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Abstract Small interfering RNAs (siRNAs) are becoming
widely used for sequence-specific gene silencing in mammalian
cells, but designing an effective siRNA is still a challenging task.
In this study, we developed an algorithm for predicting siRNA
functionality by using generalized string kernel (GSK) combined
with support vector machine (SVM). With GSK, siRNA se-
quences were represented as vectors in a multi-dimensional fea-
ture space according to the numbers of subsequences in each
siRNA, and subsequently classified with SVM into effective or
ineffective siRNAs. We applied this algorithm to published si-
RNAs, and could classify effective and ineffective siRNAs with
90.6%, 86.2% accuracy, respectively.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

RNA interference (RNAi) is a process of double-stranded

(ds) RNA-dependent, post-transcriptional gene silencing [1–

4]. dsRNA introduced into cells is digested by Dicer to yield

small interfering RNAs (siRNAs) of 21–23 nucleotides (nt)

in length [5,6]. These siRNAs are incorporated into a multi-

component nuclease complex, RNA-induced silencing com-

plex (RISC), which is responsible for the destruction of

cognate mRNAs [6,7].

siRNA-based method for silencing mammalian genes is

thought to be more promising than that of the long dsRNA

[8], because introduction of long dsRNA into mammalian cells

frequently induces a fatal interferon response [9]. siRNA-based

RNAi, however, is not readily usable for the mammalian gene

silencing, since only a limited fraction of siRNAs are capable of

performing highly effective RNAi in mammalian cells [10,11].

Tuschl and co-workers formulated empirical rules for

designing functional siRNA, based on the experimental evi-
Abbreviations: siRNA, small interfering RNA; GSK, generalized string
kernel; SVM, support vector machine; LOOCV, leave-one-out cross-
validation; nt, nucleotide
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dence obtained from the systematic screening of sequence

dependence of siRNA functionality [12,13]. Briefly, these rules

include: (1) siRNA duplexes should be composed of 21 nt sense

and antisense strands, paired so as to have a 2 nt 3 0 overhang at

each end, (2) a target sequence should be selected from a region

of the given mRNA sequence beginning 50–100 nt downstream

of the start codon, and (3) the target sequence should be 23 nt

composed of a motif AA(N19)TT or NA(N21) (N, any nucle-

otide) with approximately 50% G/C-content (30–70% G/C con-

tent also works in some cases). Although these empirical rules

provide a basis for designing siRNAs, predicting the knock-

down efficacy of siRNAs remains to be improved. Recently,

Reynolds et al. [14] and Ui-Tei et al. [15] reported guidelines

for rational siRNA design based on position-dependent char-

acteristics associated with siRNA functionality.

In this study, we developed an algorithm for predicting si-

RNA functionality by using generalized string kernel (GSK)

combined with support vector machine (SVM) [16] to extract

sequence feature and to discriminate functionality, respec-

tively. Application of the algorithm to published data sets

demonstrated that the method could distinguish effective and

ineffective siRNAs with high accuracy.
2. Materials and methods

2.1. Data sets
From Khvorova�s large data sets containing sequence and function

of siRNAs [17], a subset of 94 siRNAs targeting the firefly luciferase
and human cyclophilin B genes, and belonging to two functional clas-
ses, effective and ineffective, were used in this study. Out of the 94 cho-
sen siRNAs, the effective class contained 53 siRNAs with 90% or more
gene silencing activity and the ineffective class contained 41 siRNAs
with less than 50% gene silencing activity.

2.2. Feature map for siRNAs
GSK is based on mismatch string kernel (MSK) as well as on the

spectrum kernel [18,19]. The (k,m)-mismatch string kernel ((k,m)-
MSK) maps feature space generated by shared occurrences of fixed
k-length subsequences differing by at most m mismatches [18]. For a
sequence x of a given length, we define the feature vectors for all the
k-mer as U(k,m)(x). The (k,m)-MSK K(k,m)(x,y) is the inner product
in feature space of feature vectors:

Kðk;mÞðx; yÞ ¼ hUðk;mÞðxÞ;Uðk;mÞðyÞi.

In the case of m = 0, as was used in this study, K(k,0)(x,y) is k-spectrum
kernel. For normalization, we introduced K(k,m) (x,y) as:

Kðk;mÞðx; yÞ  
Kðk;mÞðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kðk;mÞðx; xÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kðk;mÞðy; yÞ
p .

GSK is a sum of all the (ki,mi)-mismatch kernels. The
(k1,m1, . . .,ks,ms)-GSK Kðk1 ;m1 ;...;ks ;msÞðx; yÞ is defined as:
blished by Elsevier B.V. All rights reserved.
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Table 2
Top 20 of the SVM weight vectors for (1,2,3)-GSK

Rank Subsequence Weight

1 CAC 0.599
2 GGA 0.374
3 AUA 0.368
4 UGC 0.338
5 CAA 0.334
6 AGC 0.317
7 CAU 0.301
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Kðk1 ;m1 ;...;ks ;msÞðx; yÞ ¼
X

i

hUki ;mi ðyÞ;Uki ;mi ðyÞi ¼
X

i

Kðki ;miÞðx; yÞ.

GSK also satisfies Mercer�s Theorem, because MSK is Mercer Kernel
[20]. This means that GSK assures to afford the global optimal solution
by SVM.

2.3. SVM implementation
The core algorithm of SVM in this study was derived from LIBSVM

[16,21] (www.csie.ntu.edu.tw/~cjlin/libsvm/). In the SVM procedure,
linear kernel and soft margin were included in the algorithm.
8 GCC 0.300
9 UGA 0.283
10 UG 0.276
11 AAG 0.274
12 CUG 0.268
13 CUC 0.265
14 GAG 0.253
15 GA 0.240
16 GCA 0.231
17 GU 0.230
18 UCC 0.228
19 CCA 0.224
20 CUU 0.198

The weight is represented as absolute value along with the subse-
quence.
3. Results

3.1. Feature extraction from siRNA sequence

The basis of our approach is to describe siRNA sequences as

vectors in a multi-dimensional feature space reflecting the

numbers of 1, 2 and 3-mer subsequences in each siRNA. We

then subjected the feature vectors representing training se-

quences to a supervised machine learning algorithm, SVM.

To extract the feature from siRNA sequence, we employed

GSK for a test data set of siRNAs published by Khvorova

et al. [17], representing 53 effective and 41 ineffective siRNAs

(Fig. 1). With GSK of k-mer subsequences, where k-mer is

1-mer (1-GSK), 2-mer (2-GSK), or 3-mer only (3-GSK), or

with GSK of all the 1–3-mer subsequences ((1,2,3)-GSK), we

could classify the test data sets with 55.3%, 80.9%, 87.2%,

and 86.2% accuracy, respectively (Table 1). These results indi-

cated that discriminative performance was higher with 3-GSK,

and (1,2,3)-GSK than with 1-GSK or 2-GSK. Table 2 shows a

list of top 20 of the SVM weight vectors for (1,2,3)-GSK. The

absolute value of the SVM weight vector for each subsequence
Fig. 1. Illustration of GSK. GSK maps feature space indexed by all
possible subsequences of siRNAs of fixed length k. In this study, the
feature of the siRNA sequence was extracted by counting the numbers
of 1 to 3-mer subsequences of siRNAs.

Table 1
Comparison of discriminative performance among 1-, 2-, 3-, and
(1,2,3)-GSK/SVM for the test data set representing 53 effective and 41
ineffective siRNAs

Kernel TP TN FP FN Accuracy

1-GSK 37 15 26 16 55.3% (52/94)
2-GSK 44 32 9 9 80.9% (76/94)
3-GSK 49 33 8 4 87.2% (82/94)
1,2,3-GSK 48 33 8 5 86.2% (81/94)

TP: true positive, TN: true negative, FP: false positive, FN: false
negative.
represents its importance on classification. Although 17 out of

the top 20 SVM weight vectors were derived from 3-mer sub-

sequences, the others (10th,15th, and 17th) were from 2-mer

subsequences. The weight vectors derived from 1-mer subse-

quences C, A, G, and U were 0.087, 0.055, 0.030, and 0.027,

respectively. These results indicated that the sequence feature

derived from either 1-mer, or 2-mer still has considerable con-

tribution to the discriminative performance. Therefore we used

(1,2,3)-GSK for further analysis.

Fig. 2A shows distribution of the GSK/SVM scores for the

94 siRNAs. As shown, 90.6% of the effective and 80.5% of

the ineffective siRNAs had positive and negative scores,

respectively. In Fig. 2B, the graph shows the cumulative fre-

quencies of the effective siRNAs arranged in order of the

GSK/SVM scores against those of the ineffective siRNAs.

All of the first 36 siRNAs and the last 24 siRNAs were classi-

fied as effective and ineffective, respectively.

Fig. 3 shows examples of the siRNA sequences along with

the GSK/SVM scores. As shown, except only one case,

GSK/SVM could distinguish the effective siRNAs from the

ineffective ones despite they have overlapping nearly identical

sequences. These results suggested that the feature of siRNA

sequence extracted by the GSK could properly represent

siRNA functionality.

3.2. Leave-one-out cross-validation (LOOCV) of the GSK/

SVM algorithm

In order to validate the GSK/SVM algorithm for prediction

of siRNA functionality, we performed a leave-one-out cross-

validation (LOOCV). Fig. 4A shows distribution of LOOCV

GSK/SVM scores for the 94 siRNAs. As shown, 75.5% of

the effective and 68.3% of the ineffective siRNAs had positive

and negative scores, respectively. The overall accuracy was

72.3% (=68/94), of which 40 were true positives, 28 true nega-

tives, 13 false positives, and 13 false negatives. Fig. 4B shows

the cumulative frequencies of the effective siRNAs arranged

in order of the LOOCV GSK/SVM scores against those of

the ineffective siRNAs. Among the first 10 siRNAs, 9 were

effective, and 9 of the last 10 were ineffective. When these

http://www.csie.ntu.edu.tw/~cjlin/libsvm/


Fig. 2. Classification of the test data by GSK/SVM algorithm. (A)
Distribution of GSK/SVM scores of the effective and ineffective
siRNAs. Black bars and white bars show distribution of GSK/SVM
scores for the effective and ineffective siRNAs, respectively. (B).
Accumulation curve of the effective siRNAs arranged in order of GSK/
SVM scores against those of the ineffective siRNAs. The graph plots
the cumulative frequencies of the effective siRNAs (y-axis) arranged in
order of GSK/SVM scores (closed circles) or by random selection
(open squares) against those of the ineffective siRNAs (x-axis).

Fig. 4. LOOCV of the GSK/SVM algorithm. (A) Distribution of
LOOCV GSK/SVM scores for the effective and ineffective siRNAs.
Black bars and white bars show distribution of LOOCV GSK/SVM
scores for the effective and ineffective siRNAs, respectively. (B)
Accumulation curve of the effective siRNAs arranged in order of
LOOCV GSK/SVM scores against those of the ineffective siRNAs.
The graph plots the cumulative frequencies of the effective siRNAs
arranged in order of LOOCV GSK/SVM scores (closed circles) or by
random selection (open squares) against those of the ineffective
siRNAs.
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LOOCV GSK/SVM scores were plotted along with the model

scores (Fig. 5), they showed a significant correlation with a

correlation coefficient of 0.78.

Collectively, these results indicated that the GSK/SVM algo-

rithm was effective in predicting siRNA functionality.

3.3. Validation of predictive performance of GSK/SVM

algorithm against other genes

We evaluated predictive performance of GSK/SVM algo-

rithm for 16 human SEAP gene siRNAs published by Khvor-

ova et al. [17], and further compared its predictive performance
Fig. 3. Relationship between luciferase siRNA sequence and GSK/SVM scor
each siRNA. GSK/SVM scores for each siRNA were represented as bar g
respectively. Functionality; effective siRNA (+), ineffective siRNA (�).
with Reynolds� rational design algorithm [14] against 10 si-

RNAs for glyceraldehyde-3-phosphate dehydrogenase (GAPD)

gene and 4 siRNAs for diazepam binding inhibitor (DBI) gene.

Although our algorithm was trained with siRNAs that are

clearly effective (>90%) or ineffective (<50%), a weak positive

correlation between GSK/SVM score and gene silencing effi-

cacy was observed in the whole range, and most of the siRNAs

with positive GSK/SVM score practically exhibited 80% or

more gene silencing, as shown in Fig. 6A and B. To compare

between different platforms, 80% knockdown was used as a

threshold to define effective siRNA accordingly. As for the
es. Brackets under the sequence indicate locations of target sequences of
raph. Black bar and white bar indicate positive and negative scores,



Fig. 5. Correlation between GSK/SVM scores and LOOCV GSK/
SVM scores. LOOCV GSK/SVM score of each siRNA was plotted
along with the GSK/SVM score (closed circles). The solid line in the
plot represents linear regression (y = 0.8772x + 0.0283), showing a
significant correlation with a correlation coefficient of 0.78.

Fig. 6. Relationship between GSK/SVM score and gene silencing
activity. (A) Correlation between GSK/SVM score and gene silencing
activity. Gene silencing activity of each siRNA for SEAP, GAPD, and
DBI was plotted along with the GSK/SVM score (closed circles). (B)
Positive score ratio. Positive score ratio of different range of gene
silencing was represented as bar graph.

Table 3
Evaluation of predictive performance of GSK/SVM algorithm for 16
human SEAP gene siRNAs

siRNA Position Functionality GSK/SVM
score

GSK/SVM
prediction

Human SEAP (NM_001632)
SP-68 136 + 0.22 T
SP-147 815 � 0.99 F
SP-155 223 � �1.86 T
SP-206 206 � �0.22 T
SP-309 377 + 0.62 T
SP-500 568 � �0.77 T
SP-812 812 � 1.19 F
SP-923 923 + �0.32 F
SP-1035 1103 + 0.23 T
SP-1070 1328 � �0.14 T
SP-1260 1138 � �1.37 T
SP-1113 1181 � �2.63 T
SP-1117 1117 � �0.17 T
SP-1271 1339 � 1.59 F
SP-1795 30-UTR + 0.57 T
SP-2217 30-UTR + 2.48 T

Accuracy 75% (12/16)

Functionality: effective (+), ineffective (�). GSK/SVM prediction: True
(T), False (F).

Table 4
Comparison of predictive performance of GSK/SVM with that of
Reynolds� rational design algorithm over 10 siRNAs for GAPD gene
and 4 siRNAs for DBI gene

siRNA Functionality GSK/SVM
score

GSK/SVM
prediction

Reynolds
prediction

(A) Human GAPD (NM_002046)
GAPD_343 + 0.05 T T
GAPD_347 + 0.70 T T
GAPD_389 + 0.38 T T
GAPD_401 + 0.89 T T
GAPD_407 + 1.18 T T
GAPD_409 + 0.88 T T
GAPD_417 � �0.13 T F
GAPD_419 � �0.21 T F
GAPD_421 + �0.77 F T
GAPD_479 + 0.99 T T

Accuracy 90% (9/10) 80% (8/10)

(B) Human DBI (NM_020548.2)
DBI 254 � �0.04 T F
DBI 263 � �0.82 T F
DBI 280 �0.10 T F
DBI 287 � �0.45 T F

Accuracy 100% (4/4) 0% (0/4)

(A): GAPD siRNAs, (B): DBI siRNAs.
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SEAP siRNAs, GSK/SVM algorithm could classify siRNA

functionality with 75% accuracy (Table 3). As shown in Table

4, with GSK/SVM and the Reynolds� algorithm, the GAPD

siRNAs were classified with 90%, and 80% accuracy, respec-

tively. Interestingly, GSK/SVM correctly classified all of the

four DBI siRNAs (100% accuracy), whereas the Reynolds�
classified none of them correctly (0% accuracy).
These results indicated that GSK/SVM algorithm could pre-

dict siRNA functionality better, at least in some cases, than the

rational design.
4. Discussion

In this study, we showed that GSK/SVM algorithm could

predict siRNA functionality with high accuracy, and suggested

that frequencies of subsequences are sufficient to predict si-

RNA functionality through classification of test data set,

LOOCV, and validation on other genes that were not included

in the training data set. As shown in Fig. 3, except only one

instance, GSK/SVM could distinguish effective siRNAs from
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the ineffective ones despite overlapping nearly identical se-

quences. We cannot delineate precisely how GSK/SVM can

distinguish the effective sequences from ineffective ones with

similar sequences, but it might be because the feature vectors

were somewhat different between the siRNAs shifted by at

least two bases, and SVM learned these subtle differences

and utilized for classification. In the case where the prediction

failed, additional factors such as position-dependent informa-

tion might have made the prediction more accurate.

One of the advantages of our algorithm is that, without a

prior knowledge, we could determine contribution of each

parameter to siRNA functionality in the course of training

on SVM. We do not know the propriety of the assumption

in the rational design algorithms [14,15] that all of the posi-

tion-dependent information has equal contributions to siRNA

functionality, since cross-validation study was missing in the

reports. Unfortunately, we could not deduce simple sequence

rules out of SVM weight vectors for prediction, since SVM

learns relationships between siRNA functionality and subse-

quences implicitly. Another advantage is that it can be applied

to siRNAs shorter or longer than 21-mer in length, since our

GSK/SVM algorithm utilizes the subsequence-based feature

map, and not the position-dependent sequence feature.

Poor prediction accuracy for siRNA functionality has been

an obstacle for application of the RNAi technology in practice

[10,11]. So far, all the attempts at prediction have been based

on position-dependent sequence features derived from a small

number of active siRNAs [14,15]. The method described here is

essentially independent from position-dependent statistics and

provides a novel approach to successful prediction. Incorpora-

tion of more siRNA data will refine the feature map and im-

prove the reliability of prediction.
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