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Abstract

Gene expression profiling offers a promising new technique
for the diagnosis and prognosis of cancer. We have applied
this technology to build a clinically robust site of origin
classifier with the ultimate aim of applying it to determine
the origin of cancer of unknown primary (CUP). A single
cDNA microarray platform was used to profile 229 primary
and metastatic tumors representing 14 tumor types and
multiple histologic subtypes. This data set was subsequently
used for training and validation of a support vector
machine (SVM) classifier, demonstrating 89% accuracy using
a 13-class model. Further, we show the translation of a five-
class classifier to a quantitative PCR–based platform.
Selecting 79 optimal gene markers, we generated a
quantitative-PCR low-density array, allowing the assay of
both fresh-frozen and formalin-fixed paraffin-embedded
(FFPE) tissue. Data generated using both quantitative PCR
and microarray were subsequently used to train and
validate a cross-platform SVM model with high prediction
accuracy. Finally, we applied our SVM classifiers to 13 cases
of CUP. We show that the microarray SVM classifier was
capable of making high confidence predictions in 11 of 13
cases. These predictions were supported by comprehensive
review of the patients’ clinical histories. (Cancer Res 2005;
65(10): 4031-40)

Introduction

Gene expression profiling holds great potential as a new
approach to cancer diagnosis and prognosis. A potential
application of this technology lies in the development of
molecular methods for the diagnosis of cancer site of origin.
Whereas several groups have shown that tumors can be
classified with respect to tissue of origin by expression profiling
using either microarrays (1–3), publicly available SAGE data sets

(4, 5), or cell lines (6), it remains to be determined whether
these tools can be effectively applied as a clinical diagnostic test.
In 3% to 5% of new cancer cases, the site of origin of a tumor

cannot be readily identified, or a diagnosis of origin is equivocal
(7). This disease manifestation is known as a cancer of unknown
primary (CUP). These tumors represent a clinically diverse
group, typically presenting with moderately to poorly differen-
tiated tumors, often adenocarcinoma, involving multiple organs
including liver, bone, lung, lymph nodes, pleura, and brain (8, 9).
Patients with CUP represent a disproportionate fraction of
cancer deaths due to their poor median survival, often measured
in months (9). In many cases, patients receive a series of
sequential treatments before a response, if any, is obtained. A
large proportion of cases remain undiagnosed (10), with the
result that therapy cannot be matched to their specific disease.
Gene expression profiling, applied as a site of origin diagnostic,

seems likely to be one of the first areas of oncology where a
microarray test influencing patient management could be applied,
but important questions have yet to be resolved regarding design of
such an assay. Recently, preexisting gene expression data sets have
been combined to create very large databases that can be used to
validate novel classification algorithms (11, 12). These studies are
predicated on the belief that the use of an ever increasing number
of samples will improve classification, although the influence of
training set size has not been systematically evaluated. Likewise,
previous studies have investigated major histopathologic types of
tumors (1, 2) but have not investigated the importance of the
inclusion of subtypes, such as histologic variants of ovarian cancer
or estrogen receptor–positive and –negative breast tumors, in
training sets. Finally, although metastatic tumors from known
primary carcinoma have been correctly identified (1, 2, 12), no
study has examined the efficacy of such tests for predicting site of
origin of CUP, benchmarked against clinical diagnostic variables.
An additional consideration when developing any expression-

based diagnostic is the clinical utility of the platform in terms of its
ease of use and application to formalin-fixed paraffin-embedded
(FFPE) tissue. Although microarray technology has matured
considerably, it still has relatively lengthy protocols, with multiple
enzymatic steps taking up to 3 days to complete. A number of
studies have shown that accurate classification of multiple cancer
types can be made using a reduced number of genes (2, 3, 11, 12).
Hundreds rather than thousands of genes are therefore likely to be
sufficient, indicating that a classification can be achieved using
cheaper, faster, and more robust platforms for quantifying gene
expression such as quantitative PCR. Quantitative PCR has several
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advantages over microarray, including its ability to use FFPE tissue.
Several studies have reported robust expression analysis from fixed
material using quantitative-PCR (13–15). Using multiplex reactions
or generating low-density quantitative-PCR arrays therefore offers
an attractive alternative to microarray for validation of classifier
performance using existing FFPE tissue and eventual clinical
application in a conventional pathology laboratory.
We describe here the development of a highly accurate

multiclass classifier designed for clinical application to CUP. A
large and comprehensive data set of gene expression was
obtained from microarray analysis of 229 tumor samples, re-
presenting 14 commonly recognized sites of origin in the dif-
ferential diagnosis for CUP. In collating the data set, we have
purposely addressed the issue relating to molecular heterogeneity
of specific tumor classes by including multiple histologic
subtypes. The importance of sample coverage, particularly across
the more heterogeneous classes, is shown by observing the
expression of gene markers across subtypes and by systematically
removing specific subtypes from training. We further used the
microarray data set to choose an optimized series of tumor
markers to create a quantitative PCR–based low-density array and
generated a classifier that achieved similarly high prediction
accuracies with both fresh and FFPE tissue to that obtained by
microarray. Finally, we show the utility of the multiclass classifier
for identifying the site of origin for CUP representing several
clinical scenarios.

Materials and Methods

Tumor samples. Tumor specimens were collected through the Peter

MacCallum Cancer Centre, Melbourne; The Garvan Institute of Medical
Research, Sydney; St. Vincent’s Hospital, Sydney; and The Prince Charles

Hospital, Brisbane. Patient consent and Institutional Review Board approval

were obtained according to National Health and Medical Research Council

guidelines. Central pathology review was done on all samples. Histopath-
ologic details of the tumors used for training the cDNA microarray classifier

are provided in Supplementary Table S1: cDNA samples. Details of samples

used for validating the quantitative-PCR classifier are provided in

Supplementary Table S3: Quantitative PCR samples.
Unknown primary samples. Patients with CUP were referred to the

study by treating oncologists at the Peter MacCallum Cancer Centre,

Melbourne or St. Vincent’s Hospital, Sydney. Thirteen patients with
disseminated metastases and no clinically detectable sign of a primary

tumor following a minimum investigation of histopathology and computed

tomography imaging was identified for the study. Details of clinical

evaluation for these patients are provided in Supplementary Table S2: CUP
samples.

RNA extraction from fresh frozen tissue. Total RNA from fresh frozen

tumor samples was isolated by phenol-chloroform extraction (Trizol;

Invitrogen, Carlsbad, CA) and column chromatography (RNeasy, Qiagen,
Valencia, CA) as previously described (16). Purified RNA was analyzed by

agarose gel electrophoresis to assess the integrity of 28S and 18S rRNA bands.

Microarray analysis. Total RNA (3 Ag) was amplified and labeled using a
modified Eberwine method (17) and hybridized to cDNA microarrays

containing f10,500 elements as described previously (16). Reference RNA

consisted of a pool of RNA isolated from eleven human tumor cell lines (18).

Further details are provided in Supplementary Information Part 1: Methods.
All MIAME compliant microarray data are available at ArrayExpress at EBI

(www.ebi.ac.uk/arrayexpress; accession number: e-mexp-113).

Feature selection and support vector machine. Feature selection was

done by ranking genes by absolute value of their signal-to-noise ratio (19)
statistically comparing the gene expression observed within a single class

against all other classes (one versus all). The top m ranked genes were

selected for each class and combined for subsequent use in building a

support vector machine (SVM) model. For supervised classification of

cancers, we used linear SVMs (20). Individual models were trained for
discrimination of each cancer class from all other classes (one versus all),

therefore an n class classifier was comprised of n class models. In testing

a sample, the class model with the highest score was deemed the correct

prediction. A decision margin was also given to the class prediction,
calculated from the difference between the highest and the second highest

score as follows: the decision margin was termed high if the difference

in absolute SVM score between the first and second predictions was >50,

medium if the difference was between 26-50, or low if the difference was
V25. For more detailed description of SVM classification methods, refer

to Supplementary Information Part 2: Generating a multiclass predictor

using cDNA microarray.

Quantitative PCR using low-density arrays. Genes that effectively
classified samples as gastric, colorectal, ovarian, pancreas, and breast were

identified using a signal-to-noise metric (19) to analyze microarray

expression data from 173 tumor samples. Twelve to fifteen of the most
frequently selected genes for each class were chosen and the corresponding

validated primer/probe sets were incorporated into a low-density array

(Assay on Demand, Applied Biosystems, Foster City, CA). Six endogenous

controls were added to the assay set, which were also used independently
for quality assurance of cDNA using SYBR Green chemistry (Applied

Biosystems). Twelve genes were added that represent tumor types outside of

the five site differential and represented the class other to enable the

identification tumors that did not belong to the tumor types present in the
test. Genes selected for the quantitative-PCR low-density array are

summarized in Supplementary Table S4: Low-density array gene list. See

also Supplementary Table S5: Primer design for SYBR green endogenous
controls.

For FFPE samples, five 10-Am sections were used for RNA extraction

using a modification to the protocol previously described (13). Further

information about RNA isolation, the generation of cDNA from fresh frozen
and formalin-fixed material, gene selection for the quantitative-PCR low-

density array, and subsequent quantitative-PCR analysis is described in

Supplementary Information Part 1: Methods.

Quantitative-PCR data analysis. Normalization of quantitative-PCR
assays was conducted using an average Ct value for all endogenous controls.

Samples were then converted to a fold change ratio described using

standard DCt formula:

X ¼ 24Ct; where 4Ct ¼ ðCt target

� Ct average endogenous controlsÞ

Clustering of quantitative-PCR data was conducted by Pearson

correlation using the program Cluster (21) and visualized using the
program Mapletree (http://mapletree.sourceforge.net/). Analysis of quanti-

tative-PCR data and the generation of a cross-platform model are described

in detail in Supplementary Information Part 3: Translating a multiclass

classifier to quantitative PCR.

Results

A comprehensive multiclass data set. To create a training set
against which to compare cases of CUP, we profiled 229 tumors
from 14 sites of origin on 10.5K spotted cDNA microarrays. Because
f90% of CUP tumors are thought to originate from epithelial cell
types (10), we ensured a good representation of themajor carcinoma
types, defined by their anatomic tissue or organ of origin. Given also
the histologic diversity of some carcinomas, we systematically
represented histologic and molecular subtypes for some cancers
[e.g., breast, ovarian, lung, gastric, and squamous cell carcinoma
(SCC)]. Nonepithelial types, such as melanoma (22), seminoma (23),
and mesothelioma (24), which can present with a cellular morpho-
logy and architecture indistinguishable from some poorly differen-
tiated carcinomas, were also included. A summary of all tumors in
the training set is detailed in Supplementary Table S6: Tumor classes.

Cancer Research
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Developing a site of origin classifier by machine learning.
We used an SVM algorithm to create a 13-class predictor based on
anatomic site of origin (combining head and neck and skin SCC
types; SCCother). In practice, the performance of an SVM depends
critically on the subset of features (genes) selected for model-
ing and tuning relative to the regularization constant C (see
Supplementary Information Part 2). The classification method was
very robust, with marginal dependence on the tuning variables
across the range of values. The leave-one-out cross-validation
(LOOCV) accuracy was between 94% and 96.5% using at least 20
genes per class, with the best performance obtained using 50 genes
per class (f600 nonredundant genes combined) and a C value of
10. Importantly, genes were reselected for every round of the
LOOCV (25). The results of LOOCV, using optimal variables (C = 10,
50 genes/sample), are displayed for each class (Table 1), qualified
by an associated decision margin (either high, medium, or low; see
Materials and Methods). When the SVM prediction has a high or
medium decision margin (combined into strong ), there was a high
likelihood of the prediction being correct: 203 of 207 cases (98.1%)
called with strong decision margin were correctly classified
(Table 1). In contrast, 4 of 18 (22%) low decision margin results
were incorrect. Given that low decision margin predictions have a
low but significant chance of being incorrect, we considered cases
predicted with a low decision margin as unclassified. Considering
only strong decision margin predictions, the adjusted accuracy for
LOOCV was 89%. A similar high accuracy was achieved by splitting
the entire data set into a two thirds training and a one third
independent test set (Supplementary Information Part 2; see also
Fig. 2B and C).
There were plausible explanations for the errors made by the SVM

during LOOCV. For example, samples were confused based on close
phenotypic similarities, such as the uterine endometrioid tumor
misclassified as ovarian, due to similarity to an endometrioid
ovarian gene expression signature, and among SCC-type tumors
(Table 1). For several tumors, misclassification seems a result of
representation by a single case example (chromophobe renal cell
tumor; mixed cell type gastric tumor) or atypical morphology

(spindle cell–like melanoma sample; pancreatic tumor with an
intestinal-like appearance). The pancreatic tumor that was pre-
dicted with high decisionmargin as colorectal most likely represents
a recently described subtype of pancreatic adenocarcinoma that
shares high molecular similarity to colorectal tumors (26).
Assessing the importance of training set coverage. Hetero-

geneous cancer subtypes, from organs such as the lung and ovary,
may represent metaplastic or dedifferentiated variants that do not
resemble a normal tissue counterpart or related subtypes
morphologically or at the molecular level. Consistent with this,
we found that despite the ability to measure expression across
thousands of genes and a supervised approach to feature selection
(top 20 ranked signal-to-noise ratio per class), there is a paucity of
universally expressed site of origin markers for some cancer types
(Fig. 1A , and see Supplementary Table S7 for gene list). For a
higher-resolution view of gene expression, we selected several
known markers from our refined list with previously validated
tissue specificity (6, 27–37) and plotted the relative fold change for
colorectal, breast, ovarian, and lung tumors. Markers can be
identified which seem to be strongly and relatively uniformly
expressed across the range of colorectal and breast tumors (Fig. 1B ;
VIL1 and NOX1 for colorectal cancer, PIP and GATA3 for breast). In
contrast, the known histologic heterogeneity of ovarian and lung
tumors correlates well with heterogeneity of expression of selected
genes, including RBP1 , WT1 , and STAR (ovarian) and TITF1 , ADH7 ,
and SFTPB (lung). Our findings indicate the importance of
inclusion of specific subtypes in training the classifier and the
use of multiple markers for classification, particularly for
heterogeneous tumor types such as lung and ovarian cancer.
Given our observation confirming that histologic subtypes can

be diverse with respect to expression of tumor markers, we
systematically quantitated the contribution of subtype representa-
tion in training the SVM and classifier performance (leave-subtype-
out analysis). For this purpose, individual subtypes were
sequentially removed from the training set, using the compro-
mised classifier to predict the origin of these left out samples
(Fig. 2A). Inclusion of certain subtypes in the training setwas critical

Table 1. Results per tumor class for LOOCV on training set (n = 229) using the best variable SVM model

Class (n) Correct (n) [H, M, L] Errors (n) [H, M, L] Histology of misclassified sample

Breast (34) 33 [30, 2, 1] 1 [0, 0, 1] Melanoma Breast ductal adenocarcinoma, estrogen receptor negative
Colorectal (23) 23 [20, 1, 2]

Gastric (15) 14 [12, 2, 0] 1 [0, 0, 1] Colorectal Gastric mixed cell type

Melanoma (11) 10 [7, 3, 0] 1 [0, 0, 1] Lung Melanoma spindle cell–like

Mesothelioma (8) 8 [7, 1, 0]
Ovarian (50) 50 [38, 8, 4]

Pancreas (9) 8 [4, 2, 2] 1 [1, 0, 0] Colorectal Pancreatic adenocarcinoma, atypical intestinal-like morphology

Prostate (8) 8 [7, 0, 1]
Renal (13) 12 [10, 1, 1] 1 [0, 0, 1] Breast Renal cell carcinoma, chromophobe subtype

Testicular (3) 3 [3, 0, 0]

SCCother (14) 13 [5, 4, 4] 1 [1, 0, 0] Lung SCC of tongue spindle cell–like

Uterine (9) 8 [8, 0, 0] 1 [0, 1, 0] Ovarian Uterine endometrioid subtype

Lung (32) 31 [24, 4, 3] 1 [1, 0, 0] SCCother Lung SCC (moderately differentiated)

NOTE: Total number of samples predicted correctly or incorrectly is shown in bold whereas the distribution of predictions within the decision margin
levels (high, medium, or low) is shown in brackets. The decision margin is determined by difference in absolute SVM score between the first and second

highest predictions. A difference of greater than 50 defines high; 26-50, medium; and 0-25, low.

Expression Diagnostic for Cancer of Unknown Primary
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for certain tumor classes. For example, when mucinous ovarian
tumors are left from training, test mucinous ovarian samples were
commonly misclassified as tumors from the gastrointestinal tract.
Similarly, classification of estrogen receptor–negative breast tumors
was compromised when they are excluded from training, but
interestingly estrogen receptor–positive breast tumors could be
correctly predicted if the classifier was trained with estrogen
receptor–negative samples. In clinical practice, these dilemmas

represent common and important diagnostic problems (38–40),
underscoring the importance of including these subtypes in the
training set. We observed that not only did the total number of
incorrect classifications increase when specific subtypes were
omitted, but the proportion of low confidence predictions
(considered unclassified) also increased from 9.6% to 25%
(Fig. 2B). Although an increased number of tumors could not
be classified in the absence of particular subtypes, the accuracy of
strong decision margins remained high (Fig. 2C).
A further consideration in building the classifier is the

possibility of high decision margin predictions ( false positive)
when testing on tumor types not represented in training. To
investigate the behavior of our classifier in this context, we
systematically removed entire tumor types from training and
then tested on these samples. This is similar to the leave-
subtype-out analysis and we refer to it as a leave-type-out
analysis. As expected, the number of high decision margin
predictions decreased from 77% to 19.1%. Although the predictor
decision margin is low for most samples when their represen-
tative class is not included in training, it seems that there may
be exceptions if they share a strong molecular likeness to
tumors of another class (Table 2). For example, when prostate
tumors are absent from the training set, prostate test samples
are exclusively predicted as breast (Table 2), revealing an
association of these tumors based on the commonality of
hormonal regulation (41, 42). Similarly, all mesothelioma samples
were predicted as ovarian, perhaps reflecting their shared
mesothelial cell lineage and expression of known markers such
as mesothelin, retinol binding protein 1, and Wilms tumor 1
(43–45). Although such tumor types may rarely be involved in
the same diagnostic differential, it further shows the importance
of including a wide spectrum of tumor types in training the
classifier for attaining high specificity.
Translation from cDNA microarray to quantitative PCR.

Supervised learning using microarray data has shown that high-
accuracy predictions can be achieved using a refined selection of
gene markers, suggesting that such an expression-based test could
be translated to a lower density platform such as quantitative PCR.
To show this concept, we used the microarray data set to select
gene markers for a refined differential of five sites: ovarian, breast,
pancreas, colorectal, and gastric. Additionally, we selected a
number of gene markers associated with tumors outside these
five sites, which define a sixth class, others . The purpose of the
others class was to assess if the specificity of a classifier could be
increased by reducing the occurrence of strong decision margin
predictions for unknown samples that do not originate from the
f ive site differential. A total of 79 site-specific markers, in addition

Figure 1. The expression of selected cancer type–specific genes across
13 classes and related subtypes. A, a heat map representation of median
normalized array data for the top 20 genes per class (selected using the
signal-to-noise metric using all 229 tumors) aligned respective to cancer class.
Br, breast; Co, colorectal; Ga, gastric; Lu, lung; Ml, melanoma; Me,
mesothelioma; Ov, ovarian; Pa, pancreas; Pr, prostate; Re, renal; SCCo,
SCC of skin or head and neck; Te, testicular; Ut, uterine. B, the median
normalized log transformed expression data of several gene markers selected
for comparison across histologic and molecular subtypes of four cancer classes.
Expression values less than 0 were removed from display. Ade, adenocarinoma;
ERP /ERN, estrogen receptor positive/negative; LC, large cell; P, primary; M,
metastasis. VIL1, villin 1; NOX1, NADPH oxidase 1; PIP, prolactin-induced
protein; GATA3, GATA binding protein 3; RBP1, retinol binding protein 1,
cellular; WT1, Wilms tumor 1; STAR, steroidogenic acute regulator; TITF1,
thyroid transcription factor; ADH7, alcohol dehydrogenase 7 (class IV), A or j
polypeptide; SFTBP1, surfactant, pulmonary-associated protein B.
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to six endogenous controls, were selected and were subsequently
used for the design of a quantitative-PCR low-density array
(Applied Biosystems).
First, to compare data generated from cDNA microarray and

quantitative PCR, 42 fresh frozen tumor samples were profiled on
both platforms. A Pearson correlation was calculated for each gene
between platforms showing a high concordance between the data
sets (median r = 0.83). Three genes from 79 were considered
discordant (r < 0.4), despite sequence analysis confirming the
identity of the clone used in generating the microarray. Differences
between microarray and PCR data have been reported previously
(46), and may be due to cross-hybridization of targets to
microarray probes or expression of splice-specific isoforms not
recognized in the PCR assay. These genes were removed from
further analyses.
Classification using formalin-fixed tissue. Given the value of

accessing fixed tissue samples, we next analyzed RNA obtained
from FFPE cancer samples collected in a routine diagnostic
pathology service. Twenty-five FFPE samples, collected 1 to 4 years
ago and spanning all five classes of interest, were chosen. Of these,
seven FFPE samples matched a fresh frozen sample already
analyzed, whereas eight samples represent matched primary and
metastatic tumors from the same patient. Hierarchical clustering of
normalized quantitative-PCR expression profiles from fresh frozen
and FFPE tissues showed that samples extracted from both fresh
frozen and formalin-fixed material can be clustered accurately
corresponding to the tissue of origin, with few exceptions (Fig. 3A).
Microarray and quantitative-PCR cross-platform predictor.

Whereas it is possible to train and test a predictor solely using
quantitative-PCR data, the relatively small number of samples
analyzed by quantitative-PCR made construction of adequate
independent training and test sets problematic. To circumvent this
problem, we exploited cDNA microarray data to train the SVM, and
then tested the predictor on an independent quantitative-PCR data
set. Importantly, the microarray samples used to train the predictor
were independent of those analyzed by quantitative-PCR.
Predictors were developed using either five or six class models.

The five-class model is based on the five sites of origin: gastric,
colorectal, pancreas, ovarian, and breast. The quantitative-PCR
data set used for testing this model, composed of 55 samples,
represented both fresh frozen and FFPE samples. The six-class
model implements an additional class, others, that represents the
combined signatures from cancers outside the original five-site
differential. The test set used in this case was identical to that used
for the five class model, except for the addition of four samples
(melanoma, renal, prostate, and lung adenocarcinoma) represent-
ing the others class (n = 59). To develop cross-platform models, we
normalized (rescaled) the data sets to cope with inherent
differences in the data types. We developed a method of rank
levels and compared this with the more rudimentary method of
median normalization. Ranking consistently outperformed median
normalization and enabled high-accuracy predictions of greater
than 96% (Fig. 3B and Supplementary Information Part 3). The
results from independently testing fresh and FFPE samples using
five- and six-class models is shown in Fig. 3C , showing high
accuracy is achieved for all specimen types.
Classification of cancers of unknown primary. To assess the

clinical utility of our classifiers, we collected 13 cases of metastatic
disease for which the primary tumor could not be unequivocally
diagnosed at the time of presentation (Table 3, see also
Supplementary Table S2 for detailed diagnostic workup and

Figure 2. The effect of training set coverage on SVM prediction accuracies.
A, prediction accuracies from leave-subtype-out analysis compared with
the results for the same samples predicted during LOOCV. BR ER�, breast
lobular or ductal adenocarcinoma, estrogen receptor negative; BR ER+, breast
lobular or ductal adenocarcinoma, estrogen receptor positive. GA INT, gastric
adenocarcinoma intestinal subtype; GA DIF, gastric adenocarcinoma, diffuse
subtype; LU AD, lung adenocarcinoma; LU SCC, lung squamous cell carcinoma;
OV EN, ovarian endometrioid carcinoma; OV MU, ovarian
mucinous carcinoma; OV SE, ovarian serous papillary carcinoma. B,
demonstrating the effect of data set size and complexity on distribution of
predictions within three decision margin levels: high, medium, and low.
Total Data Set LOOCV, results from a training set using all available samples
(n = 229). Trai/Test Split LOOCV, results from training set only (n = 167).
LSO, the accumulated results from iteratively leaving subtypes from training
(n = 105). LTO, accumulated results from iteratively leaving entire tumor
types from training (n = 229). C, accuracy of predictions within confidence
levels high (H ), medium (M ), and low (L).

Expression Diagnostic for Cancer of Unknown Primary
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histology images). All cases fell into one of three categories:
(a) metastatic disease without any prior history of cancer (n = 7); (b)
metastatic disease with a prior history of cancer (n = 5) and; (c)
presentation with two concurrent primary tumors (n = 1).
We tested the cDNA microarray data generated from CUP

samples with the SVM classifier trained on all 229 samples in the
known tumor data set. Based on our best variable model, realized
from prior cross-validation, 11 of 13 patients were predicted with
strong decision margin (i.e., decision margin > 25; Table 3). The two
cases that were not predicted with strong confidence (P02864 and
P02971) received equal SVM scores for SCCother and lung classes
(i.e., decision margin = 0), suggesting the classifier has difficulty in
discriminating between SCC arising from different primary sites.
We compared our SVM predictions with the most likely primary

site, based on evaluation of the case by a medical oncologist after
review of all subsequent investigations and additional pathologic
evaluation. In all cases where a consistent and strong decision
margin prediction was made (11 of 13, 85%), SVM classification was
consistent with either the highest possibility of the tissue of origin
or among the short list of likely sites. We also noted that where
available, outcome information and further clinical evidence were
supportive of the prediction. For example, case P1328, predicted to
have breast cancer, presented initially with a differential diagnosis
of ovary, gastric, or breast cancer and then later presented with
metastatic deposits in axillary lymph nodes and supraclavicular
fossa, consistent with a breast primary. Similarly, patient P01698,
who presented with widespread metastatic adenocarcinoma, was
strongly predicted as ovarian cancer, but was thought to have a
gastrointestinal type tumor based on histopathologic review
conducted by several pathologists. This, however, conflicted with
other clinical evidence such as a raised plasma CA125 concentra-
tion and no identifiable gastrointestinal type primary from
endoscopic investigation radiological imaging, including positron
emission tomography scan. Eventually it was decided to treat the

patient with a regimen of taxol and carboplatin, as a broader-acting
combination treatment was considered undesirable due to renal
impairment. The patient had a good response to chemotherapy,
consistent with the high decision margin prediction of ovarian can-
cer. This case represents a common diagnostic problem encoun-
tered with mucinous type tumors presenting in the ovary (47), and
exemplifies the utility of the classifier for resolving such cases.
For a number of cases it can also be argued that the test would

have significantly reduced the time taken to begin an appropriate
chemotherapy regimen and may have given a survival benefit. For
example, case P00563 had a 4-year history of ovarian cancer, and
later presented with undifferentiated bone metastases. She was
treated for recurrent ovarian cancer despite what would be an
atypical presentation of a recurrence for this cancer type. Pathology
and other diagnostic imaging did not suggest a likely alternative
primary site until the patient presented 2 years later with an
identifiable breast mass. Our microarray-based classifier, tested on
the left neck mass, predicted breast cancer as the primary tumor, a
diagnosis that would have resulted in an altered treatment plan 2
years earlier than otherwise applied. In such cases, where the
patient has a previous history of cancer, it may be possible to
access FFPE material from an earlier episode. Using our
quantitative-PCR low-density array, we assayed FFPE tissue RNA
extracts from both the 1994 ovarian tumor and the 2000
unidentified neck mass. Prediction using a cross-platform micro-
array/quantitative-PCR model ( five- or six-class) resulted in strong
decision margin predictions of ovarian and breast, respectively (see
Supplementary Information Part 3).

Discussion

Several studies have shown that patterns of gene expression
remain consistent with tissue of origin, both in cell lines (48) and
tumor samples (1, 2, 49). Gene expression profiling may therefore

Table 2. Confusion matrix for leave-type-out analysis based on cancer site of origin

Samples

(n)

Leave-type-out SVM predictions

BR CO GA ML MS OV PA PR RE TE SCCo UT LU

BR (33) 13 [0, 2, 11] 8 [0, 0, 8] 3 [0, 0, 3] 9 [0, 0, 9]

CO (23) 18 [4, 8, 6] 1 [0, 0, 1] 4 [0, 0, 4]
GA (14) 10 [1, 4, 5] 4 [0, 0, 4]

ML (10) 2 [0, 0, 2] 1 [0, 0, 1] 1 [0, 0, 1] 5 [0, 0, 5] 1 [0, 0, 1]

MS (8) 8 [3, 3, 2]

OV (50) 11 [0, 0, 11] 3 [0, 1, 2] 9 [2, 2, 5] 1 [0, 0, 1] 3 [0, 0, 3] 2 [0, 0, 2] 16 [1, 6, 9] 5 [0, 2, 3]
PA (7) 1 [0, 0, 1] 2 [2, 0, 0] 4 [0, 1, 3]

PR (8) 8 [2, 5, 1]

RE (12) 11 [0, 5, 6] 1 [0, 0, 1]

TE (3) 3 [0, 2, 1]
SCCo (13) 13 [9, 2, 2]

UT (8) 8 [8, 0, 0]

LU (31) 5 [0, 4, 1] 3 [0, 0, 3] 3 [0, 0, 3] 1 [0, 0, 1] 1 [0, 0, 1] 18 [10, 3, 5]

NOTE: Sample groups representing a cancer type were removed from SVM training and then tested using the resulting compromised predictor. The
class left from training is represented by row and the test prediction by column. The total number of samples predicted is shown in bold, whereas

confidence distribution is shown in brackets (high, medium, and low).

Abbreviations: BR, breast; CO, colorectal; GA, gastric; ML, melanoma; MS, mesothelioma; OV, ovarian; PA, pancreas; PR, prostate; RE, renal; TE,

testicular; SCCo, SCCother; UT, uterine; LU, lung.

Cancer Research

Cancer Res 2005; 65: (10). May 15, 2005 4036 www.aacrjournals.org



enable an accurate identification of the site of origin of a tumor,
implying that such a technology could be developed into a
clinically useful diagnostic test. We have shown for the first time
translation of a genomics-based classifier to a more clinically
amenable quantitative-PCR platform and obtained robust predic-
tion of samples from both fresh and FFPE tissue. We tested our
classifier on a spectrum of diagnostically challenging tumors. Our
microarray-based predictor is capable of making confident
predictions for 11 of 13 tumors, which in several cases can be
strongly supported by their detailed clinical histories.
Utilizing our heuristic confidence measure, 89% of training

samples were correct and predicted with a strong decision margin.
Closer examination of the histology associated with misclassified
samples revealed some systematic errors were made by the
classifier. First, it seems that misclassification is possible for well-
differentiated tumors sharing a common histologic appearance
with other classes. The most obvious of these relates to the lung
SCC and SCCother type tumors. Metastatic SCC of unknown origin
represents a small but significant fraction of all CUP cases (7), with
the differential often including head and neck cancer or a primary
lung tumor (50). Other molecular based studies have used
comparative genetic alterations (i.e., allelic loss) to assist in

matching the clonal origins of metachronous or synchronous
SCC tumors (51); however, discordant results can occur due to
genomic loss during tumor evolution (52), thus confounding the
interpretation of results. Owing to the close molecular similarity of
SCC type tumors, special attention is required to develop a more
accurate gene expression–based classifier.
Errors were made for cases that represent a single sample of a

particular subtype, consistent with the leave-subtype-out analysis,
which showed that failure to represent specific histologic or
molecular subtypes resulted in misclassification. This can be
attributed to a paucity of gene markers that are truly universal
across all subtypes, suggesting that some tumors do not retain
expression of site of origin markers, but rather adopt an expression
pattern underlying their new ectopic and differentiated form. This
underscores the importance of representing class heterogeneity in
respect to existing knowledge of cancer histopathology. As tumors
may present in various states of differentiation, including mixed
cell phenotypes, such examples must also be represented in trai-
ning the classifier to cover the complete molecular heterogeneity
that can arise from a specific site of origin. Unlike other studies (1),
our classifier had no systematic difficulty in identifying poorly
differentiated tumors. This may be attributed to the broad

Figure 3. The translation of an expression-based classifier from microarray to quantitative PCR. A, hierarchal clustering of data generated from a
quantitative-PCR low-density array platform. Median normalized quantitative-PCR data representing 67 tissue samples were subjected to average linkage
clustering according to Pearson correlation using the program Cluster. Cluster data were visualized using the program Mapletree. Sample names refer to the
patient unique identifier and primary site of origin. Samples isolated from formalin-fixed tissue are labeled FF. For unique identifiers with the prefix AS, primary and
metastatic samples of the same cancer episode are labeled as P and M, respectively. B, comparison of methods for data transformation. Two methods for data
transformation (median or rank normalization) were used independently in two directions (per gene across samples or per sample across genes) making the
cDNA microarray and quantitative-PCR data sets compatible for building and testing SVM models. The method of ranking was tested using a titration of n rank
levels (3-76) where all genes are firstly ranked from highest to lowest fold change, relative to directionality of normalization, and then binned into n ranks. The original
measure of expression for a particular gene (i.e., a ratio representing fold difference to a reference for microarray or endogenous controls for quantitative PCR)
is substituted with the value associated with its positional rank (see Supplementary Information Part 3). C, comparison of five- and six-class SVM models, using a
per sample 15 rank normalization strategy, testing on samples processed from fresh frozen and FFPE tissue independently. The prediction accuracy is presented
relative to the proportion of samples correctly predicted with a high (H ), medium (M ), or low (L ) decision margin. The overall prediction accuracy is equivalent between
fresh frozen and FFPE tissue. The five-class model outperforms the six-class model relative to the number of predictions with high decision margins.
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Table 3. Summaries of clinical history and array predictions for unknown primary samples

Disease presentation

and histology

Differential at

initial presentation

Array prediction

and outcome

P00459: 40-y-old male nonsmoker,

no previous history. Supraclavicular

and mediastinal lympadenopathy,

lymphangitis of lung, right upper
lobe mass, and liver metastases.

Poorly differentiated adenocarcinoma.

Clinical picture most

consistent with lung but

uncertain in a young nonsmoker.

Lung (70). Minor response

to platinum/

gemcitabine, stable

disease for 3 mo on
gefitinib and progressive

disease with docetaxel.

P01328: 52-y-old female, no

previous history. Extensive
abdominal tumor. Adenocarcinoma.

Ovary, gastric, and breast Breast (100). Left

supraclavicular fossa
and axillary nodes

developed within 2 mo

of chemotherapy.
P01405: 66-y-old male nonsmoker, no previous history.

Paraaortic lymphadenopathy and bone metastases.

Clear cell epithelioid tumor.

Pathology review favored

sarcomatoid renal cell cancer;

but renal CT and MRI normal.

Renal (88).

P01698: 37-y-old female, no previous history.
Pelvic mass, ascites, and left pleural effusion.

Moderately differentiated adenocarcinoma

with occasional signet ring features.

Pathologist thought that morphology
strongly suggested nonovarian origin

(e.g., gastric, colorectal, pancreas, or lung).

Clinical picture consistent with ovarian cancer.

Ovarian (92). Treated with
taxol/carboplatin for

presumed ovarian

primary. Good clinical

response with
normalization of CA125

P01946: 49-y-old female smoker, no previous history.

Liver, bone, adrenal, and mediastinal disease.

Atypical infiltrating epithelial cells forming
glandlike structures.

Lung, colorectal. Lung (60)

P02971: 82-y-old female ex-smoker, no previous history.

Bilateral cervical and mediastinal lymphadenopathy
and bilateral lung metastases. Poorly differentiated

adenocarcinoma

Pathologist suggested possible primaries included lung,

endometrium, breast, and gastrointestinal. Clinical
pattern of disease suggestive of lung or breast and

colon needed to be excluded based on PET finding.

SCCo � Lung (0). Patient

did not receive any
active treatment.

P02989: 65-y-old male no previous history.

Inguinal and mediastinal lymphadenopathy,
bone, and lung metastases. Undifferentiated carcinoma.

Renal favored with differential of adrenal or

hepatocellular carcinoma. However, no renal mass
identified and histology atypical.

Renal (62). Treated as

unknown primary with
carboplatin and

gemcitabine Some

improvement in

symptoms with
chemotherapy with

best response of

stable disease.
P00563: 67-y-old female diagnosed in 1994 with stage IIC

poorly differentiated endometrioid ovarian cancer.

Treated with TAH/BSO and chemotherapy. Presented

in 1998 multiple sclerotic bone metastases.
Undifferentiated carcinoma.

Pathologist in 1998 favored recurrent ovary or

gastrointestinal primary. Clinical picture

raised question of breast.

Breast (100). Patient

deceased without

formal identification of

a breast primary
although the clinical

picture strongly

supported breast as the

primary site.
P00780: 81-y-old female smoker with a past history of

unresectable papillary thyroid cancer diagnosed in 2000.

Presented in 2001 with large mass of thyroid invading

trachea. Poorly differentiated adenocarcinoma.

Lung or thyroid. Lung (82). Good response

to radiotherapy.

In 2003 presented with

left lower lobe collapse.
Found to have tumor

involving carina

and left lower
lobe bronchus.

P01169: 31-y-old female with history of stage I high-grade

borderline mucinous ovarian tumor 6 y previously.

Sclerotic metastases in pelvis and left femur. Adenocarcinoma.

Pathologist favored ovary but could not

exclude breast, lung, or gastrointestinal primary.

Breast (48). Treated as

unknown primary with

ECF regimen and
subsequently docetaxel

without response

(Continued on the following page)
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selection of subtypes we have used, some of which by definition are
poorly differentiated (i.e., large cell lung tumors). Although several
studies have compiled multiple data sets in an effort to increase
sample coverage (11, 12), to our knowledge no other study has
attempted to compile a multiclass data set specifically addressing
the issues of histologic diversity.
The ability to accurately classify tumors using a refined number

of gene markers suggests that translation of an expression-based
classifier from microarray to quantitative PCR is possible. As a
proof of principle, we have focused on a common differential
diagnosis for CUP in women (7) covering the five sites of ovarian,
gastric, colorectal, pancreas, and breast. A set of 79 site-specific
markers translated to quantitative PCR allowed measurement of
gene expression from either fresh or FFPE tissue. The robust
quantification of mRNA from formalin-fixed tissue is consistent
with several previous studies (13–15) but this is the first time to our
knowledge where an accurate classifier has been generated using
machine learning. Furthermore, the use of ranking to generate a
classifier from microarray data, another novel feature of this work,
negated the requirement to construct an entirely new training set
using quantitative-PCR.
Our classifier was applied to a cohort of metastatic tumors in

which the primary site could not be unequivocally identified at
initial presentation, despite extensive clinical investigation.
Although not all tumors in our series fit the classic definition
of CUP, they represent a spectrum of real clinical scenarios where
there was difficulty in diagnosing the origin of the tumor and
determining clinical management. Predictions with strong deci-
sion margins could be made for all tumors, excluding the two
cases of metastatic SCC. For several cases, compelling evidence
became apparent during the course of the disease, which further
validated the classifier predictions, albeit not until after the
patient had endured extensive investigative procedures. It is
difficult to obtain a definitive accuracy score for the classifier
when testing on CUP tumors. This relates to the nature of these
samples and that the origin of the majority of such tumors
remains truly unknown (10).

Despite the bleak situation for patients with advanced stage
cancer, treatments are becoming increasingly specific with
approaches varying significantly depending on the cellular origin
of the cancer. With recent advances in chemotherapy, specific
regimens have led to improvements in survival and quality of life
even in cancers that have traditionally been regarded as relatively
chemoresistant (e.g., non–small-cell lung, colorectal, and pancreatic
tumors; refs. 53–55). It is likely that there will be cost savings from
more directed clinical evaluation of patients, enabled by a mole-
cular genomics test. The average cost for diagnostic evaluation of
CUP patients at a major US cancer center was f$18,000 when a
large series was considered (56) whereas a test similar to that
described here is likely to cost under $1,000. Whereas a PCR or
microarray-based classifier would not be expected to obviate the
need for clinical investigation, it could allow much more focused
testing, resulting in reduced cost, patient morbidity, and improved
outcome.
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Table 3. Summaries of clinical history and array predictions for unknown primary samples (Cont’d)

Disease presentation

and histology

Differential at

initial presentation

Array prediction

and outcome

P01382: 74-y-old female smoker with previous

history of renal cell tumor. Presented with

bone metastases right ileac crest. Poorly

differentiated adenocarcinoma.

Renal or lung. Lung (71).

P02864: 53-y-old male, ex smoker with

past history of skin lesions removed

from back, arm, and head. Presented

with solitary axillary mass.

Skin, renal, and hepatocellular. SCCo � Lung (0). Presumed to be

skin primary, received

postoperative radiotherapy.

P01245: 60-y-old female presented with

postmenopausal bleeding and underwent

a hysterectomy. Found to have stage
IC endometrial adenocarcinoma, colorectal

tumor, and liver metastases.

Histology for liver metastasis favored

colon but could not exclude endometrial origin.

Colorectal (100). Treated with

oxaliplatin and 5-fluorouracil

chemotherapy with partial
response of liver metastases

NOTE: The decision margin between first and second SVM predictions is shown in parentheses.

Abbreviations: CA125, tumor-associated antigen CA125; CT, computed tomography imaging; DVT, deep vein thrombosis; IVC, inferior vena cava; PET,

positron emission tomography imaging; TAH/BSO, total abdominal hysterectomy/bilateral salpingo-oophorectomy.
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