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Systematic determination of genetic network architecture
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Technologies to measure whole-genome mRNA abundances1−3

and methods to organize and display such data4−10 are emerg-
ing as valuable tools for systems-level exploration of transcrip-
tional regulatory networks. For instance, it has been shown that
mRNA data from 118 genes, measured at several time points in
the developing hindbrain of mice, can be hierarchically clus-
tered into various patterns (or ‘waves’) whose members tend to
participate in common processes5. We have previously shown
that hierarchical clustering can group together genes whose cis-
regulatory elements are bound by the same proteins in vivo6.
Hierarchical clustering has also been used to organize genes
into hierarchical dendograms on the basis of their expression
across multiple growth conditions7. The application of Fourier
analysis to synchronized yeast mRNA expression data has iden-
tified cell-cycle periodic genes, many of which have expected
cis-regulatory elements8. Here we apply a systematic set of sta-
tistical algorithms, based on whole-genome mRNA data, parti-
tional clustering and motif discovery, to identify transcriptional
regulatory sub-networks in yeast without any a priori knowl-
edge of their structure or any assumptions about their dynam-
ics. This approach uncovered new regulons (sets of co-regulated
genes) and their putative cis-regulatory elements. We used sta-
tistical characterization of known regulons and motifs to derive
criteria by which we infer the biological significance of newly
discovered regulons and motifs. Our approach holds promise
for the rapid elucidation of genetic network architecture in
sequenced organisms in which little biology is known.

We designed our approach to be systematic and minimally biased
by previous knowledge of yeast biology. Our objective was to dis-
cover distinct expression patterns (clusters) in mRNA data sets
and then identify upstream DNA sequence patterns specific to
each expression cluster. A DNA sequence pattern that is specific
to a single expression cluster constitutes the primary hypothesis
for the cis-regulatory element through which co-regulation of the
genes within the cluster is achieved.

We used data gathered by Cho et al.11 who used Affymetrix
oligonucleotide microarrays12 to query the abundances of 6,220
mRNA species in synchronized Saccharomyces cerevisiae batch cul-
tures. The data provided us with 15 time points, across two cell
cycles. We variance-normalized the expression profile of each ORF
and clustered the most variable 3,000 ORFs into 30 clusters of
49–186 ORFs per cluster. The clustering procedure groups together
ORFs on the basis of their common expression patterns across the
time points. We and others have previously used hierarchical algo-
rithms13 for clustering such data4−8. Here we use the k-means algo-
rithm14, a partitional method13 that by iterative reallocation of
cluster members minimizes the overall within-cluster dispersion.

We found the members of each cluster to be significantly
enriched for genes with similar functions. We mapped the genes
in each cluster to the 199 functional categories in the Martinsried
Institute of Protein Sciences functional classification scheme
(MIPS) database15. For each cluster, we calculated P values for
observing the frequencies of genes in particular functional cate-
gories. There was significant grouping of genes within the same

Table 1 • Enrichment of clusters for ORFs within functional categories

Cluster Periodicity Number of MIPS functional ORFs within P value
index ORFs (n) category (total ORFs) functional category (k) −log10

1 0.07 164 ribosomal proteins (206) 64 54
organization of cytoplasm (555) 79 39
organization of chromosome structure (41) 7 4

2 0.38 186 DNA synthesis and replication (82) 23 16
cell-cycle control and mitosis (312) 30 8
recombination and DNA repair (84) 11 5
nuclear organization (720) 40 4

4 0.14 170 mitochondrial organization (339) 32 10
respiration (79) 10 5

7 0.35 101 cell-cycle control and mitosis (312) 17 5
budding, cell polarity, filament formation (161) 10 4a

DNA synthesis and replication (82) 7 4a

8 0.09 148 TCA pathway (22) 5 4a

carbohydrate metabolism (411) 22 4a

14 0.45 74 organization of centrosome (28) 6 6
nuclear biogenesis (5) 3 5
organization of cytoskeleton (93) 7 4a

30 0.24 60 nitrogen and sulphur metabolism (75) 9 8
amino acid metabolism (203) 12 7

Periodicity index is a quantitative measure of cell-cycle periodicity. The most highly enriched functional categories are given for each cluster. We calculated P val-
ues using the cumulative hypergeometric probability distribution for finding at least (k) ORFs from a particular functional category within a cluster of size (n).
Because 199 MIPS functional categories were tested for each cluster, P values greater than 3×10−4 are not reported, as their total expectation within the cluster
would be greater than 0.05. aBecause all 30 clusters were tested independently, these P values may have marginal significance.
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functional class (Table 1). The most notable functional grouping
occurred for genes in cluster 1, where 64 of 164 genes encode
ribosomal proteins (P value of 10−54). Not all clusters showed sig-
nificant enrichment for function. The members of such clusters
may participate in multiple classically defined processes and
therefore may not show significant enrichment in any one func-
tional category. Alternatively, the number of clusters (30) may
overestimate the underlying diversity of biological expression
classes in the data set. We erred on the side of over-classification,
however, to avoid missing significant expression classes. Subse-
quently, independent analyses, such as functional category
enrichment and motif searching, aid in determining the biologi-
cal significance of the clusters a posteriori. Note that the func-
tional categories are only used to represent the enrichment of the
clusters and were not used in any aspect of the analysis, including
the motif discovery phase. The complete analysis is available
(http://arep.med.harvard.edu/network_discovery).

The temporal profile of each cluster is represented by a plot of the
mean, variance-normalized expression level of all the genes within
the cluster (Figs 1a, 2a). Dispersion bars represent the standard
deviation of the points along a particular dimension (in this case,
time point). We used an index of cell-cycle periodicity to quantitate
the extent of periodicity at the cell-cycle period of 80 minutes
(Table 1). Of the top periodic clusters, three are profiled (Fig. 1a).
Many of the genes in these clusters encode proteins which function
in cell-cycle phase-specific processes such as replication (cluster 2),

organization of centrosome (cluster 14), and budding and cell
polarity (cluster 7). Note that the timing of maximum expression
for the genes in these clusters agrees with the phase during which
their product is required (G1-S for replication, S-G2 for organiza-
tion of centrosome and M phase for budding and cell polarity).

Most clusters have non-periodic temporal profiles (Fig. 2a),
with some showing complex behaviour. Members of cluster 1
show a relatively steady expression level, except for the peak during
M-G1, but as can be seen from the relatively small dispersion bars,
the members of this cluster are tightly co-regulated a fact recapit-
ulated in its 10-fold enrichment for ribosomal proteins.

We next conducted a blind and systematic search for upstream
DNA sequence motifs that were common to members of each
cluster. We did this to identify known or novel cis-regulatory ele-
ments that may contribute to the co-regulation of genes in a clus-
ter. We used the program AlignACE (ref. 16), which finds globally
optimal alignments within unaligned input sequences. We found
that 18 motifs from 12 different clusters passed our criteria for
biological significance; their average MAP score was 35 (range
12–82). Of these motifs, seven had been identified experimentally
and are known to regulate the expression of many genes in their
respective clusters. Multiple factors may account for why we did
not find significant motifs in all clusters. First, our criteria for call-
ing a motif ‘significant’ may be too stringent. Second, the co-regu-
lation of the members of some clusters may be achieved through
post-transcriptional mechanisms (such as those controlling

Fig. 1 Top periodic clusters, their motifs and overall distribution in all clusters. a, Mean temporal profile of a cluster, named according to the biological functions
for which it is most highly enriched (with the numerical designation of the cluster in parentheses). Error bars represent the standard deviation of the members of
each cluster about the mean of the particular time point. b, Sequence logo representation of the motif(s) discovered within the cluster. The height of each letter
is proportional to its frequency. The letters are sorted with the most frequent one on top. The overall height of the stack signifies information content of the
sequence at that position (0−2 bits). Motifs M14a and M14b were identified in this study. c, The occurrence of the motif across all 30 clusters.

a b c
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mRNA stability). Finally, some of the clusters may represent noise
in the data set, with little underlying biological coherence.

We have represented the motifs in a graphical format, which
shows the information content in bits17 at each base (Figs 1b, 2b).
Once a motif was deemed biologically significant, we searched the
yeast genome to identify additional sites that scored greater than
one standard deviation below the mean Berg-von-Hippel score18

for that motif. We constructed histograms for the distribution of a
motif upstream of all the ORFs within all 30 clusters (Figs 1c, 2c).
Most motifs are highly selective for the cluster in which they were
found. For example, 55 of 101 members of cluster 7 (budding and
cell polarity) had the early cell cycle box (ECB) motif, whereas no
other cluster had more than 4% of its ORFs containing this motif.

For the clusters whose members belong to known regulons, the
expected cis-regulatory element(s) emerged as the highest scor-
ing motif(s) in every case. For example, the highest scoring
motifs that emerged from periodic clusters 2 and 7 have well-

established roles in the periodic transcription of the genes in
these clusters (MCB box (MluI cell-cycle box) and SCB (Swi 4/6
cell-cycle box; ref. 19) for cluster 2 and ECB (refs 20,21) for clus-
ter 7). The same was true for cluster 1 (ribosomal proteins,
Rap1p binding site22), cluster 8 (carbohydrate metabolism, STRE
binding site23) and cluster 30 (methionine and sulphur metabo-
lism, Cbf1p and Met31/32p binding sites24).

We also found a cohesive cluster of 73 ORFs (cluster 14) that
achieves maximal expression during the S-G2 phase. The members
of this cluster function in the organization of centrosome and
nuclear biogenesis (Table 1). Cluster 14 has the highest periodicity
index (0.45) and its profile peaks slightly later than that of cluster 2
(replication and DNA synthesis). Our search in the upstream
region of cluster 14 ORFs identified 2 new motifs (M14a and
M14b) that are highly specific for these genes (Fig. 1b,c). The dis-
covery of this large and tightly co-regulated class of periodic genes,
together with their putative cis-regulatory motifs, extends the

Fig. 2 ‘Non-periodic’ clusters, their motifs and overall distribution in all clusters. a, Mean temporal profile of a cluster. b, Sequence logo representation of the
motif(s). Motifs M1a, M3a, M3b and M4 were identified in this study. c, The occurrence of the motif across all 30 clusters.

a b c
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number of known periodic classes,
adding S-G2 to the well-known G1-S
and M-phase induced regulons.

We found 2 of the highest scoring
motifs upstream of cluster 3 genes
(Fig. 2b,c). The MIPS classification
scheme did not adequately capture
the functional enrichment of this
cluster, as its members spanned mul-
tiple categories with the common
theme of RNA metabolism and
translation. These genes encode Pol I
and Pol III subunits, RNA/tRNA
splicing factors, translation initia-
tion factors, RNA helicases and vari-
ous other proteins involved in RNA
metabolism. The cluster 3 motifs
(M3a and M3b) have not been previ-
ously described, but their strong
specificity for genes within cluster 3
and for RNA and translation-related
genes outside of cluster 3 suggests
that they have a role in the global
regulation of protein synthesis. Fur-
thermore, motifs M3a and M3b
had tight upstream distributions
(Fig. 3f). The distances between the
25th and 75th percentile from the
ATG were 144 (m3a) and 111 (m3b)
bp, whereas the average for all the
known motifs was 229 bp.

Only half of the 30 clusters were
significantly enriched for functional
categories or had significant motifs.
What are the statistical characteris-
tics of clusters that correlate with
these independent measures of clus-
ter coherence? An important char-
acteristic of a cluster is its ‘tightness’,
or roughly speaking, how close its
members are to the mean of the
cluster. We defined a mean Euclid-
ean distance (MUD) for every clus-
ter (the average Euclidean distance
of all the members of a cluster from
the cluster mean). Based on this
metric, the clusters with significant
functional enrichment tend to be tighter (MUD=0.60 versus
0.66; P value=0.02). We saw a stronger correlation between
tightness of clusters and presence of significant motifs
(MUD=0.58 versus 0.66; P value=0.006). Furthermore, genes
containing significant motifs within a cluster tend to be closer to
the centre of their clusters.

We should stress that we designed our approach with minimal
biases. Information about yeast biology did not influence the for-
mation of clusters or evaluation of motifs. These are important
criteria for the validation of emerging methodologies, as they
must correctly identify the structure of known networks without
any a priori knowledge of their structure or any assumptions
about their dynamics. In this context, our identification of
known and expected cis-regulatory elements as the top-scoring
motif, in every case, is a significant outcome. In terms of novel
regulons and their motifs, we have introduced new post-cluster-
ing analyses that characterize and validate the biological signifi-
cance of expression clusters and their motifs. These analyses also

provide quantitative means by which it is possible to compare
alternative clustering approaches.

The rapid sequencing of many organisms of biological and
clinical importance has made urgent the task of identifying the
function of many thousands of novel genes. The methodology
presented here has expanded the membership of known regulons
by placing hundreds of unknown ORFs into regulation and motif
classes. The association of these unknown ORFs with well-char-
acterized genes and motifs generates many hypotheses for their
biological roles. Furthermore, the systematic approach presented
here is ideally suited for determining the transcriptional regula-
tory networks of newly sequenced organisms in which little biol-
ogy is known. The combination of experimental and
computational approaches presented here, together with experi-
mental verification of novel motifs and the discovery of their
trans-acting factors, should allow the construction of the circuit
diagram for the genetic network, allowing us to both understand
and manipulate complex cellular processes on a systems level.

Fig. 3 The distribution of a particular motif
within the upstream region of its ORFs. Posi-
tions are measured (in bp) from the translation
start (ATG).
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Methods
Variance normalization and clustering of expression time series. We selected
the top 6,000 genes according to average expression level. For subsequent
analysis, we chose the 3,000 most variable ORFs using a metric of variation
based on the normalized dispersion in expression level of each gene across the
time points (s.d./mean). We used 15 time points to construct a 3,000 by 15
data matrix (time points at 90 and 100 min were excluded from the analysis
due to the less efficient labelling of their mRNA during the original chip
hybridizations). The data matrix was then transformed such that the variance
of each gene was normalized across the 15 conditions6. This was done by sub-
tracting its mean across the time points from the expression level of each gene,
and dividing by the standard deviation across the time points:

The 3,000 members of this transformed data matrix occupy a 15-dimensional
‘expression space. We then partitioned the 3,000 genes into clusters whose
members share some measure of similarity in their expression pattern. The
Euclidean distance metric was used to define distance between the coordinates
of any two genes in the space5. Thus, the smaller the distance between any two
genes, the more similar they are in expression pattern. Other metrics are also
used in multivariate clustering13, and our use of the Euclidean distance reflects
our ignorance of a more biologically relevant measure of distance. We used the
k-means algorithm14 to cluster the 3,000 genes into different regulation classes.
k-means is an unsupervised, iterative algorithm that minimizes the within-clus-
ter sum of squared distances from the cluster mean. We used an implementa-
tion of k-means in the statistical software package SYSTAT 7.0 (SPSS). The first
cluster centre was chosen as the centroid of the entire data set and subsequent
centres were chosen by finding the data point farthest from the centres already
chosen. We repeated the algorithm for 200−400 iterations and partitioned the
3,000 genes into 10, 30 and 60 clusters. By 200 iterations, the algorithm had con-
verged because the cluster memberships did not change appreciably between
200 and 400 iterations. We chose the 30-cluster partitioning because it provided
the best compromise between number of clusters and separation between them.

Searching for common upstream regulatory motifs. We used the program
AlignACE (ref. 16) to conduct an unbiased search for common DNA-
sequence motifs within 600 bp upstream of the ORFs within each cluster. We
performed independent searches using three sets of ORF inputs from each
cluster. The first set consisted of the 50 ORFs closest (in Euclidean distance) to
the centre of each cluster, and the other 2 non-overlapping sets each contained
approximately half of the 49−80 ORFs closest to the centre of each cluster. Our
rationale for using multiple input sets was to increase the probability of find-
ing rare motifs and to use the discovery of the same motif in multiple sets of
ORFs to strengthen the case for its causal association with the cluster rather
than by chance alone. We used the following AlignACE settings: the number
of columns (expected number of conserved bases) was 10; the expected num-
ber of sites was 10; maximum number of initial sampling runs was 500; itera-

tive masking was performed a maximum of 100 times; and near-optimum
sampling commenced after 50 consecutive sampling runs without an increase
in alignment score. AlignACE calculates a statistic called the MAP score16.
This score is an internal metric used to determine the significance of an align-
ment. Our criteria for considering a motif ‘biologically significant’ consisted
of two conditions: (i) that at least two of three searches in each cluster yielded
the motif; and (ii) that the motif had a MAP score of ten or higher. The dis-
covered motifs were displayed using a described method17.

Determining the cell-cycle periodicity of clusters. The period of the cell cycle
was determined using the cytological analysis of cell-cycle phase11 and the
Fourier spectrum of the temporal profiles of two well-studied periodic tran-
scripts (CLN1 and CLN2). These two independent approaches gave very
similar results (80±10 min). We calculated Fourier amplitudes for the mean
profiles of all clusters at eight equally spaced frequencies (0.00625−0.05 min−
1, corresponding to periods between 160 min and 2 min). The index of cell-
cycle periodicity was defined as the ratio of Fourier component magnitude at
0.0125 min−1 (80 min) to the sum of all 8 Fourier components. The periodic-
ity index ranged from 0.05 to 0.45 with a standard deviation of 0.11. The top
four periodic clusters (14, 11, 2 and 7) had an average periodicity index
greater than two standard deviations from the mean.

Determination of statistical significance for functional category enrichment.
The hypergeometric distribution was used to obtain the chance probability of
observing the number of genes from a particular MIPS functional category with-
in each cluster. More specifically, the probability of observing at least (k) ORFs
from a functional category within a cluster of size (n) is given by:

,

where (f) is the total number of genes within a functional category and (g) is the
total number of genes within the genome (6,220). As we tested 199 MIPS (ref.
15) functional categories for each cluster, P values greater than 3×10−4 are not
reported, as their total expectation within the cluster would be higher than 0.05.

Note added in proof: As predicted motifs are experimentally verified, the data
will be accessible from our web site.
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