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ABSTRACT

DNA microarray technology provides useful tools for profiling global gene expression patterns in different
cell/tissue samples. One major challenge is the large number of genes relative to the number of samples. The
use of all genes can suppress or reduce the performance of a classification rule due to the noise of nondis-
criminatory genes. Selection of an optimal subset from the original gene set becomes an important prestep in
sample classification. In this study, we propose a family-wise error (FWE) rate approach to selection of dis-
criminatory genes for two-sample or multiple-sample classification. The FWE approach controls the proba-
bility of the number of one or more false positives at a prespecified level. A public colon cancer data set is
used to evaluate the performance of the proposed approach for the two classification methods: k nearest neigh-
bors (k-NN) and support vector machine (SVM). The selected gene sets from the proposed procedure appears
to perform better than or comparable to several results reported in the literature using the univariate analy-
sis without performing multivariate search. In addition, we apply the FWE approach to a toxicogenomic data
set with nine treatments (a control and eight metals, As, Cd, Ni, Cr, Sb, Pb, Cu, and AsV) for a total of 55
samples for a multisample classification. Two gene sets are considered: the gene set !F formed by the ANOVA
F-test, and a gene set !T formed by the union of one-versus-all t-tests. The predicted accuracies are evalu-
ated using the internal and external crossvalidation. Using the SVM classification, the overall accuracies to
predict 55 samples into one of the nine treatments are above 80% for internal crossvalidation. !F has slightly
higher accuracy rates than !T. The overall predicted accuracies are above 70% for the external crossvali-
dation; the two gene sets !T and !F performed equally well.
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INTRODUCTION

DNA MICROARRAY TECHNOLOGY provides tools to simulta-
neously study the expression profiles of thousands of dis-

tinct genes in a single experiment. Application of this technol-
ogy ranges from the study of gene expression in yeast under a
variety of experimental conditions (e.g., Eisen et al., 1998) to
the study of differences between normal and tumor tissues
(Alon et al., 1999) and differences between different tumor sub-
types (Golub et al., 1999). DNA array technology can also be
applied to toxicology testing for toxicity screening of unknown
compounds and as a tool for mechanistic studies (Burczynski

et al., 2000). Clustering analysis and classification are two com-
monly used analyses for determining relationships between
genes or gene clusters to identify biological functions or to pre-
dict specific biological sample outcomes.

One major challenge in the analysis of gene expression data
is the large number of genes in the data set. Many of those
genes are not relevant to clustering or classification. Prior to
clustering/classifying the data, there are often questions about
adjusting the data in some way to enhance relationships be-
tween genes and samples. Data can be removed if they do not
provide significant incremental information, or more impor-
tantly, they may confuse the analysis and make it unnecessar-
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ily complex. If the expression of a particular gene is the same
in all samples, it will not be useful for distinguishing these sam-
ples. If the expressions for a gene are very different over all
samples, it may contain useful information to distinguish them
(Raychaudhuri et al., 2001). Therefore, selection of an “opti-
mal” subset (gene identification) from the original data set is
an important prestep in clustering and classification. A com-
mon approach is to select a fixed number of the highest ranked
genes based on t-test-like statistics or some discrimination
measures (e.g., Liu et al., 2002). A problem with this approach
is that the selected differentially expressed genes do not meet
statistical criterion of controlling false positive error rates.
Also, the number of genes selected for a follow-up analysis is
arbitrary.

Selection of an appropriate gene set can be obtained using
statistical significance testing. A test statistic with its corre-
sponding p-value is calculated for each gene to determine dif-
ferential expressions (either overexpressed or underexpressed)
among experimental samples. A small P-value indicates an ev-
idence of differential expressions. Typically, an investigator
either selects those genes with P-values below the prespecified
cutoff “significance” level (discussed below) or selects a fixed
number of the genes with the smallest P-values (e.g., Alon et
al., 1999; Nguyen and Rocke, 2002). A subset of “significantly”
differentially expressed genes is then identified.

The P-value is ordinarily defined under a single hypothesis.
The P-value is the probability for the experimental outcome if
there is no difference among samples for an individual gene. A
test procedure is said to control the Type I error probability at
the significance level ! if the observed P-value ! !. The level
! is a marginal Type I error; the probability inference refers
only to the particular gene, irrespective of the results for the
other genes. In a microarray experiment, hundreds or thousands
of tests (genes) are conducted, simple use of P-values (com-
paring the observed P-values with the ! to determine signifi-
cant genes) without adjustment for multiple testings could lead
to a large chance of false positive findings. For example, if m
tests are made with each at a significance level of !, then the
probability of one or more false positives can be as large as
1 " (1 " !)m. For m # 1000 and ! # 0:05, the probability of
one or more false positives is almost 1 " (1 " 0:05)1000 ! 1.
That is, some genes will have P-values less than 0.05, even
when the samples are not different.

This article proposes using the family-wise error rate
(FWE) controlled approach to gene selection for sample clas-
sification (prediction). The goal of sample prediction is to de-
velop a decision rule that accurately predicts the class mem-
bership of a new sample based on the expression profiles of
the selected genes. Several classification algorithms have been
adopted for classification of cancer subtypes or gene func-
tions. Three commonly used classification algorithms are the
Fisher’s linear discriminant function, nearest-neighbor classi-
fiers, and support vector machines (e.g., Ramaswamy et al.,
2001, Dudoit et al., 2002). The Fisher’s discriminant function
method has not performed as well on most of the data sets
evaluated. In this paper, we evaluate the proposed FWE ap-
proach using the nearest-neighbor classifiers and support vec-
tor machine algorithms. We use the public colon cancer data
set (Alon et al., 1999) and a toxicogenomic data set to illus-

trate and evaluate the predictive accuracy of the proposed 
approach.

MATERIALS AND METHODS

Sample classification can be decomposed into three steps:
(1) selection of discriminatory genes, (2) selection of predic-
tion methods, and (3) crossvalidation to estimate accuracy of
prediction.

Selection of a discriminatory gene set

Let xi,c1
. . . , xi,cn1

denote the intensity from the control (nor-
mal) group with n1 samples for gene i and xi,t1 . . . , xi,tn2

de-
note the intensity from the treated (diseased) group with n2 sam-
ples, i # 1, . . . , m. To determine a differentially expressed
gene, say gene i, the procedure can be formulated as the hy-
pothesis:

H0 : "ic # "it versus H1 : "ic $ "it,

where "ic and "it denote the mean of gene i for a normal group
and a diseased group, respectively. Common statistical signif-
icance testing approach is to compute the t-statistic

ti #

where x̄ic and x̄it are the means of gene i for the control and
treatment groups, and s2

ic and s2
it are the sample variances for

the control and treated groups, respectively. Because the gene
expression data are generally not normally distributed, the ran-
dom permutation test is often recommended to compute the (un-
adjusted) P-values of the t-statistic.

An approach to account for multiple testings is to control the
family-wise error rate (FWE). The family-wise error rate (ex-
periment-wise error rate) is the error probability associated with
one or more false rejections for all tests included in the exper-
iment. That is, the FWE approach ensures that the probability
of making one or more false positives (among the genes tested)
is less than a predetermined level ! (e.g., 0.05). The simplest
FWE method is the Bonferroni correction by dividing ! by the
number of genes m as a significance level for each individual
test. Because the test for each gene has an !/m probability of
making Type I error, the family-wise error rate is at most !.
The Bonferroni correction procedure equivalently can be per-
formed by multiplying all P-values by m; the Ps so obtained
are then compared with !. These P-values are referred to as the
adjusted P-values. Thus, the adjusted P-values take into account
the multiplicity. The adjusted P-values can be compared di-
rectly with the FWE-based significance level. In the FWE ap-
proach, the genes with adjusted P-values less than or equal to
! are selected. The Bonferroni procedure is known to be con-
servative in that the actual family-wise error is less than !. Sev-
eral modified Bonferroni procedures and resampling methods
(Hochberg and Tamhane, 1987; Westfall and Young, 1993)
have been developed to reduce the conservatism.

Mathematical theory to compute the adjusted P-values is ex-
plained briefly below. The probability of one or more false pos-

"x̄ic " x̄it"
%%
#s2

ic/n1 &$ s2
it /n2$
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itives is equal to the probability that the smallest P-value is less
than or equal to !; alternatively, the largest of the observed t-
statistics t1, . . . , tm is significant at the ! level. Thus, the FWE
can be defined according to the probability distribution of the
maximum t-statistic, denoted by t(m), under the null hypothe-
sis. The FWE corrected (adjusted) P-value for gene i is

p[t]i # P{t(m) ' ti" under the null hypothesis}.

The exact distribution of t(m) cannot be computed mathemati-
cally. The adjusted P-values are computed using the permuta-
tion resampling method (Westfall and Young, 1993). The al-
gorithm for computing adjusted P-values is given as follow.

Resampling algorithm for computing adjusted P-values

0. Set ki # 0 for i # 1, . . . , m.
1. Compute raw statistic ti from the sample data set xi,c1, . . . ,

xi,cn1
, and xi,t1, . . . , xi,tn2

for i # 1, . . . , m
2. Generate one bootstrap sample by sampling without re-

placement from the pooled sample of the original data set
with the same sample size for each group.

3. Compute the statistic t*i (using the same method in step 1)
from the bootstrap sample for i # 1, . . . , m.

4. Find the maximum of t*1, . . . , t*m based on the bootstrap
sample, t*(m) # max{t*1, . . . , t*m}.

5. Compare each ti to t*(m), and set ki # ki & 1, if ti ! t*(m).

6. Repeated step 2–4 enough times B*, say, 50,000.
7. Compute the proportion of bootstraps samples for which

t*(m) ' ti to obtain the adjusted P-value as p̃i # ki/B*.

The adjusted P-values for more than two sample compar-
isons can be obtained using the analysis of variance (ANOVA)
F-test statistic. The F-test assumes a constant variance across
all experimental samples. Finally, because the FWE approach
is a very stringent criterion, it is possible that no gene is se-
lected. In this case, we assign each sample with an equal prob-
ability to each class.

Classification algorithms

A classification rule is derived from a training data set and
then is used to classify (predict) new observation data. Two
classification methods, based on a preselected set of genes to
form discrimination rule, are considered: the k-nearest neigh-
bor classifiers (k-NN), and support vector machines (SVM).

The k-NN classifiers are a typical memory-based prediction
method (Fix and Hodges, 1951). Given a set of training data
X" with class labels C", the class label of a new testing sam-
ple x0 is determined in the following steps: (1) calculating the
dissimilarity of x0 to each sample of the training data set X",
(2) finding the k closest points, {x1

"*, . . . , xk
"*} " X", in the

training data set, and (3) assigning the class label by using the
majority vote among the k closest neighbors. Apparently, the
choice of k will influence the performance of the k-NN algo-
rithm. The optimal setting of k can be determined using cross-
validation techniques. Based on a preliminary analysis, k was
set to be 1.

The SVM classifiers are a machine-learning prediction (Vap-
nik, 1998). In a two-class classification, an SVM classifier tries

to draw a hyperplane in the m-dimensional gene expression
space between the two classes. If no separating hyperplane ex-
its, the samples are mapped into a higher dimensional space
where such a separator does exist. In this paper, we use the
Gaussian kernel. We also extend the procedure to the multiple
class classification.

Crossvalidation

Microarray gene expression data are characterized by the
number of genes (variables) far exceeding the number of sam-
ples. This presents challenges for classification algorithms,
which are generally designed with a large number of samples
over few variables. A common problem is overfitting the data.
That is, the predicted model can fit the original data well but
may predict poorly for new data. Classification algorithms, typ-
ically, involve a training phase run on samples whose classes
are already known, and a testing phase generalizes the algo-
rithm developed from the training data to predict classes of the
test data and to estimate the predicted error rate. Training data
and testing data ideally should be independent and identically
distributed data sets. However, in the context of microarray
data, because the number of arrays is usually small, the cross-
validation approach often uses a large fraction of data in the
training phase and the remaining fraction in the testing phase
to estimate the error rate. For example, in the “leave-one-out”
crossvalidation, one sample is excluded each time from the
whole sample, and then is classified in the testing phase based
on the predictive model developed from the training set. This
process is iterated until all samples are classified.

In the leave-one-out crossvalidation procedure, the total
number of predictions for estimating classification error rates
is n, one for each array. A more general crossvalidation algo-
rithm is the V-fold crossvalidation. In the V-fold crossvalida-
tion, the entire data set is divided into V subsets of roughly
equal size and the classification method is repeated V times.
Each time, the prediction rule is trained on (V-1) subsets to-
gether and then the classification rule is applied to the remain-
ing subset as the test data set. This process is iterated for all V
subsets (i.e., until all n samples are classified). The error (or
accuracy) rate across all V subsets is computed for each class.
This process can be repeated b times with different partitions
of V subsets. The average accuracy rate over the b trials is cal-
culated.

One important goal in crossvalidation is to provide an unbi-
ased estimate of error rates. Crossvalidation can be performed
prior to the gene selection (external crossvalidation) or after
gene selection (internal crossvalidation). In the internal cross-
validation the test data set is a subset of the original data set
used in gene selection. Ambroise and McLachlan, (2002) ar-
gued that the external crossvalidation should be used to avoid
gene selection bias in estimating the error rate of a classifica-
tion algorithm. One problem with extending the gene selection
to the external crossvalidation is that only the V-1 subsets of
observations are used in the testing; this results in the loss of
power of identifying differentially expressed genes. In the in-
ternal crossvalidation, the same selected gene set is used in each
of training samples. The internal crossvalidation can be re-
garded as an evaluation of the performance of the selected gene
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set for a classification algorithm. On the other hand, in the ex-
ternal crossvalidation, a new gene set is selected for each train-
ing sample set. The external crossvalidation is an evaluation of
the selection procedure for a classification algorithm. The ex-
ternal crossvalidation is more consistent with the notion of
crossvalidation using independent samples. The internal and ex-
ternal crossvalidations are computed to evaluate the perfor-
mance of the proposed FWE approach to gene selection for
sample classification.

RESULTS

Colon data

The colon tumor data set (Alon et al., 1999) consists of 40
tumor and 22 normal colon tissue samples on 2000 human
genes with highest minimal intensity across the 62 samples.
The normal and colon samples were compared using the t-sta-
tistic given in Materials and Methods section. The number of
permutations to compute the adjusted P-value was 50,000. The
2000 genes were ranked according the adjusted P-values for
gene selection.

Several researchers have applied different gene selection
and/or classification procedures to this data set. In the evalua-
tion of the performance of a procedure, they all used internal
crossvalidation to estimate the prediction error. Alon et al.
(1999) clustered the 62 samples into two clusters. Three nor-
mal tissues (n8, n12, n34) and five tumor tissues were mis-
clustered (T2, T30, T33, T36, T37). Using the top 1000 t-
test–based ranked genes and an SVM approach with the
leave-one-out crossvalidation, Furey et al. (2000) misclassified
six tissues (T30, T33, T36) and (n8, n34, n36). Using top 35
entropy-based ranked genes and a (prediction by collective like-
lihood) classification algorithm, Li and Wong (2002) misclas-
sified the five tissues (T28, T33) and (n1, n2, n39). Other re-
searchers proposed multivariate methods to select an optimal
subset of genes that have the smallest error with respect to a
particular classification algorithm (Li et al., 2001; Xiong et al.,
2001; Hellem Bø and Jonassen, 2002). Except for two and three
genes, these methods typically use Monte Carlo simulation to
select a “near optimal’ gene set. The smallest error rate reported
was 6.5% with only three genes. However, most reported error
rates were about 10% or above.

We considered the FWE # 0.01, 0.05, and 0.10 for a cutoff
to select a discriminatory gene set. Four different partitions were
considered for V-fold crossvalidation, V # 2, 5, 10, and 62. For

the 2-, 5- and 10-fold crossvalidations, we repeated b # 100
times. Note that the 62-fold (leave-one-out) crossvalidation con-
sists of only one partition; therefore, one iteration (b # 1) is
sufficient. For example, in the 10-fold crossvalidation, we ran-
domly divided the 62 samples into 10 groups with the sizes (6,
6, 6, 6, 6, 6, 6, 6, 7, 7). The classification started with the first
six samples as the test set and the remaining 56 samples as the
training set. The process was iterated until the final seven sam-
ples were a test set with the first 55 samples as a training set.
The whole process was repeated 100 times. The average error
rate was estimated. Tables 1 and 2 show the error rate estimates
of the the 1 " NN and SVM algorithms for the internal and ex-
ternal crossvalidations, respectively. It appears that the SVM
outperforms the 1 " NN in all cases. Our discussion mainly fo-
cuses on the results from the SVM method.

The internal crossvalidation estimates the error rates for the
selected gene set. The number of genes selected, denoted by r,
were 12, 27, and 44 for ! # 0.01, 0.05, and 0.10, respectively.
On average, r # 12 gives the smallest error rates; the error rates
for r # 27 and 44 are similar. Except for V # 2, the number of
partitions (folds) does not appear to have much effect on the er-
ror estimates. Different fold partitions represent different num-
bers of samples to establish the discrimination rule. In general,
a highly discriminatory gene set (e.g., r # 12) is expected to have
the predictive accuracy be positively correlated with the number
of fold (V) for the crossvalidation. On average, these estimates
are consistent with the results of about 10% reported by many
works discussed above. We have the following findings with re-
gard to which samples were misclassified using the leave-one-
out crossvalidation. Five samples were misclassified (T30, T33,
T36, n34, n36) for r # 12, six samples were misclassified (T2,
T30, T33, T36, n34, n36) for r # 27, and seven samples were
misclassified (T2, T30, T33, T36, n1 2, n34, n36) for r # 44.
Note that six of seven misclassified samples (T2, T30, T33, T36)
and (n12, n34) were among the eight samples misclassified by
Alon et al. (1999). The normal sample n36 was also misclassi-
fied by Furey et al. (2000). In summary, the selected gene sets
from the proposed procedure appears to perform better than or
comparable to several results reported in the literature using uni-
variate analysis without performing multivariate search.

The external crossvalidation estimates the error rates for a
selection procedure. Gene selection and classification rule are
carried out in each training set. Because of the loss of power
the number of genes selected will decrease as the number of
partitions decreases. For example, for ! # 0:01, the average
number of genes selected are 12.2, 8.5, and 5.5 for V # 62, 10,
and 5, respectively. We do not report the results for V # 2,
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TABLE 1. ERROR RATE ESTIMATES OF THE INTERNAL CROSSVALIDATION FOR THE COLON

TUMOR DATA USING THE 1-NN AND SVM CLASSIFICATION ALGORITHMS

1-NN classification SVM classification

! n Two-fold Five-fold 10-fold 62-fold Two-fold Five-fold 10-fold 62-fold

0.01 12 0.1552 0.1618 0.1597 0.1613 0.1077 0.0981 0.0832 0.0806
0.05 27 0.1618 0.1837 0.1937 0.1935 0.1179 0.1019 0.1271 0.0968
0.10 44 0.1594 0.1806 0.1897 0.1935 0.1242 0.1065 0.1011 0.1129
1.00 2000 0.2753 0.2745 0.2795 0.2742 0.1744 0.1511 0.1411 0.1613



since it performs poorly. The error rates estimated from the ex-
ternal crossvalidation are considerably higher than those from
the internal crossvalidation. The two factors that contribute to
the higher error estimates in the external crossvalidation are:
(1) loss of power due to a reduced sample size in the V-fold
crossvalidation, and (2) selection variation due to failing to
identify some critical genes or identifying some irrelevant genes
that mask the performance. In the leave-one-out partition, the
numbers of genes selected by the external and the internal cross-
validations are similar; the differences between the internal and
external crossvalidations can be attributable to the selection
variation. But in the fivefold and 10-fold crossvalidation, the
differences are attributable to both the loss of power and se-
lection variation.

Ambroise and McLachlan (2002) compared the difference in
error estimates between the internal and external crossvalida-
tions using an SVM method with linear kernel and a backward
elimination gene selection procedure. They reported error esti-
mates from the internal and external 10-fold crossvalidation for
the selected number of genes r # 2k, k # 1, . . . , 11. The esti-
mated internal error rates were below 5% for k # 2, . . . , 9.
For external crossvalidation, all estimated error rates were well
above 15%; the lowest estimate, 17.5%, occurred for a subset
of 64 # 26 genes. Our smallest error estimate was 15.65% for
! # 0:05. However, it should be noted that Ambroise and
McLachlan (2002) used only 31 samples in the analysis.

With regard to the k-NN method, except for larger predic-
tion errors compared to the SVM method, the results from k-
NN are consistent with the results from SVM. However, an in-
teresting difference is that for ! # 0:05, the error estimates
between internal and external crossvalidation are comparable.
Finally, for r # 2000, without the gene selection process, it
gives substantially large error predictions.

Internal and external crossvalidations with respect to the
number of the selected set of genes (the approach of selecting
a fixed number of genes) were further evaluated. Selection of
a fixed number of genes can be based on the ranking of unad-
justed P-values, since the adjustment of P-values does not af-
fect their ranking. The selection of a fixed number of genes is
asymptotically equivalent to using the unadjusted P-values to
determine a cutoff. For example, the selection of 100 genes out
of 2000 genes corresponds to the nominal level of 0.05 #
100/2000. We evaluated the following sizes: r # 10; 20 % 100,
500, and 2000. Five hundred genes of the smallest P-values
were considered by Alon et al. (1999).

Figures 1 and 2 are the plots of the averaged error estimates
from the internal and external crossvalidations for 1-NN and
SVM, respectively. The results are consistent with the results

of Tables 1 and 2. The error rates from the internal crossvali-
dation are much larger without gene selection (r # 2000). For
the 1-NN method, Figure 1 shows that except for r # 10, it does
not appear that the external crossvalidation will give larger er-
ror predictions than the internal crossvalidation. For the SVM
method, Figure 2 shows that the error estimates from the ex-
ternal validation do not vary much with r, between 13 to 18%.
It is worthwhile to note that the objective of gene selection is
to select the smallest best subset. The smallest error estimate
from the external crossvalidation occurs at r # 20 using the
SVM methods. However, the Type I error probability of the 20
selected gene is not known without computing the adjusted P-
values (Tables 1 and 2).

Toxicogenomic data

This study was conducted at the Academia Sinica, Taiwan, to
examine gene expression patterns with respect to metal expo-
sures in human skin fibroblast cells using a colorimetric cDNA
microarray technology (Chen et al., 1998). The data set consisted
of control and eight different metal treatment samples for a total
of 55 arrays. The entire experiment was conducted in 14 sepa-
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TABLE 2. ERROR RATE ESTIMATES OF THE EXTERNAL CROSSVALIDATION FOR THE

COLON TUMOR DATA USING THE 1-NN AND SVM CLASSIFICATION ALGORITHMS

Average number of genes 1-NN classification SVM classification

! Five-fold 10-fold 62-fold Five-fold 10-fold 62-fold Five-fold 10-fold 62-fold

0.01 5.5 8.5 12.2 0.2724 0.2216 0.1774 0.2365 0.1815 0.1290
0.05 16.3 22.4 26.8 0.1966 0.1731 0.1613 0.1811 0.1565 0.1452
0.10 26.1 33.9 42.3 0.1856 0.1671 0.2097 0.1692 0.1576 0.1290
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FIG. 1. Internal and external error rates of the 1-NN classi-
fication, based on 100 replications for the fivefold and 10-fold
crossvalidation.



rate days. In each day, two to six arrays, in which one was a con-
trol array, were conducted. Thus, the control group consisted of
14 replicates. Treatments were eight different metal exposures
(As, AsV, Cd, Cr, Cu, Ni, Pb, and Sb). The number of arrays for
individual metals ranged from four to seven. The microarray was
As-chip-TCL01 array. There were 708 genes (some genes con-
tained duplicate or triplicate spots) on each array. Sixteen house-
keeping genes and eight plant (control) genes were spotted to
monitor for nonspecific background binding. These 24 genes
were excluded from the analysis. The final data set contained 684
genes (spots). The intensity data were first log-transformed (base

2) to stabilize the variance and adjust the extremes. The range of
the log-transformed intensities was between 0 and 16. All analy-
ses were performed in the log base 2 scale. We applied the gen-
eralized additive model (Tsai et al., 2004) to adjust for the ef-
fects due to different hybridization dates.

The normalized intensity data were analyzed using the analy-
sis of variance (ANOVA) F-test to determine an overall dif-
ference in expression levels among the nine (control and eight
metals) treatment groups. The adjusted P-values were computed
based on the method described earlier. An adjusted P-value less
than or equal to 0.05 was used as a cutoff to select the signif-
icant gene set, denoted by (F. The number of genes selected
was 48. The ANOVA F-test is a global test; it does not address
the questions of individual treatment effects. Alternatively, the
one-versus-all (OVA) test was used to compare each group with
the remaining eight groups for all nine groups. In each com-
parison, the OVA test identified a set of genes that were sig-
nificantly different between the tested group and the average of
the remaining groups. Using a cutoff of 0.05, nine sets of sig-
nificance genes were obtained, denoted as Ti for i # 1, . . . , 9.
Each gene set contained treatment-specific marker genes that
are different from the average of the remaining groups. The
union of the nine sets Tis, (T # #9

i # 1 Ti, consisted of all genes
that distinguish each single group from the remaining groups.
However, the gene set (T may not control the FWE at 0.05,
since nine comparisons were performed. The total number of
genes was 32. The numbers of genes in Tis were 21, 2, 0, 4, 1,
0, 3, 0, and 4 for Control, As, AsV, Cd, Cr, Cu, Ni, Pb, and
Sb, respectively. Note that there were genes that were signifi-
cant in two or more groups. The gene Hs.72984 was signifi-
cant in Control, Cd, and Sb groups simultaneously, and the gene
Hs.80464 was significant in both Control and Cd groups. There
are no significant genes for the, AsV, Cu, and Pb groups. This
can affect the performance of (T.

The performance of the gene sets (F, (T, and (A were eval-
uated, where (A consists of all 684 genes. Prediction accuracy
for each gene set was computed using the 1-NN and SVM clas-
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FIG. 2. Internal and external error rates of the SVM classifi-
cation, based on 100 replications for the fivefold and 10-fold
crossvalidation.

TABLE 3. ESTIMATED ACCURACY RATES (%) OF THE INTERNAL AND EXTERNAL USING THE 11-FOLD (CV11) AND LEAVE-ONE-
OUT (CV55) CROSSVALIDATIONS FOR THE TOXICOGENOMIC DATA USING THE SVM MULTICLASS CLASSIFICATION ALGORITHM

Internal crossvalidation External crossvalidation All genes

CV11 CV55 CV11 CV55 CV11 CV55

Metal n (T (F (T (F (T (F (T (F (A (A

Ctrl 14 99.9 100 100 100 96.5 98.6 92.9 100 82.6 100.0
As 7 84.7 96.9 85.7 100 75.0 81.5 57.1 71.4 35.6 0.
AsV 5 79.6 83.6 80.0 80.0 71.6 63.9 80.0 80.0 36.8 0.
Cd 6 97.3 77.4 100 66.7 79.0 63.2 83.3 66.7 13.6 0.
Cr 5 59.4 88.9 60.0 100 47.4 40.3 60.0 60.0 0.3 0.
Cu 5 77.0 76.8 80.0 80.0 75.2 56.9 80.0 60.0 20.3 0.
Ni 4 68.5 81.2 75.0 100 49.8 65.5 75.0 75.0 12.4 0.
Pb 4 36.3 39.9 50.0 50.0 42.3 44.0 50.0 50.0 12.7 0.
Sb 5 97.0 78.0 100 80.0 54.4 69.6 80.0 80.0 40.9 0.
Total 55 82.9 84.8 85.5 87.3 72.0 71.3 76.4 76.4 37.8 25.5

No. of genes 32 48 32 48 24.4a 30.4a 29.6a 43.0a 684 684

The crossvalidation 11-fold accuracy was obtained by the average over 100 random split into training and test sets.
aAverage number of gene selected over all partitions.



sification algorithms with 11-fold and leave-one-out crossvali-
dation. The 11-fold crossvalidation was repeated b # 100 times.
The total number of misclassified samples from all trials was
calculated for every class in each iteration. The average accu-
racy rate was calculated for each class. Table 3 shows the pre-
diction results from the three gene sets using the SVM classi-
fication. The results from the 1-NN were similar.

Except for the set (A, the internal crossvalidation has the
overall accuracy rates above 80% and the external crossvalida-
tion has the overall accuracy rates above 70%. The number of
genes selected from the internal crossvalidation are 32 and 48
for (T and (F, respectively. (F has slightly higher accuracy
rates than (T. The average numbers of genes selected from the
external 11-fold crossvalidation are 24.4 and 30.4 for (T and
(F, respectively, while the average numbers from the leave-
one-out crossvalidation are 29.6 and 43.0. The lower accuracy
rates for the 10-fold crossvalidation, compared to the leave-one-
out crossvalidation, can be due to failure to identify critical dis-
criminatory genes. In the external crossvalidation, the two sets
(T and (F perform equally. The accuracies of individual clas-
sifications for the Pb samples are low. This may not be a sur-
prise, since there is no discriminatory gene for the Pb class.

DISCUSSION

DNA array technology has been applied to sample cluster-
ing and sample prediction by many researchers. Because of a
large number of genes measured, selection of an appropriate
number of discriminatory genes from the original gene set is
critical to the accuracy of the clustering and prediction. Many
investigators have proposed different gene selection methods.
The gene selection methods can be grouped into two ap-
proaches: univariate and multivariate analysis. The univariate
analysis is the most commonly used approach (including the
present approach). This approach examines one gene at a time;
it ranks all genes according to discriminatory measures and se-
lects a subset of top-ranked genes to be used for classification.
This approach does not take multigene correlation into account.
The multivariate analysis approach examines the joint discrim-
inative ability of several genes based on a specific scoring cri-
terion. The objective is to find the best subset among all pos-
sible subsets. Typically, hundreds of thousands of subsets of
discriminative genes are evaluated with a classification algo-
rithm. After that, an optimal subset is determined. This approach
is limited to a very small number of genes in a subset, since
exhaustive search is computationally prohibitive. Related ap-
proaches include the stepwise (forward or backward) selection
method to obtain the “optimal” subset for a fixed r. The major
problem of the multivariate approach is that the number of genes
in the subset considered needs to be known a priori.

Dimension reduction is a closely related problem to the gene
selection. Dimension reduction techniques define a smaller num-
ber of hybrid genes that are a composite of the original genes.
These hybrid genes are chosen to provide independent infor-
mation about different samples. Principal component analysis
and multidimensional scaling (MDS) are the two most recog-
nized dimension reduction methods for microarray data analy-
sis. Recently, Nguyen and Rocke (2002) proposed a two-step
procedure: dimension reduction using partial least squares and

classification using logistic discrimination for tumor classifica-
tion. They used partial least squares to select three gene com-
ponents. One problem with the dimension reduction approach is
that the interpretation of the gene components is often difficult.

The performance of a sample classification procedure de-
pends on the gene selection method, the number of selected
genes, and the classification method. Regardless of the selec-
tion method, different numbers of genes selected will give dif-
ferent classification results. There is no theoretical estimation
of the optimal number of selected genes even for a given spe-
cific classification algorithm on a particular application. The
optimal gene set may depend on a classification algorithm, and
can vary from data to data. It is not feasible to come up with a
general procedure to determine the optimal gene set combined
with a classification algorithm that gets the best accuracy.

Selection of discriminatory genes can be independent of the
classification algorithms. The performance of different classifi-
cation methods can be evaluated under the same selection
method. Selection of genes often attempts to identify a minimum
number of genes that are useful (Raychaudhri et al., 2001). In
this paper we propose using the FWE approach to determine the
number of genes for sample classification. The FWE approach
ensures the selection of the minimum number of differentially
expressed genes such that each selected gene is truly positive
with a confidence of (1-!) probability. However, because of the
stringent criterion imposed in the selection, it may not select any
gene. The classification rule then becomes a random assignment.
On the other hand, in a study to develop genetic profiles, many
genes that might be involved in complex functional relationships
with other genes might have moderate differen-tial expressions
between experimental samples. These genes would have larger
P-values. This application requires a procedure to select a large
number of potentially differentially expressed genes involved in
gene regulation. For this application, the proposed FWE ap-
proach cannot completely reveal this information.
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