
subspaces and then build a SVM for each mixed
subspace? (Here ‘‘mixed’’ means that the data of
both classes present in the subspace. That is, the
subspace is not pure).
gure 1 An artificial linear separable two-dimension
nary classification problem.
Figs. 1—3 show a simple artificial two-dimension
example: if we split the whole space by x = 2 and 4,
and then build a SVM for subspace 2 � x < 4
(because the purity of other two subspaces, we
do not need to build a SVM classifier in them),
obviously larger margins could be achieved and thus
better generalization capability could be achieved.

The simple observation above motivates us to
design a new model named GSVM on the shine of
granular computing.

1.4. Granular computing

Granular computing represents information in the
form of some aggregates (called ‘‘information
granules’’) such as subsets, classes, and clusters
of a universe and then solves the targeted problem
Figure 3 GSVM split the whole feature space with x = 2
and 4. A SVM is built for granule 2 � x < 4 (named ‘mixed
granule’). For other two pure granules (named ‘negative
pure granule’ and ‘positive pure granule’, respectively),
there is no need to build classifiers. As a result, the larger
margin is achieved and thus better generalization cap-
ability is expected.
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in each information granule [10—12]. On one hand,
for a huge and complicated task, it embodies
Divide-and-Conquer principle to split the original
problem into a sequence of more manageable and
smaller subtasks. On the other side, for a sequence
of similar little tasks, it comprehends the problem
at hand without getting buried in all unnecessary
details. As opposed to traditional data-oriented
numeric computing, granular computing is knowl-
edge-oriented [12]. From the data mining view-
point, if built reasonably, information granules can
make the mining algorithms more effective and at
the same time avoid the notorious overfitting pro-
blem. Some formal models of information granules
are:
� s
et theory and interval analysis,

� f
uzzy sets,

� r
ough sets,

� p
robabilistic sets,

� d
ecision trees,

� c
lusters,

� a
ssociation rules,

1.5. Association rules

Many previous works have reported that the fre-
quent patterns occurred in the training dataset of a
complex and huge classification problem could lead
to measured improvement on testing accuracy
[13,14]. The idea was named ‘‘association classifi-
cation’’ [14].

For a binary classification problem with contin-
uous features, an association rule is usually formed
as

ifa1 2 ½v11; v12� anda2 2 ½v21; v22� and . . . an 2 ½vn1; vn2�;
theny ¼ 1ðor� 1Þ (9)

The support and confidence of an association rule
for a binary classification problem are defined in
Eqs. (10) and (11):

SUPðARÞ ¼ SPG
SW

(10)

SPG

COFðARÞ ¼

SG
(11)

where SW is the size of training data with the same
class label as the THEN-part of the association rule,
SG the size of training data that satisfy the IF-part,
while SPG is the size of training data correctly clas-
sified by the association rule. Notice that SW is
defined in such a way that the support and confi-
dence of an association rule are calculated based on
a single class. As a result, the association rulemining
will not be biased for major class in an unbalanced
binary classification problem.
From Eq. (9), an association rule (or a set of
association rules combined disjunctively) could be
used to partition the feature space to find an infor-
mation granule. So association rules mining is a
possible solution for granulation. The realization
of a successful ‘‘association granulation’’ depends
on the following two issues.

An association rule with high enough confidence
could deduce a ‘‘pure’’ granule, in which it is unne-
cessary to build a classifier because of its high purity.
If its support is also high, it could significantly
simplify and speed up classification because it
decreases the size of the training dataset.

A more general association rule with a shorter IF-
part should be more possible to avoid overfitting
training dataset. A short IF-part means a low model
complication, which in turn means a good general-
ization possibility.

1.6. Related works and comments

Zhang’s Granular Neural Networks [15] introduced
how to use neural networks to discover granular
knowledge and how to use discovered granular
knowledge to predict missing data. It is a combina-
tion of neural network and granular computation.
There are also many works that combine SVM (or
other statistical learning theory based models) with
some granular computing technologies. Bennett’s
Support Vector Decision Trees [16] tried to create
an optimal decision tree by applying the ideas from
SVM, and Yu’s Clustering-based SVM [17] tried to
take advantage of the merit of data clustering to get
high scalability for SVM while also generate the high
classification accuracy.

There were already some works to take advan-
tages of association rulesmining to help to get amore
accurate classifier. Yin and Han proposed a classifica-
tion approach, named CPAR, which combines the
advantages of both associative classification and
traditional rule-based classification such as many
decision trees approaches [14]. An interesting paper
by She et al. proposed to apply a SVM-based method
for a computational biology problem: outer mem-
brane proteins prediction. They used subsequences
that occur frequently in outer membrane sequences
as input feature space for SVM modeling [13].

However, to the best of our knowledge, up to now
nobody has tried to combine these two fields for-
mally and systematically for modeling data mining
problems, although each of them has already be
widely applied to data mining problems and get
promising results separately. GSVM tried to fill in
the gap [4].

The rest of the paper is organized as follows. In
Section 2, the framework of GSVM is detailed and
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enriched based on our previous work [4]; then an
algorithm named GSVM-AR for modeling a GSVM is
proposed. In Section 3, KDDCUP04 protein homology
prediction task is used to show the superiority of
GSVM-AR compared to building a general SVM in the
whole feature space for linear kernel and RBF kernel
on four performance metrics. Section 4 concludes
the paper and also directs the future works.
Figure 4 GSVM can transfer a linear non-separable pro-
blem to four linear separable problems by x = 0 and y = 0.

Figure 5 XOR classification problem.
2. Granular support vector machines

2.1. Framework and general ideas

SVM is inherently a contiguous model in that it uses a
single contiguous hyperplane to halve the whole
feature space. Is it reasonable to always assume
that the classification boundary is contiguous? Here,
we argue that the boundary maybe discrete for
many classification problems. So if we can somehow
correctly split the whole feature space into a set of
subspaces (information granules) and then build a
SVM for some mixed ones of the subspaces, the
resulting model is expected to capture the inherent
data distribution of the classification problem at
hand more accurately. Even for a contiguous classi-
fication boundary, the boundaries from suitably built
subspaces could approximate it with enough accu-
racy. Currently, for the discrete or other linear non-
separable classification problems, the only method
is to use some kernel function to map the data to a
new feature space in which the data is expected to
be linear separable. But up to now no kernel func-
tion can guarantee the ‘‘linear separability’’.

A new learning model named GSVM is proposed
based on our previous work [4]. The framework of
GSVM is detailed and enriched here. GSVM is a
model, which systematically and formally combines
the principles from statistical learning theory and
granular computing theory. It works by building a
sequence of information granules and then building
SVM in some of information granules on demand.

Some potential advantages of GSVM are
� G
SVM can get better generalization in a linear
separable classification problem. Fig. 3 already
shows that GSVM may improve the generalization
capability by enlarging the margin width.
� G
Figure 6 GSVM can transfer the well-known XOR pro-
blem to two linear separable problems by x = 0.
SVM can increase a linear non-separable pro-
blem’s ‘‘linear separability’’, or even transfer a
linear non-separable problem to totally linear
separable. Fig. 4 shows a linear non-separable
example, but if we split the whole feature space
by x = 0 and y = 0, the resulting four subproblems
are linear separable. Figs. 5—7 show that GSVM
works for the well-known XOR problem. That
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Figure 7 GSVM modeling result.
means GSVM could be a potential alternative to
kernel functions by transferring a linear non-
separable classification problem to a set of linear
separable subproblems. In fact, these two meth-
ods are not contradictory so we can combine
granule functions and kernel functions in a GSVM
to achieve better separability. One way is map-
ping the data to a new feature space with some
kernel function at first, and then a GSVM is mod-
eled in the new feature space; another way is
splitting the original feature space into a set of
information granules at first, and then using dif-
ferent kernel functions to map the data in these
information granules to different new feature
spaces separately.
� In
many real world data mining applications, what
people expect is not only to get a model with
small prediction error, but also to explain the
reason why it works so well. As we know, SVM is
almost unable to provide this kind of information.
Patterns and rules, if used as granular functions,
should grant a GSVM the ability to be easier to
explain.
� C
ompared to the original SVMmodeling method of
optimizing the parameters by cross-validation,
the GSVM modeling algorithm searches the split-
ting hyperplane by extending maximal margin
principle. As a result, GSVM runs faster, more
robust to noise data, and more stable to SVM
parameters.
� G
SVM is easier to be parallelized so that the time
for modeling could be decreased even further. As
a result, GSVM is more appropriate to be applied
to huge data classification problems.
� L
ike SVM, GSVM could also be applied to multiple
classification or regression problems without or
with small modifications.
However, building suitable information granules
is far from a trivial task. The key is to build the
information granules somehow reasonably and
effectively. Many questions need to be answered
during modeling a GSVM:
� T
op-down or bottom-up? Begin from the whole
feature space and then gradually split it into
smaller spaces (top-down)? Or begin from creat-
ing many tiny information granules and then gra-
dually combine them into larger spaces?
� W
hat is the stop condition? What time should
we stop splitting or combining? How do we
know a splitting or combining will result in
overfitting? From the granular computing view-
point, how do we know we already get opti-
mal information granules? Notice here maybe
the original whole feature space is itself an
optimal granule so we even do not need to split
it.
� I
f top-down, how to find the feature(s) the split-
ting hyperplane should be based on? Is it reason-
able to split a space by a hyperplane orthogonal to
a single feature? Or select a splitting hyperplane
based on a group of features?
� A
fter selecting the splitting feature (or features),
how to decide the direction and the bias para-
meters of the splitting hyperplane wx þ b?

2.2. A GSVM modeling method by
association rules

This paper proposes to take advantage of associa-
tion rules mining for modeling a GSVM in the top-
down way. The hyperplane used to split the fea-
ture space is selected according to mined associa-
tion rules with high confidence and significant
support. Confidence of a good association rule
should be as high as possible (should be at least
higher than the validation accuracy of the best
SVM in the whole space), while its support cannot
be too small, otherwise it is not useful (in other
words, the support should be significant). Fig. 8
describes the GSVM-AR modeling algorithm. The
basic idea is to extend PPG and NPG iteratively
until GSVM-AR gets the best validation perfor-
mance. If necessary, the cross-validation method
could be used. Notice the support threshold is
provided as an input, and the confidence threshold
is set to be the validation accuracy of the general
SVM in the whole feature space. For each feature,
at most two association rules are mined. There-
fore, if the time complexity for modeling a gen-
eral SVM is O(l2d), the time complexity for
modeling a GSVM is O(l2d2) and dominated by
the while loop to find a GSVM with the best
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Figure 8 GSVM-AR modeling algorithm by C-style pseudocode.
validation performance. Notice the time complex-
ity of MiningOneFeatureARs is O(ld).

Decision tree (DT) is a popular model for granula-
tion and classification. Many works have been pro-
posed to combine DT with SVM. For example,
Bennett’s support vector decision trees [16] tried
to create an optimal decision tree by applying the
ideas from SVM. However, we notice that many
other models, such as association rules, fuzzy sets,
or clustering, can also be utilized to find suitable
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granules. In this sense, GSVM is a more general
framework than DT-SVM. On the other hand,
GSVM-AR utilizes simple association rules for gran-
ulation and thus is easier to be implemented com-
pared with DT-SVM.
3. Experimental evaluation

The performance of the GSVM-AR modeling algo-
rithm proposed in this paper is compared with
building one single SVM in the whole feature
space. We make comparisons on linear SVM versus
linear GSVM-AR and RBF kernel SVM versus RBF
kernel GSVM-AR. The hardware we used is a PC
with P4-2.8 MHz CPU and 256 M RAM. The software
we developed is based on OSU SVM Classifier
Matlab Toolbox [18] which implements a Matlab
interface to LIBSVM [19].

3.1. Data description

KDDCUP04 protein homology prediction task [20] is
used for experiment. The detailed characteristics
of the dataset are listed in Table 1. From the table,
we can see that the task could be modeled as a
binary classification or a binary ranking problem:
given a protein sequence, the task is to predict
whether it is homologous to the corresponding
native sequence or not. There are 153 native
sequences in the training dataset and 150 native
sequences in the testing dataset. For each native
sequence, there is a block of approximately 1000
protein sequences with class label (1 means homo-
logous and 0 means non-homologous). The class
labels of protein sequences in testing dataset are
unknown. Seventy-four features are provided to
describe the match (e.g. the score of a sequence
alignment) between the native protein sequence
and the sequence that is tested for homology. We
can also see that the problem is highly unbalanced:
there are only 1296 homologous protein sequences
from altogether 145751 ones in the training data-
set.
Table 1 Characteristics of Kddcup04 protein homol-
ogy prediction datasets

Dataset Block Size Attr Class Ratio

Training 153 �1000 74 2 1296/144455
Testing 150 �1000 74 2 N/A

Block = # of blocks, Size = # of protein sequences in each
block, Attr = # of input features, Class = # of classes, Ratio = #
of homologous sequences/# of non-homologous sequences.
The data is without missing data.
Four metrics are used for performance measures:
� T
OP1: fraction of blocks with a homologous
sequence ranked top 1 (maximize),
� R
KL: average rank of the lowest ranked homolo-
gous sequence (minimize),
� R
MS: root mean squared error averaged on blocks
(minimize),
� A
PR: average of the average precision in each
block. For a single block, APR could be approxi-
mately described as the area of precision-recall
curves (maximize).

RMS is a metric for accuracy evaluation, but is
easier to show the differences between models than
directly using error values. The other three metrics
are rank-based, which means that the three
metrics’ values are decided by the order of ranking
list, and the absolute values of predictions do not
affect the performances. The four metrics are pre-
cisely defined in perf [21]. In our experiment, we use
the corresponding code to calculate the four
metrics.

Because of the absent of the class label in the
testing dataset, only the training dataset is used in
our experiment. And because our result is not on the
original testing dataset, so it could not be compared
with the current best results on the competition.
That is, our goal is not to be involved in the compe-
tition to get the best result, but to use the data to
show GSVM-AR’s superiority to SVM.

3.2. Data preprocessing

Firstly, we scale and normalize the input features to
[�0.9, 0.9]. The scaling is on each different block
separately. The reason is that the protein sequences
in different blocks are in different protein families,
which are so remote that the similar absolute fea-
ture vectors cannot mean similar homology beha-
viors. However, to avoid overfitting, the association
rules are mined from non-scaled original data.

After scaling, we make five trials. In each trial,
the data is randomly split into training dataset and
testing dataset with the conditions in Eqs. (12)—
(14). That is, 102 blocks are used for training and
other 51 blocks used for testing:

SðtrainingÞ : SðtestingÞ ¼ 2 : 1 (12)

Sðpositive trainingÞ : Sðpositive testingÞ ¼ 2 : 1
(13)

Sðnegative trainingÞ : Sðnegative testingÞ ¼ 2 : 1
(14)

S(x) means the number of blocks in the dataset x.
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3.3. Modeling

In each trial, we select just 1 block for modeling and
other 101 training blocks for validation. That is
because our preliminary tests also show that it is
even worse if we mix multiple blocks together for
training a model. (We also skip the details because it
is out of the scope of this paper.)

Twomodels are created for performance compar-
ison. The first one is a general SVM in the whole
space. The parameters of the SVM are optimized by
grid search heuristic [22].

In linear SVM, the regulation parameter C is
optimized by grid search heuristic at Eq. (15):

C2f2�10; 2�9:5; 2�9; 2�8:5; 2�8; 2�7:5; 2�7; 2�6:5; 2�6;

2�5:5; 2�5; 2�4:5; 2�4; 2�3:5; 2�3; 2�2:5; 2�2; 2�1:5;

2�1; 2�0:5; 20; 20:5; 21; 21:5; 22g (15)

The RBF kernel parameters (g,C) are optimized
by grid search heuristic at Eqs. (16) and (17):

g 2f2�26; 2�24; 2�22; 2�20; 2�18; 2�16; 2�14; 2�12;

2�10; 2�8g (16)

C2f25; 26; 27; 28; 29; 210; 211; 212; 213; 214; 215; 216g

(17)

We repeat this modeling process for each of 102
training blocks. After that, five blocks with best
validation performance on a special metric are
selected to build GSVM for comparison.

For GSVM-AR modeling, we mine association rules
first. To avoid overfitting, the association rules
should be as simple as possible. Due to this reason,
only 1-feature association rules with the format
x0 � x < x1 is mined. And only the rules with con-
fidence higher than the general SVM’s validation
accuracy and significant support are kept as candi-
dates.

The mined association rules with their support
and confidence are listed in Table 2. In the table, the
support and confidence for each rule are listed. For
example, the sixth row shows a positive association
Table 2 1-Feature association rules on original unscaled t

Rule Trial 1 Trial 2

If attr5 > 78, then y = �1 100%/8666 100%/8
If attr45 > �4, then y = �1 100%/11642 100%/1
If attr53 < �2.06, then y = �1 100%/1080 100%/1
If attr58 < �1.53, then y = �1 100%/1714 100%/1
If attr68 < �2.21, then y = �1 100%/2515 100%/2
If attr58 > 8.3, then y = 1 99.27%/547 99.56%

Trial 1 (positive:negative = 879:96055 in the training dataset), trial
(positive:negative = 810:96139 in the training dataset), trial 4 (p
(positive:negative = 919:96892 in the training dataset).
rule. In trial 1, the training dataset has 879 homo-
logous protein sequences, 547 ones of which satisfy
IF-part of the rule, and 543 ones satisfy both IF-part
and THEN-part:

If attr58> 8:3; theny ¼ 1with

Confidence ¼ 543=547 ¼ 99:27%;

Support ¼ 543=879 ¼ 61:77%:

The second row shows a negative association rule. In
trial 1, the training dataset has 11642 protein
sequences satisfy IF-part of the rule. And all of them
satisfy THEN-part too:

If attr45> � 4; theny ¼ �1with

Confidence ¼ 11642=11642 ¼ 100%;

Support ¼ 11642=96055 ¼ 12:12%:

After that, we iteratively combine association rules
by disjunction to find the granules that are both pure
and significant. When the process is completed,
three granules are created: the granule induced
by negative rules is named NPG because almost
all protein sequences in the granule are non-homo-
logous; the granule induced by positive rules is
named PPG due to the similar reason; and the
remaining space is named ‘‘Mixed Granule’’ (MG),
in which a SVM with the same kernel as the general
SVM is built. The three granules are decided by
Eqs. (18)—(20):

PPG ¼ [ positive association rules; (18)

NPG ¼ [ negative association rules� PPG; (19)
MG ¼ WFS� PPG� NPG; (20)
where WFS means the whole feature space.
Notice that the overlapping area of PPG and NPG

is accounted in PPG. That means the granulation is
biased for homologous proteins to compensate for
its minority.

For the protein prediction task:
� P
rai

97
17
04
72
60
/45

2 (p
os
PG is formed by

If attr58> 8:3; theny ¼ 1
ning data with confidence/support in five trials

Trial 3 Trial 4 Trial 5

6 100%/9141 100%/8992 100%/8753
03 100%/11075 100%/11234 100%/11786
1 100%/1060 100%/987 100%/1029
7 100%/1758 100%/1712 100%/1711
8 100%/2610 100%/2404 100%/2725
7 99.35%/465 99.42%/517 99.41%/510

ositive:negative = 909:95911 in the training dataset), trial 3
itive:negative = 886:95580 in the training dataset), trial 5
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Table 3 TOP1 on validation/test set in five trials (mean � S

Trial Validation data with linear
kernel (%)

Testin
kerne

1 91.09 � 0.00/91.09 � 0.00 78.82
2 85.55 � 0.54/85.55 � 0.54 90.98
3 86.14 � 0.00/86.14 � 0.00 89.42
4 87.72 � 0.54/87.72 � 0.54 85.88
5 90.50 � 0.54/90.69 � 0.54 81.57

Best five blocks in trial 1 are 210, 103, 73, 69, and 16, best five blocks
trial 4 are 170, 65, 16, 289, and 274, best five blocks in trial 5 are 7

Table 4 RKL on validation/test set in five trials (mean � S.

Trial Validation data with linear kernel Testing d

1 67.69 � 2.38/62.63 � 1.48 93.62 �
2 91.33 � 6.01/83.73 � 4.45 41.29 �
3 71.39 � 2.99/64.80 � 3.33 88.05 �
4 73.53 � 6.81/68.05 � 5.82 80.02 �
5 71.64 � 1.71/65.60 � 2.31 87.11 �
Best five blocks in trial 1 are 55, 164, 303, 135, and 266, best five blocks
4 are 55, 289, 164, 25, and 65, best five blocks in trial 5 are 13, 110
 Y.

Tan
g
e
t
al.

5

.D. from best five blocks)

g data with linear
l (%)

Validation data with RBF
kernel (%)

Testing data with RBF
kernel (%)

� 2.56/79.61 � 2.23 91.09 � 0.70/91.09 � 0.70 78.82 � 2.56/79.61 � 2.23
� 1.07/90.98 � 1.07 85.55 � 0.54/85.55 � 0.54 90.59 � 1.64/90.59 � 1.64
� 1.75/89.42 � 1.75 86.14 � 0.70/86.14 � 0.70 89.02 � 1.07/89.02 � 1.07
� 3.22/85.88 � 3.22 87.53 � 0.54/87.53 � 0.54 85.49 � 4.07/85.88 � 3.22
� 1.07/81.57 � 1.07 90.30 � 0.44/90.50 � 0.54 81.57 � 1.07/81.96 � 0.88

in trial 2 are 170, 65, 274, 255, and 236, best five blocks in trial 3 are 210, 162, 144, 65, and 64, Best five blocks in
3, 16, 261, 255, and 252.

D. from best five blocks)

ata with linear kernel Validation data with RBF kernel Testing data with RBF kernel

17.23/85.00 � 14.44 66.88 � 2.48/61.79 � 1.61 92.21 � 16.92/83.67 � 13.93
8.46/35.94 � 7.35 87.60 � 5.97/81.16 � 5.08 35.41 � 7.48/31.06 � 5.85
8.97/81.84 � 7.80 66.34 � 5.15/61.17 � 5.05 90.99 � 6.77/84.51 � 5.66
10.45/73.42 � 8.59 72.42 � 6.15/67.27 � 5.33 78.11 � 8.61/71.91 � 7.40
6.97/78.83 � 5.55 68.91 � 4.20/63.70 � 4.02 82.29 � 8.57/75.11 � 6.96

in trial 2 are 55, 110, 13, 69, and 73, best five blocks in trial 3 are 289, 110, 2, 164, and 69, best five blocks in trial
, 73, 164, and 16.
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Table 5 RMS on validation/test set in five trials (mean � S.D. from best five blocks)

Trial Validation data with linear
kernel (%)

Testing data with linear
kernel (%)

Validation data with RBF
kernel (%)

Testing data with RBF
kernel (%)

1 5.33 � 0.03/3.87 � 0.21 5.90 � 0.09/5.24 � 0.20 5.31 � 0.03/3.87 � 0.23 5.88 � 0.06/5.25 � 0.20
2 5.79 � 0.04/4.66 � 0.09 4.98 � 0.14/3.46 � 0.09 5.79 � 0.04/4.66 � 0.09 4.98 � 0.14/3.46 � 0.09
3 5.32 � 0.06/4.05 � 0.09 5.95 � 0.07/4.63 � 0.08 5.31 � 0.05/4.05 � 0.09 5.95 � 0.07/4.63 � 0.07
4 5.49 � 0.05/4.19 � 0.06 5.47 � 0.09/4.49 � 0.08 5.49 � 0.05/4.13 � 0.02 5.45 � 0.09/4.44 � 0.11
5 5.57 � 0.02/4.22 � 0.14 5.40 � 0.07/4.20 � 0.02 5.62 � 0.12/4.21 � 0.15 5.45 � 0.09/4.21 � 0.04

Best five blocks in trial 1 are 256, 103, 277, 271, and 212, best five blocks in trial 2 are 73, 48, 238, 256, and 277, best five blocks in trial 3 are 103, 212, 60, 7, and 48, best five blocks in
trial 4 are 256, 231, 73, 277, and 103, best five blocks in trial 5 are 60, 16, 103, 7, and 48.

Table 6 APR on validation/test set in five trials (mean � S.D. from best five blocks)

Trial Validation data with Linear
kernel (%)

Testing data with Linear
kernel (%)

Validation data with RBF
kernel (%)

Testing data with RBF
kernel (%)

1 83.30 � 0.47/83.53 � 0.57 75.78 � 1.23/76.38 � 0.86 83.28 � 0.52/83.49 � 0.60 75.94 � 1.37/76.51 � 0.96
2 77.61 � 0.24/77.77 � 0.21 86.19 � 1.22/86.47 � 1.20 77.52 � 0.26/77.77 � 0.15 86.06 � 1.12/86.34 � 1.13
3 78.39 � 0.86/78.68 � 0.87 82.92 � 0.84/83.01 � 0.85 78.36 � 0.88/78.60 � 0.89 83.08 � 1.08/83.14 � 1.09
4 81.45 � 0.36/81.66 � 0.45 79.39 � 1.36/79.72 � 1.41 81.41 � 0.45/81.63 � 0.54 79.08 � 1.78/79.38 � 1.85
5 83.39 � 0.44/83.63 � 0.45 76.03 � 0.55/76.28 � 0.56 83.31 � 0.65/83.56 � 0.68 76.16 � 0.53/76.42 � 0.59

Best five blocks in trial 1 are 16, 27, 73, 255, and 103, best five blocks in trial 2 are 55, 73, 163, 256, and 170, best five blocks in trial 3 are 103, 64, 60, 274, and 243, best five blocks in
trial 4 are 16, 27, 73, 170, and 274, best five blocks in trial 5 are 16, 73, 163, 103, and 170.
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Figure 9 Performance comparison on TOP1 metric avera-
ged on five trials. The larger TOP1 is, the better the perfor-
mance is. The results are grouped by different data/kernel
pairs. In each group, the left bar shows the result of SVM,
while the right GSVM-AR. The mean and standard deviation
statistics are given in the above table. In each cell, the first
number is the result of SVM, while the second GSVM-AR.

Figure 10 Performance comparison on RKL metric avera-
ged on five trials. The smaller RKL is, the better the perfor-
mance is. The results are grouped by different data/kernel
pairs. In each group, the left bar shows the result of SVM,
wh
st
nu

Figure 11 Performance comparison on RMS metric aver-
aged on five trials. The smaller RMS is, the better the
performance is. The results are grouped by different
data/kernel pairs. In each group, the left bar shows the
result of SVM, while the right GSVM-AR. The mean and
standard deviation statistics are given in the above table.
In each cell, the first number is the result of SVM, while the
ile the right GSVM-AR. The mean and standard deviation
atistics are given in the above table. In each cell, the first

mber is the result of SVM, while the second GSVM-AR. se
NPG is formed by
�

If attr58 � 8:3 andðattr5> 78 or attr45> � 4

or attr53< � 2:06 or attr58< � 1:53

or attr68< � 2:21Þ; theny ¼ �1

And then we compare two models on the top five

blocks for the four metrics. For protein sequences in
the PPG and NPG, the outputs are 1s or�1s, respec-
tively. Because SVM is originally designed for binary
classification problems, for protein sequences in
MG, if a metric is rank-based, we adopt the distance
from the predicted protein sequence to the separ-
ating hyperplane (normalized to be in [�1,1]) as its
output.

3.4. Results

The experimental results are reported in Tables 3—6
and Figs. 9—12. In each cell of a table, the perfor-
mance of SVM is reported as the first number, while
the performance of GSVM-AR as the second number.

For TOP1 metric, Table 3 and Fig. 9 show that the
performance of GSVM-AR is a little better than SVM
with both linear kernel (from 85.33% to 85.49% for
testing data) and RBF kernel (from 85.10% to 85.41%
cond GSVM-AR.
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Figure 12 Performance comparison on APR metric aver-
aged on five trials. The larger APR is, the better the
performance is. The results are grouped by different
data/kernel pairs. In each group, the left bar shows the
result of SVM, while the right GSVM-AR. The mean and
standard deviation statistics are given in the above table.
In each cell, the first number is the result of SVM, while the
second GSVM-AR.
for testing data). For example, for testing data with
linear kernel, averagely to say, there are 51 �
85.33% = 43.52 blocks with a homologous protein
sequence as the TOP1 in the ranking list predicted
by SVM, while 51 � 85.49% = 43.60 blocks by GSVM-
AR. The improvement is small because the protein
sequences ranked as TOP1 in the lists are easiest to
be predicted. So a general SVM is good enough to
predict them.

For RKL metric, Table 4 and Fig. 10 show that
GSVM-AR significantly outperform SVM. That is, the
average rank of the lowest ranked homologous
sequences is decreased significantly (from 78.02%
to 71.01% for testing data with linear kernel, from
75.80% to 69.25% for testing data with RBF kernel).
When recall is set to be 1, GSVM-AR has higher
precision than SVM. As a result, homologous
sequences are clearer to be differentiated from
non-homologous ones with GSVM-AR than with SVM.

For RMS metric, Table 5 and Fig. 11 show that the
performance of GSVM-AR is also significantly better
than SVM. That is, the average root mean squared
error is decreased significantly (from 0.0554% to
0.0441% for testing data with linear kernel, from
0.0554% to 0.0440% for testing data with RBF ker-
nel). That means GSVM-AR is more accurate. For
example, approximately, for a testing block with
1000 protein sequences, 3.07 protein sequences are
misclassified by SVM with RBF kernel, while only
1.94 ones are misclassified by GSVM-AR with RBF
kernel.

For APR metric, Table 6 and Fig. 12 show that the
performance of GSVM-AR is also better than SVM
with both linear kernel (from 80.06% to 80.37%) and
RBF kernel (from 80.07% to 80.36%).

The standard deviations in these tables show that
experiment results are stable and conceivable.
4. Conclusions

A new learning model called Granular Support Vec-
tor Machines is proposed based on our previous work
[4]. GSVM systematically and formally combine the
ideas from statistical learning theory and granular
computing. It works by building a sequence of infor-
mation granules and then building a SVM in each of
the mixed information granules.

In this paper, we also give an implementation
method named GSVM-AR for modeling a GSVM by
building information granules in the top-down way
with the aid of association rules. GSVM-AR works by
building three information granules, called Positive
Pure Granule, Negative Pure Granule, and Mixed
Granule, respectively. Because of being generated
from association rules with high confidence and
significant support, the PPG and NPG have high
purity. Therefore, we only need to build a Support
Vector Machine in MG.

The experimental results on KDDCUP04 protein
homology prediction task show that finding the
splitting hyperplane is not a trivial task (we should
be careful to select the association rules to avoid
overfitting) and GSVM-AR does show significant
improvement compared to building one single SVM
in the whole feature space. Although the association
rules are limited to be 1-feature format (that means
the splitting hyperplane is limited to be orthogonal
to a single feature) and the number of information
granules is fixed to be three, GSVM-AR shows super-
ior generalization capability. Another advantage is
that the utility of GSVM-AR is very good because it is
easy to be implemented.

More importantly and more interestingly, GSVM
provides a new mechanism to address complex
classification problems, which are common in med-
ical or biological information processing applica-
tions. The modeling method for a GSVM proposed
here is just one step into this interesting research
topic. The open problem is that how to get the
optimal or suboptimal information granules effec-
tively and efficiently. In the future, we will try more
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modeling methods for GSVM to improve the model’s
generalization capability and also understand-
ability.
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