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Abstract—HERG attracts attention as a risk factor for arrhythmia, which might trigger torsade de pointes. A highly accurate clas-
sifier of chemical compounds for inhibition of the HERG potassium channel is constructed using support vector machine. For two
test sets, our discriminant models achieved 90% and 95% accuracy, respectively. The classifier is even applied for the prediction of
cardio vascular adverse effects to achieve about 70% accuracy. While modest inhibitors are partly characterized by properties linked
to global structure of a molecule including hydrophobicity and diameter, strong inhibitors are exclusively characterized by proper-
ties linked to substructures of a molecule.
� 2005 Elsevier Ltd. All rights reserved.

Inhibition of a human ether-a-go-go related gene
(HERG) can lead to a prolongation of the QT interval
which, in the worst case, triggers torsade de pointes
arrhythmia. Many drugs and small molecules that are
reported to inhibit HERG span wide range in their ther-
apeutic categories and chemical structures.1 Thus, a pre-
diction of the HERG inhibiting potency of drug
candidate molecules at an early stage of drug develop-
ment process is important. Along this line, prior work
includes the derivation of a pharmacophore model for
HERG channel inhibitors using three-dimensional
quantitative structure–activity relationship (3D-QSAR)
approaches.2–4 Ekins et al.2 derived a pharmacophore
model consisting of four hydrophobic features and one
positive ionizable feature using an algorithm called cat-
alyst. Cavalli et al.3 also derived a pharmacophore
model containing two aromatic moieties, a phenyl ring,
and a basic nitrogen. Pearlstein et al.4 used a compara-
tive molecular similarity analysis (CoMSiA) 3D-QSAR
approach together with the homology modeling of
HERG using the MthK potassium channel structure
as a template.5 These authors suggest that (1) a hydro-
phobic feature, which optimally consists of an aromatic
group, is capable of engaging in p-stacking with a
Phe656 side chain, (2) the basic nitrogen appears to un-
dergo a p–cation interaction with Tyr652, and (3) the

pore shape constrains possible conformations of HERG
inhibitors. Discriminant models have been constructed
to filter out potential HERG inhibitors.6,7 Keserü6

showed that his discriminant model predicts 83% of ac-
tives and 87% of inactives correctly by hologram
QSAR8 method using 55 compounds for the model
building and 13 compounds for the validation. Aronov
and Goldman7 combined a two-dimensional (2D) topo-
logical similarity filter with a 3D pharmacophore ensem-
ble procedure to discriminate between 85 actives and
329 inactives. In their study, the 50-fold cross validation
resulted in the overall classification accuracy of 82%. We
suggest, in this paper, a novel HERG filter that gives a
higher degree of classification accuracy.

Literature was surveyed to collect IC50 values of as
many drugs as possible, as determined by the patch
clamp HERG current inhibition assay using the mam-
malian cell line, HEK, or CHO. This resulted in IC50

values of 73 drugs. Many of the collected values were
taken from the Fenichel�s database9 and Ref. 6 and
the rest from recent literature.10–17 Since the collected
data are from different sources, we did not predict
IC50 values themselves, but used them only for the pur-
pose of making a boundary defining two classes. Thus,
an error introduced should be kept minimal. Also note
that no data from Xenopus Oocyte, which would skew
the quality of data set, are included in our set. The col-
lected IC50 values of these drugs are given in Table 1,
which also shows that these drugs cover a diversity of
therapeutic categories. Those therapeutic categories
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common in HERG inhibitors include antiarrhythmics,
antipsychotics, antihistamines, opioid blockers, and
Ca2+ blockers. For each of these drugs, 57 2D descrip-
tors, defined as a function of the two-dimensional struc-
ture, were computed by MOE.18 Also, 51 molecular
fragment-count descriptors were computed. The used
molecular fragments were a subset of the public 166-
bit MACCS key set.19 Discriminant models were con-
structed and evaluated by the following three steps: (1)
selection of important descriptors from the computed
108 (57 + 51) descriptors using support vector machine
(SVM), (2) construction of a classifier using SVM and
optimization of related parameters, and (3) evaluation
of the accuracy of the classifier by the 10-fold cross val-
idation. SVM is a machine learning method that is
superior to the other methods in two factors.20 First,
non-linear class boundary can be implemented using lin-
ear models made by descriptors. Second, over-fitting is
unlikely to occur. Those strengths are achieved as a re-
sult of using relatively long training time as a tradeoff.

In order to critically evaluate the predictive ability of our
approach, 73 drugs were separated into actives and inac-
tives in two different ways. First separation boundary
was set at pIC50 (the negative of log (IC50)) = 4.4, which

defined 58 actives and 15 inactives. Another separation
at pIC50 = 6.0 defined 28 actives and 45 inactives. For
both separations, we found that selecting eight descrip-
tors resulted in the most accurate classifier. This preli-
minary analysis and the following construction of an
SVM classifier were done using WEKA20 package. The
chosen descriptors are listed in Table 2. The number in
parenthesis is the average �merit� of the corresponding
descriptor, which is related to the contribution of the
descriptor to the classification. For the separation at
pIC50 = 4.4, five 2D descriptors and three molecular
fragment-count descriptors were selected. S logP gives
insight into the hydrophobicity of molecules. Two
PEOE_VSA descriptors indicate the surface area of
strongly negatively charged region (PEOE_VSA6) and
slightly positively charged region (PEOE_VSA + 1).
DIAMETER is a suggestion of the size of the inhibitor
molecule. SMR_VSA5 indicates the surface area of a
molecular fragment having a value of molar refractivity
between 0.440 and 0.485. The number of �NH2� frag-
ments was found to be important, which might relate
to possible hydrogen bonding sites. The fragment
�ACH2CH2A� may relate to the flexibility of a molecule
and suggests that the existence of a rather long chain is
important. This chain also relates to the local hydropho-

Table 1. Experimentally measured pIC50 values and therapeutic categories of 73 HERG inhibiting compounds used in this study

Compound name pIC50 Therapeutic category Compound name pIC50 Therapeutic category

Astemizole 8.00 Antihistamine Ebastine 5.52 Antihistamine

Dofetilide 8.00 Antiarrhythmic Alosetron 5.49 Antidiarrheal

Sertindole 8.00 Antipsychotic Sildenafil 5.48 PDE5 inhibitor

Ibutilide 8.00 Antiarrhythmic Imipramine 5.47 Antidepressant

Lidoflazine 7.80 Ca2+ blocker Granisetron 5.43 Antiemetic

Tolterodine 7.77 Muscarinic antagonist Flecainide 5.41 Antiarrhythmic

E-4031 7.70 Antiarrhythmic Citalopram 5.40 Antidepressant

Haloperidol 7.52 Antipsychotic Mefloquine 5.25 Antimalarial

Droperidol 7.49 Antipsychotic Cocaine 5.14 Narcotic

Cisapride 7.40 Prokinetic Buprenorphine 5.12 Opioid blocker

Pimozide 7.30 Antipsychotic Methadone 5.01 Opioid blocker

Ziprasidone 6.92 Antipsychotic Nitrendipine 5.00 Ca2+ blocker

Verapamil 6.85 Ca2+ blocker Amiodarone 5.00 Antiarrhythmic

Risperidon 6.82 Antipsychotic Amitriptyline 5.00 Antidepressant

Domperidone 6.79 Prokinetic Carvedilol 4.98 Antiarrhythmic

Loratadine 6.77 Antihistamine Dolasetron 4.92 Antiemetic

Olanzapine 6.74 Antipsychotic Diltiazem 4.76 Ca2+ blocker

Thioridazine 6.72 Antipsychotic Sparfloxacin 4.74 Antibiotics

Terfenadine 6.70 Antihistamine Chlorpheniramine 4.68 Antihistamine

Halofantrine 6.70 Antimalarial Diphenhydramine 4.57 Antihistamine

Terikalant 6.60 Antiarrhythmic Cetirizine 4.52 Antihistamine

Quinidine 6.49 Antiarrhythmic Grepafloxacin 4.30 Antibiotics

Meperidine 6.49 Opioid blocker Nifedipine 4.30 Ca2+ blocker

Clozapine 6.49 Antipsychotic EDDP 4.30 Opioid blocker

Mizolastine 6.36 Antihistamine Clarithromycin 4.23 Antibiotics

Mesoridazine 6.26 Antipsychotic Disopyramide 4.04 Antiarrhythmic

Bepridil 6.26 Antianginal Epinastine 4.00 Antihistamine

Ondansetron 6.09 Antiemetic Moxifloxacin 3.89 Antibiotics

Desipramine 5.86 Antidepressant Gatifloxacin 3.89 Prokinetic

Azimilide 5.85 Antiarrhythmic Procainamide 3.86 Antiarrhythmic

Mibefradil 5.84 Antiemetic Nicotine 3.61 Cholinergic

Chlorpromazine 5.83 Antipsychotic Codeine 3.52 Opioid blocker

Fluoxetine 5.82 Antidepressant Levofloxacin 3.04 Prokinetic

Prazosine 5.80 a1-Adrenoreceptor antagonist Ciprofloxacin 3.02 Antibiotics

Fentanyl 5.74 Opioid blocker Morphine 3.00 Opioid blocker

Ketoconazole 5.72 Antifungal Ofloxacin 2.85 Prokinetic

Laam 5.66 Opioid blocker

M. Tobita et al. / Bioorg. Med. Chem. Lett. 15 (2005) 2886–2890 2887



bicity produced by CH2 groups. Finally, the fragment
�A$A!A$A� indicates a substructure consisting of two
rings connected by a bond. Note that each of individual
descriptors does not necessarily divide the actives and
inactives clearly. Since SVM can include non-linearity
in the classifier by nature, the combination of the selected
descriptors defines a non-linear boundary between ac-
tives and inactives. For the separation at pIC50 = 6.0,
three 2D descriptors and five molecular fragment-count
descriptors are selected. High contributors are frag-
ment-count descriptors such as �OAAAO� fragment-
count. The existence of large fragments �ACH2AAA
CH2A� and �ACH2AACH2A� is noteworthy. Since the
size of the channel pore is known to be larger than
12 Å,4,5 flexible porefillers may be important to achieve
the high potency toward HERG. The importance of a
basic atom3 is rediscovered as indicated by VSA_BASE
descriptor. Comparing the selected descriptors for the
two separations, two of the selected descriptors for the
separation at pIC50 = 4.4 (S logP and DIAMETER)
are global properties of a molecule, while all of the se-
lected descriptors for the separation of pIC50 = 6.0 are
related to a partial structure of a molecule. This fact im-
plies that for the modest HERG inhibition, that is,
pIC50 = 4.4 or higher, a molecule has to satisfy global
conditions such as S logP and DIAMETER. On the
other hand, in order to have strong inhibiting potency,
that is, pIC50 = 6.0 or higher, optimization through mod-
ification in terms of structural fragments appears to be
more important. It seems that the descriptors chosen
for the pIC50 = 6.0 separation are special cases of those
chosen for the pIC50 = 4.4. For example, fragments
�ACH2AAACH2A� and �ACH2AACH2A� are special
cases contributing to S logP. Also, fragment �Nno-
t%A%A� is a special case of �A$A!A$A� fragment. An-
other important point to note is that many of the
selected 2D descriptors are �VSA� descriptors such as
PEOE_VSA and SMR_VSA.21 Those descriptors can,
in principle, distinguish between small differences in a lo-
cal region of two globally similar molecules. The use of

such �local� information as given by the VSA descriptors
and molecular fragment-count descriptors seems neces-
sary to construct a robust and accurate in silico model
from topological information.

Mapping of the selected descriptors for the separation at
pIC50 = 6.0 onto molecular structure suggests the pres-
ence of fragments contributing to the potency toward
HERG. Two fragment patterns are shown in Figure 1.
Most of the molecules that strongly bind to HERG have
either of the fragments shown as pattern 1. These frag-
ments are directly related to �ACH2AAACH2A� and
�ACH2AACH2A� descriptors where one of the non-
hydrogen atoms is specifically a nitrogen atom. Also,
many molecules that strongly bind to HERG have one
of the fragments shown as pattern 2. These fragments
are commonly characterized as a nitrogen atom con-
nected to an aromatic ring. This structure is described
by the �Nnot%A%A� descriptor. The fragment patterns
have correspondence with pharmacophore models de-
rived earlier.2,3,7 These authors commonly define �posi-
tively ionizable atom� as a pharmacophore. This can be
a non-aromatic nitrogen atom in pattern 1 of Figure 1.
Also, �hydrophobic region�, and �ring connected through
a nitrogen atom� are picked up as components of phar-
macophore. Those components are also seen in Figure 1.

The results of the classification were described. SVM
classifiers were constructed for the two test sets. Prior
to classifier construction, all the descriptor values are
standardized. The complexity parameter, which was
passed to the SVM algorithm,22 was set to 2.0. As the
kernel of the classifier, we chose to use a radial basis
function. The kernel parameters and the classification
accuracy are given in Table 3. First, manually optimized
exponent parameters for the radial basis function were
0.062 and 0.040 for the separation at pIC50 = 4.4 and
pIC50 = 6.0, respectively. For the separation at
pIC50 = 4.4, 56 of 58 active drugs and 13 of 15 inactive
drugs were classified correctly, giving the overall
classification accuracy of 95%. For the separation at
pIC50 = 6.0, 24 of 28 actives and 42 of 45 inactives were
correctly classified, resulting in the overall classification
accuracy of 90%. These results indicate significantly bet-
ter values for classification accuracy than those re-
ported.6,7 The results reported by Keserü6 defined the

Figure 1. Contributing molecular fragments for strong HERG

inhibition.

Table 2. The chosen descriptors used to construct the classifier

Descriptor Separation at pIC50 = 4.4 Separation at pIC50 = 6.0

1 S logP

(7.0)

# OAAAO

(8.0)

2 PEOE_VSA + 1

(6.3)

# ACH2AAACH2A

(5.4)

3 PEOE_VSA-6

(5.8)

# Nnot%A%A

(4.8)

4 DIAMETER

(5.3)

VSA_BASE

(4.7)

5 SMR_VSA5

(4.3)

PEOE_VSA0

(4.6)

6 # NH2

(3.3)

# ACH2AACH2A

(4.1)

7 # ACH2CH2A

(2.8)

SMR_VSA0

(3.9)

8 # A$A!A$A

(1.2)

# 8-membered or larger

ring (1.4)

Descriptors staring from �#� are the count of substructures defined by

the character string which follows to the �#�. Abbreviations used in the

character strings are defined as follows: A, a non-hydrogen atom; $, a

bond belonging to a ring(s); !, a bond belonging to a chain; %, an

aromatic bond; not%, a non-aromatic bond.
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active/inactive boundary at IC50 = 1 lM (pIC50 = 6.0)
and Aronov and Goldman7 set the active/inactive
boundary at IC50 = 40 lM (pIC50 = 4.4). Therefore,
the comparisons were made between corresponding data
in the active/inactive boundary. A further test was per-
formed using an external data set. The test showed that
classifier of predicting whether or not a given molecule
had pIC50 = 6.0 could also predict known cardiovascu-
lar adverse effects with an accuracy of about 70%. The
test set consists of 827 drugs, which are diverse in ther-
apeutic use and are included in Drugdex database.23 58
drugs out of 827 (7%) were extracted as candidates hav-
ing pIC50 = 6.0 or higher. Because all the pIC50 values
for those drugs were unavailable, the result of the pre-
diction was evaluated by correlation to the reported ad-
verse effects which may be related to HERG. Drugs are
grouped into four by the occurrence of at least one word
listed under each group in the section of �cardiovascular
adverse effects�; group 1: �sudden death�, �torsade de poin-
tes�, or �cardiac arrest�, group 2: �(cardiac) arrhythmia�,
�QT prolongation�, �dysrhythmia�, �extrasystole�, or �bra-
dycardia�, group 3: �tachycardia� or �palpitation� except
rare cases, group 4: others. We found that 39 out of
58 drugs (67%) belonged to either group 1 or group 2.
Adding the group 3 drugs covered 45 out of 58 drugs
(78%). This coverage is only slightly worse than the cor-
responding number obtained in the cross validation
(86%, 24/28) as shown in Table 3. It is not unnatural
to consider that these 45 drugs have an interaction with
HERG. Conversely, to see whether drugs with predicted
pIC50 = 6.0 or lower have lesser degrees of cardiovascu-
lar adverse effects, one appearing at every 15th drug was
picked up to form a sample of 51 drugs from a list of 769
drugs with predicted pIC50 = 6.0 or lower that were clas-
sified according to therapeutic categories. The occur-
rence of those words indicating cardiovascular adverse
effects was investigated. As a result, 38 out of 51 drugs
(75%) belonged to group 3 or 4. Group 4 alone covered
31 out of 51 drugs (61%).

The success of our approach can be attributed to (1) the
set of descriptors used and (2) the use of SVM for choos-
ing descriptors and constructing the classifier. Because,
allowing for certain differences in selection of descrip-
tors, many of the descriptors used in this study and in
prior work6,7 are related to substructures of a molecule,
we feel that the achieved high accuracy is due rather to
the use of SVM. This is supported by other SVM-based
studies. Xue et al.24 showed that binding affinity to hu-

man serum albumin is better predicted by SVM than by
a linear model based on heuristics. Further, Burbidge
et al.25 compared various machine learning techniques
on the problem of classifying inhibition of dehydrofolate
reductase. They concluded that SVM outperformed all
the other tested techniques including neural network
and decision tree. In fact, while neural network, naive
Bayes, and decision tree methods were tested for classi-
fying HERG inhibitors in this study (data not shown),
these methods yielded less accurate results than SVM.

In summary, a highly accurate discrimination model for
HERG inhibition was constructed using SVM. Using
these results, an in silico screening program can be
constructed.
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