
BIOINFORMATICS Vol. 18 Suppl. 1 2002
Pages S268–S275

Marginalized kernels for biological sequences
Koji Tsuda, Taishin Kin and Kiyoshi Asai

Computational Biology Research Center, National Institute of Advanced Industrial
Science and Technology (AIST), 2-41-6 Aomi Koto-ku, Tokyo, 135-0064, Japan

Received on January 24, 2002; revised and accepted on April 1, 2002

ABSTRACT
Motivation: Kernel methods such as support vector
machines require a kernel function between objects to be
defined a priori. Several works have been done to derive
kernels from probability distributions, e.g., the Fisher
kernel. However, a general methodology to design a kernel
is not fully developed.
Results: We propose a reasonable way of designing a
kernel when objects are generated from latent variable
models (e.g., HMM). First of all, a joint kernel is designed
for complete data which include both visible and hidden
variables. Then a marginalized kernel for visible data
is obtained by taking the expectation with respect to
hidden variables. We will show that the Fisher kernel
is a special case of marginalized kernels, which gives
another viewpoint to the Fisher kernel theory. Although
our approach can be applied to any object, we particularly
derive several marginalized kernels useful for biological
sequences (e.g., DNA and proteins). The effectiveness of
marginalized kernels is illustrated in the task of classifying
bacterial gyrase subunit B (gyrB) amino acid sequences.
Contact: koji.tsuda@aist.go.jp
Keywords: kernel design; marginalized kernels; the
Fisher kernel; biological sequence classification; string
kernels.

INTRODUCTION
In kernel methods such as support vector machines (Müller
et al., 2001), a kernel function between two objects should
be determined a priori. In supervised learning algorithms,
the objective function to be optimized is clearly stated
(e.g., the expected risk), so one should determine the
kernel to optimize this function or its approximations
(e.g., the leave-one-out error). However, in unsupervised
learning algorithms such as clustering, the choice of
kernel is quite subjective. The kernel is determined to
reflect the user’s notion of similarity, which cannot be
justified nor falsified completely. However, it is not an
easy task to describe your notion of similarity as a positive
semidefinite kernel.

DNA and proteins are symbol sequences which may
have different lengths. So they have similar character-

istics to other symbol sequences such as texts (Frakes
and Baeza-Yates, 1992). In order to measure similarity
between such sequences, it is common to extract count
features, which represent the number of each symbol
contained in a sequence. Then, the similarity is obtained
as the weighted dot product between these features,
where a smaller weight is assigned for the symbols which
appear frequently. Although this approach (i.e., vector
space representation (Frakes and Baeza-Yates, 1992))
achieved a great success for texts, it is not appropriate for
biological sequences. The primal reason is that the context
changes frequently in one sequence. For example, a
DNA sequence has coding and noncoding regions, whose
statistical properties are quite different. The residuals ‘A’
in coding and noncoding regions have different meanings.
Although it is difficult to determine the boundaries of the
regions, they should be counted separately. If a sequence
of hidden variables which describe the context are avail-
able, it would be easier to design a kernel (Figure 1).
However, hidden variables are unknown in general, and
have to be estimated.

In this paper, we propose a new reasonable way to
design a kernel. First, a kernel between sequences is
defined depending both on visible and hidden variables.
Because this kernel requires both visible and hidden
variables for calculation, we call it a joint kernel. Since
hidden information is assumed to be available, the kernel
can be designed depending on the hidden context of
sequences. However, the problem is that such hidden
information is actually not available. To cope with this
problem, the posterior distribution of hidden variables
are estimated by means of a probabilistic model such as
HMM. Then, we obtain a marginalized kernel by taking
expectation of the joint kernel with respect to hidden
variables.

We will show that the Fisher kernel (Jaakkola and
Haussler, 1999)—which has been successfully applied
to many tasks e.g., protein classification (Jaakkola et
al., 2000; Karchin et al., 2002) and promoter region
detection (Pavlidis et al., 2001)—is a special case of
marginalized kernels. This reveals the joint kernel im-
plicitly assumed in the Fisher kernel, which helps us to
understand the Fisher kernel more in detail. For biological

S268 c© Oxford University Press 2002

Marginalized kernels for biological sequences

h:

x:

2

C

1

A

2

G

1

G

2

T

2

T

1

C

2

A

2

A

Fig. 1. A DNA sequence with hidden context information. Sup-
pose the hidden variable (‘h’ in the figure) indicates e.g., cod-
ing/noncoding regions. If hidden variables are known, it would be
much easier to design a kernel function between sequences.

sequences, we propose useful kernels, called marginalized
count kernels (MCKs). In order to illustrate the effec-
tiveness of our kernels, we will perform experiments to
classify bacterial gyrB amino acid sequences (Kasai et
al., 2000). As a result, it is shown that MCKs compare
favorably to the Fisher kernel.

METHODS
Marginalized kernels
Let us describe a visible variable as x ∈ X , where the
domain X is a finite set†. Our task is to define a kernel
K (x, x ′) between two visible variables x, x ′. Suppose we
have a hidden variable h ∈ H, where H is a finite set.
By utilizing the hidden information in h, the joint kernel
Kz(z, z′) is designed between two combined variables
z = (x, h), z′ = (x ′, h′). The marginalized kernel in X
is derived by taking the expectation with respect to hidden
variables:

K (x, x ′) =
∑
h∈H

∑
h′∈H

p(h|x)p(h′|x ′)Kz(z, z′). (1)

The posterior distribution p(h|x) is unknown in general,
and has to be estimated from the data e.g., by HMMs.
The calculation of K can be intractable when the cardi-
nality of H is too large. However, for useful stochastic
models such as HMMs, there are algorithms which
enable efficient computation as shown in later sections.
Since the class of positive semidefinite (Mercer) kernels
are closed under addition and multiplication (Haussler,
1999), the marginalized kernel K is positive semidefinite
as long as the joint kernel is positive semidefinite. In
convolution kernels (Haussler, 1999), sub-kernels for the
parts are aggregated into a kernel for the whole set. This
is constrastive to our approach deriving the kernel for the
part (i.e., visible variables) from the kernel for the whole
set (i.e., visible and hidden variables).

Marginalized kernel from Gaussian mixture
For intuitive understanding, we provide a simple example
of marginalized kernels. Here we derive a marginalized

† Here we determine X as a finite set for simplicity, but the results in this
paper can be easily extended to continuous domains.

kernel from Gaussian mixture with m-components. The
visible variable is a point in the d-dimensional space
x ∈ �d , and the hidden variable is an index of component
h ∈ {1, . . . , m}. The probabilistic model is written as
p(x|θ) = ∑m

h=1 p(h)q(x|h, µh, Ah), where the hth
component is a Gaussian distribution with mean µh and
covariance matrix A−1

h :

q(x|h, µh, Ah) = exp(− 1
2 (x − µh)
 Ah(x − µh))

2π |A−1
h |1/2

. (2)

Let us define the joint kernel as Kz(z, z′) = I (h =
h′)(x
 Ah x′), where I (t) is the indicator function which
is 1 if the condition t is true and 0 otherwise. Note that Kz
is a positive semidefinite kernel. The marginalized kernel
is obtained as

K (x, x′) =
m∑

h=1

p(h|x)p(h|x′)x
 Ah x′. (3)

We illustrate the shape of this kernel in Figure 2. Here, the
kernel is converted to the distance in the feature space

D(x, x′) = √
K (x, x) + K (x′, x′) − 2K (x, x′). (4)

Fixing x′ at a point, the contours of distance D(x, x′)
are shown. When x′ belongs to one cluster, the contour
shape is similar to the shape of the cluster. The shape
gradually changes when the point x′ moves to one cluster
to the other. In comparison with the Euclidean distance,
this distance emphasizes the cluster structure. This kind
of kernel is considered to be useful in visualizing cluster
structure in a high dimensional space (Tipping, 1999).

Marginalized count kernel
Next we propose an important example of marginal-
ized kernels for biological sequences. Let x =
(x1, . . . , xm), xi ∈ {1, . . . , nx } denote a symbol se-
quence of length m. Assume that each sequence can have
a different length. One simple kernel for such sequences
is the count kernel:

K (x, x′) =
nx∑

k=1

ck(x)ck(x′), (5)

where ck(x) is the number of symbol k normalized by the
length:

ck(x) = 1

m

m∑
i=1

I (xi = k).

The count kernel is often used in text processing litera-
tures (Frakes and Baeza-Yates, 1992), but it is not suit-
able for biological sequences because of frequent context

S269

K.Tsuda et al.

Fig. 2. Contours of the marginalized kernel-based distance from a
specified point. The left figure shows sample points generated from
the Gaussian mixture model. Here the crossing point of dotted lines
indicates the central point from which the kernel-based distance
(4) is measured. The right figure shows the distance contours.
The contour shapes are adapted to the shape of cluster which the
central point belongs to. Compared with the Euclidean distance, this
distance emphasizes the cluster structure.

changes. We are going to extend the count kernel to in-
clude (hidden) context information.

Assume that there is a sequence of hidden variables h =
(h1, . . . , hm), hi ∈ {1, . . . , nh}. Define the combined
sequence as

z := (z1, . . . , zm) = ({x1, h1}, . . . , {xm, hm})
where each zi can have nz = nx nh symbols. The count
kernel for z can be defined as

Kz(z, z′) =
nx∑

k=1

nh∑
�=1

ck�(z)ck�(z′),

ck�(z) = 1

m

m∑
i=1

I (xi = k, hi = �). (6)

When h is regarded as the context information, symbols
are counted separately in each context (Figure 3). For
example, if the sequences are DNA and the hidden
contexts are exon/intron, the frequencies of ‘A’, ‘C’, ‘G’,
‘T’ are counted and compared separately for exon/intron.

Setting (6) as a joint kernel, the marginalized count
kernel is defined as

K (x, x′) =
∑

h

∑
h′

p(h|x)p(h′|x′)Kz(z, z′), (7)

where
∑

h = ∑nh
h1=1 · · · ∑nh

hm=1. This kernel (7) is
rewritten as

K (x, x′) =
nx∑

k=1

nh∑
�=1

γkl(x)γkl(x′),

(T,1) = 0
(T,2) = 2

(G,1) = 1
(G,2) = 1

(C,1) = 1

(C,2) = 1

(A,1) = 1

(A,2) = 2

h:

x:

2

C

1

A

2

G

1

G

2

T

2

T

1

C

2

A

2

A

Fig. 3. Illustration of the marginalized count kernel (MCK1). Each
feature is obtained by counting the number of combined symbols,
and the joint kernel is defined as the dot product between these
features. Finally, MCK1 is obtained by marginalizing the joint
kernel.

where the marginalized counts γkl(x) are described as

γkl(x) = 1

m

∑
h

p(h|x)

m∑
i=1

I (xi = k, hi = �)

= 1

m

m∑
i=1

nh∑
hi =1

p(hi |x)I (xi = k, hi = �).

Fortunately, the sum over all hidden variables h can be
replaced by the sum over each hi , which reduces the
computational cost.

When the probability distribution p(x) is represented
as HMM, the posterior probability p(hi |x) is computed
easily by the forward-backward algorithm (Durbin et al.,
1998). An HMM is described as

p(x|θ) =
∑

h

qh1eh1x1[
m∏

i=2

ahi−1hi ehi xi]dhm , (8)

where the parameters θ = {a, e, q, d} are transition proba-
bilities, emission probabilities, initial state distribution and
terminal state distribution, respectively. The forward and
backward algorithms provide the following probabilities,
respectively:

fk(i) = p(x1, . . . , xi , hi = k),

bk(i) = p(xi+1, . . . , xm |hi = k).

Then the posterior probability is described as

p(hi = �|x) = f�(i)b�(i)

p(x)

which is known as γi (�) in HMM literatures (Rabiner,
1989).

Second-order marginalized count kernel
When adjacent relations between symbols have essential
meanings, the count kernel is obviously not sufficient. In

S270

Marginalized kernels for biological sequences

such cases, it would be better to count the number of
combinations of two adjacent symbols (Figure 4). The dot
product of such counts is described as

K (x, x′) =
nx∑

k=1

nx∑
k′=1

ckk′(x)ckk′(x′), (9)

ckk′(x) = 1

m − 1

m−1∑
i=1

I (xi = k)I (xi+1 = k′).

We call it the second order count kernel. Incorporating
hidden variables to (9), one can easily extend the marginal-
ized count kernel to second order: Let us define

δi
k�k′�′ := I (xi = k, hi = �, xi+1 = k′, hi+1 = �′).

The joint kernel is described as

Kz(z, z′) =
nx∑

k=1

nh∑
�=1

nx∑
k′=1

nh∑
�′=1

ck�k′�′(z)ck�k′�′(z′), (10)

where ck�k′�′(z) = 1
m−1

∑m−1
i=1 δi

k�k′�′ . The marginalized
kernel of (10) is described as

K (x, x′) =
nx∑

k=1

nh∑
�=1

nx∑
k′=1

nh∑
�′=1

vk�k′�′(x)
vk�k′�′(x′) (11)

where

vk�k′�′(x) = 1

m − 1

∑
h

p(h|x)

m−1∑
i=1

δi
k�k′�′

= 1

m − 1

m−1∑
i=1

nh∑
hi =1

nh∑
hi+1=1

p(hi , hi+1|x)δi
k�k′�′ .

We call it the second order marginalized count kernel. As
in the first order case, the posterior probability p(hi , hi +
1|x) is obtained from forward and backward algorithms as

p(hi = �, hi+1 = �′|x) = a��′e�′xi+1

f�(i)b�′(i + 1)

p(x)
.

Note that this quantity is well known as ξi (�, �
′) parameter

in Baum-Welch algorithm, which gives estimation of tran-
sition probabilities in HMMs. The second order marginal-
ized count kernel is particularly useful, because it can uti-
lize second order information as well as hidden context in-
formation. Higher order extension is straightforward, but
not written here for brevity.

Connections to the Fisher kernel
In the following, we will show that the Fisher ker-
nels (Jaakkola and Haussler, 1999) derived from latent
variable models are described as marginalized kernels.
This section will give a new analysis to explain the nature
of the Fisher kernel.

h:

x:

2

C

1

A

2

G

1

G

2

T

2

T

1

C

2

A

2

A

Fig. 4. Illustration of the second-order marginalized count kernel
(MCK2). Each feature is obtained by counting the number of
combinations of two adjacent symbols. The joint kernel is defined
as the dot product between these features, and MCK2 is obtained by
marginalization.

Definition of the Fisher kernel Assume a probabilistic
model p(x |θ) is defined on X , where θ is a r -dimensional
parameter vector. Let θ̂ denote parameter values which
are obtained by some learning algorithm (e.g., maximum
likelihood). Then the Fisher kernel (FK) (Jaakkola and
Haussler, 1999) between two objects is defined as

K f (x, x ′) = s(x, θ̂)
Z−1(θ̂)s(x ′, θ̂), (12)

where s is the Fisher score

s(x, θ̂) =
(

∂

∂θ1
log p(x |θ̂), . . . ,

∂

∂θr
log p(x |θ̂)

)

:= ∇θ log p(x |θ̂),

and Z is the Fisher information matrix:

Z(θ̂) = E
[

s(x, θ̂)s(x, θ̂)

∣∣∣ θ̂]

=
∑
x∈X

p(x |θ̂)s(x, θ̂)s(x, θ̂)
.

The Fisher kernel is a general method which can be
applied for any objects. However, the Fisher kernel
is particularly effective for biological sequences when
combined with HMMs (Jaakkola et al., 2000; Karchin et
al., 2002; Pavlidis et al., 2001).

The Fisher Kernel from Latent Variable Models When
a latent variable model p(x |θ) = ∑

h∈H p(x, h|θ) is
adopted, the Fisher score is described as

∇θ log p(x |θ̂) =
∑

h∈H ∇θ p(x, h|θ̂)

p(x |θ̂)

=
∑
h∈H

p(x, h|θ̂)

p(x |θ̂)

∇θ p(x, h|θ̂)

p(x, h|θ̂)

=
∑
h∈H

p(h|x, θ̂)∇θ log p(x, h|θ̂).

S271

K.Tsuda et al.

So, the Fisher kernel is described as a marginalized kernel

K f (x, x ′) = ∇θ log p(x |θ̂)
Z(θ̂)−1∇θ log p(x ′|θ̂)

:=
∑
h∈H

∑
h′∈H

p(h|x, θ̂)p(h′|x ′, θ̂)Kz(z, z′),

(13)

where the joint kernel is described as Kz(z, z′) =
∇θ log p(x, h|θ̂)
Z(θ̂)−1∇θ log p(x ′, h′|θ̂). Thus the
Fisher kernel is one special case in the class of marginal-
ized kernels. One characteristic aspect of the Fisher kernel
is that the joint kernel is determined by the probabilistic
model, while, in our approach, the joint kernel is designed
to fit user’s purposes. Since the joint kernel of the Fisher
kernel is not suitable for every purpose, you have to check
whether it fits your purpose or not. If not, the joint kernel
should be engineered.

The Fisher kernel from HMM In this section, we derive
the Fisher kernel from HMM (8) and discuss its connec-
tion to marginalized count kernels. The joint distribution
of HMM is described as

p(x, h|θ) = qh1eh1x1[
m∏

i=2

ahi−1hi ehi xi]dhm .

As in the literature (Jaakkola et al., 2000), we take the
derivatives with respect to emission probabilities e only:

∂

∂e�k
log p(x, h|θ̂) = mck�(z)

ê�k
− m

nx∑
k=1

ck�(z), (14)

where ê�k is the estimated emission probability and ck�(z)
is defined as (6). Note that the second term of (14) comes
from the constraint of emission probabilities

∑nx
k=1 e�k =

1. If we do not use the Fisher information matrix as in
(Jaakkola et al., 2000), the joint kernel is described as

∇e log p(x, h|θ̂)
∇e log p(x′, h′|θ̂). (15)

This is rewritten as
nx∑

k=1

nh∑
�=1

mm′

ê2
�k

(ck�(z) − c̄k�(z))(ck�(z′) − c̄k�(z′)), (16)

where c̄k�(z) = ê�k
∑nx

k′=1 ck′�(z). This has a similar form
to the count kernel (6), however the count is centralized
and the dot product is taken with respect to the weight
αk� = mm′

ê2
�k

. The weight is dependent on the length m, so a

proper normalization is needed for the Fisher kernel. Since
e�k represent the emission probability that symbol k is
produced from state �, the weight becomes large when the
symbol k is rarely produced from state �. It makes sense,
because the cooccurence of a rare symbol is a strong clue
of high similarity. However this weight is still argueable,
because a huge weight can appear when e�k is very small.

DISCUSSION
In the previous section, we derived the Fisher kernel
only from emission probabilities. However, if you take
the derivatives of transition probabilities as well, you
obtain a different joint kernel from the one shown in
(16). How should we choose the subset of parameters to
take derivatives? More generally, you can derive a new
parameter as a function of a subset of original parameters.
How about taking the derivative with respect to the new
parameter?

As suggested in this example, one theoretical problem
about the Fisher kernel is that it depends not only on
the distribution itself, but also the parametrization which
a user has intentionally chosen. Consider two parametric
models:

p(x, h|θ), θ ∈ �r1, p(x, h|µ), µ ∈ �r2, r1 �= r2.

Let us assume that a joint distribution p(x, h) is repre-
sented by two different parametric models:

p(x, h) = p(x, h|θ̂) = p(x, h|µ̂).

In general, the Fisher kernels derived from p(x |θ̂) and
p(x |µ̂) are different although the underlying distribution
is the same‡. Since there is no admitted way to choose
proper parametrization so far, it is basically determined by
trial and error.

In (13) we represented the Fisher kernel as a function
of the joint kernel and posterior probabilities of hidden
variables. While the joint kernel is not invariant to
parametrization,

∇θ log p(x, h|θ̂)
Z(θ̂)−1∇θ log p(x ′, h′|θ̂)

�= ∇µ log p(x, h|µ̂)
Z(µ̂)−1∇µ log p(x ′, h′|µ̂),

the posterior probabilities are invariant,

p(h|x, θ̂) = p(h|x, µ̂).

Therefore choosing the parametrization amounts to
choosing the joint kernel. You may be able to derive the
joint kernel to fit your purpose by changing parametriza-
tion. However, in our opinion, this is an awkward and
indirect way.

In the Fisher kernel scheme, you have to control
two things (i.e., joint kernel and posterior probability)
simultanously by the choice of a parametric model. In our
opinion, there is no need to control them in such an unified
manner, because this scheme is sometimes too restrictive.

‡ When there is one-to-one correspondence between two parameter spaces
around θ̂ and µ̂, the Fisher kernel is invariant to parametrization because of
the Fisher information matrix (Jaakkola and Haussler, 1999). However it is
not the case in general.

S272

Marginalized kernels for biological sequences

For example, when you would like to incorporate the
second-order information into the Fisher kernel, you have
to use second-order HMMs (Durbin et al., 1998). Since the
number of parameters of the second-order HMM is much
larger, it would be difficult to learn the parameters reliably
with a small sample set. This drawback is caused by the
fact that the joint kernel is tied to the probabilistic model.
In our approach, the joint kernel and the probabilistic
model are completely separated, so you can utilize second
order information with a first order HMM as in the second
order marginalized count kernel.

RESULTS
In this section, we illustrate the performance of marginal-
ized kernels in classification experiments using bacterial
gyrB amino acid sequences. gyrB—gyrase subunit B—is
a DNA topoisomerase (type II) which plays essential roles
in fundamental mechanisms of living organisms such as
DNA replication, transcription, recombination and repair
etc. One more important feature of gyrB is its capability
of being an evolutionary and taxonomic marker alternat-
ing popular 16S rRNA (Kasai et al., 1998). Our dataset
consists of 84 amino acid sequences of gyrB from five
genera in Actinobacteria which are Corynebacterium, My-
cobacterium, Gordonia, Nocardia and Rhodococcus, re-
spectively (Kasai et al., 2000). For brevity these genera
will be called genus 1 to 5, respectively. The number of se-
quences in each genus is listed as 9, 32, 15, 14 and 14. The
sequences are, by their nature, quite similar in terms of se-
quence similarity. Pairwise identity for each sequence is at
least 62 and 99% at most. For computing distance matrix
based on the sequence similarity, one can use the BLAST
scores (Altschul et al., 1990). However, since such scores
cannot directly be converted into positive semidefinite ker-
nels, kernel methods cannot be applied to them in princi-
ple.

In order to investigate how well the kernels re-
flect underlying genera, we performed two kinds of
experiments—clustering and supervised classification.
The following kernels are compared:

• CK1: Count kernel (5)

• CK2: Second-order count kernel (9)

• FK: Fisher kernel (16)

• MCK1: Marginalized count kernel (7)

• MCK2: Second-order marginalized count kernel (11)

As the first experiment, K-Means clustering is per-
formed in feature spaces corresponding to kernels (see
Müller et al. (2001) for details). The number of clusters
is determined as five (i.e., the true number). In FK and
MCKs, we used complete-connection HMMs with 3, 5

and 7 states. Note that FK is normalized by the sequence
lengths. In training HMMs, all 84 sequences are used.
One can also train HMMs in a classwise manner (Tsuda
et al., 2002). However, we did not do so because the
number of sequences is not large enough. For evaluating
clusters, we used the adjusted Rand index (ARI) (Yeung
and Ruzzo, 2001). The advantage of this index is that
you can compare two partitions whose number of clusters
are different. The ARI becomes 1 if the partitions are
completely correct. Also, the expectation of the ARI is 0
when partitions are randomly determined.

The kernel matrices by FK and MCKs are shown in
Figure 5. Additionally, the ideal kernel is shown for
reference, where K (x, x′) is 1 for any two sequences in the
same genus, and −1 otherwise. Here, the number of HMM
states is three in all cases. For fair visualization, each
kernel matrix is normalized in the same manner: First,
the kernel matrix is ‘centralized’ as Kc := K − 1n K −
K 1n +1n K 1n where 1n is the n×n matrix whose elements
are all 1/n. Here n denotes the number of sequences, i.e.,
n = 84 in this experiment. Then, Kc is normalized by
the Frobenious norm as Kc/‖Kc‖F . As seen in the figure,
MCK2 is the best to recover the underlying structure. This
result is quantitatively shown by ARI in Figure 6, where
CK1 and CK2 correspond to the MCKs with only one
HMM state. Notably the Fisher kernel was worse than
MCK1, which shows that the joint kernel of the Fisher
kernel (16) is not appropriate for this task.

In order to see how genera are separated by introducing
the second order information and hidden variables, we
performed the following supervised classification experi-
ments as well. First, we pick up two genera out of three
genera (3, 4, 5). Genera 1 and 2 were not used because
they can be separated easily by all kernels. The sequences
of two genera are randomly divided into 25% training
and 75% testing samples. Kernels are compared due to
the test error by the kernel Fisher discriminant analysis
(KFDA) (Roth and Steinhage, 2000), which compares
favorably with the SVM in many benchmarks. Note
that the regularization parameter ε of KFDA (Roth and
Steinhage, 2000) is determined such that the test error is
minimized§. The test errors of five kernels are shown in
Table 1. The second order kernels (i.e., CK2 and MCK2)
were significantly better than the first order kernels. This
result coincides with the common understanding that
higher order information of protein sequences is essential
for classification and structure prediction (e.g., Asai et
al. (1993)). Comparing CK2 and MCK2, MCK2 always
performed better, which indicates that incorporating
hidden variables (i.e., context information) is meaningful
at least in this task.

§ For regularization parameter ε, 10 equally spaced points on the log scale are
taken from [10−4, 102]. Among these candidates, the optimal one is chosen.

S273

K.Tsuda et al.

1

0. 5

0

0.5

1
Ideal

 0.02

0

0.02

0.04

FK

 0.02

0

0.02

0.04

MCK1

 0.02

0

0.02

0.04

MCK2

Fig. 5. (Upperleft) Ideal kernel matrix to illustrate the true clusters. (Upperright) Kernel matrix of the Fisher kernel. (Lowerleft) Kernel
matrix of the first-order marginalized count kernel. (Lowerright) Kernel matrix of the second-order marginalized count kernel.

Table 1. Mean error rates (%) of supervised classification between two bacterial genera ([·] shows the standard deviation). The best result in each task is
written in bold face

Genera CK1 CK2 FK MCK1 MCK2

3–4 24.5 [9.67] 9.10 [7.87] 10.4 [9.15] 12.8 [9.85] 8.48 [7.76]
3–5 12.7 [8.93] 6.43 [7.76] 10.9 [10.1] 10.4 [8.17] 5.71 [7.72]
4–5 25.6 [13.0] 13.5 [15.5] 23.1 [14.3] 20.0 [14.6] 11.6 [14.6]

CONCLUSION
In this paper, we proposed marginalized kernels, which
provide a new reasonable way to design a kernel from
latent variable models. The Fisher kernel was described as
a special case of marginalized kernels, which have added a
new aspect to the Fisher kernel theory. Finally, we showed
that marginalized count kernels perform well in protein
classification experiments.

Our work provides a general framework from which

diverse kernels are expected to be constructed. In future
works, we would like to derive useful kernels as many as
possible not only in bioinformatics but also in other areas
in information technology.

ACKNOWLEDGEMENT
The authors gratefully acknowledge that the bacterial
gyrB amino acid sequences are offered by courtesy
of Identification and Classification of Bacteria (ICB)

S274

Marginalized kernels for biological sequences

1 3 5 7
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of HMM States

A
R

I

FK
MCK1
MCK2

Fig. 6. Evaluation of kernels in clustering in terms of the adjusted
Rand index (ARI). The x-axis corresponds to the number of states
in HMM, from which the kernels are derived. The Fisher kernel
(FK), the marginalized count kernels of first-order (MCK1) and
second-order (MCK2) are compared. Note that the count kernels
of first-order (CK1) and second-order (CK2) correspond to MCK1
and MCK2 at one HMM state, respectively.

database team (Watanabe et al., 2001). The authors
would like to thank S.-I.Amari, K.-R.Müller, G.Rätsch,
M.Kawanabe, H.Nakahara and S.Sonnenburg for fruitful
discussions.

REFERENCES
Altschul,S., Gish,W., Myers,E. and Lipman,D. (1990) Basic local

alignment search tool. J. Mol. Biol., 215, 403–410.
Asai,K., Hayamizu,S. and Handa,K. (1993) Prediction of protein

secondary structure by the hidden Markov model. CABIOS
(currently Bioinformatics), 9, 141–146.

Durbin,R., Eddy,S., Krogh,A. and Mitchison,G. (1998) Biological
Sequence Analysis: Probabilistic Models of Proteins and Nucleic
Acids. Cambridge University Press.

Frakes,W. and Baeza-Yates,R., (eds.) (1992) Information Retrieval:
Data Structure and Algorithms. Prentice Hall.

Haussler,D. (1999) Convolution kernels on discrete structures.
Technical Report UCSC-CRL-99-10. UC Santa Cruz.

Jaakkola,T., Diekhans,M. and Haussler,D. (2000) A discriminative
framework for detecting remote protein homologies. J. Comp.
Biol., 7, 95–114.

Jaakkola,T. and Haussler,D. (1999) Exploiting generative mod-
els in discriminative classifiers. In Kearns,M., Solla,S. and
Cohn,D. (eds), Advances in Neural Information Processing Sys-
tems 11. pp. 487–493.

Karchin,R., Karplus,K. and Haussler,D. (2002) Classifying G-
protein coupled receptors with support vector machines. Bioin-
formatics, 18, 147–159.

Kasai,H., Bairoch,A., Watanabe,K., Isono,K., Harayama,S.,
Gasteiger,E. and Yamamoto,S. (1998) Construction of the gyrB
database for the identification and classification of bacteria.
Genome Informatics 1998. Universal Academic Press, pp.
13–21.

Kasai,H., Ezaki,T. and Harayama,S. (2000) Differentiation of
phylogenetically related slowly growing mycrobacteria by their
gyrB sequences. J. Clin. Microbiol., 38, 301–308.

Müller,K.-R., Mika,S., Rätsch,G., Tsuda,K. and Schölkopf,B.
(2001) An introduction to kernel-based learning algorithms.
IEEE Trans. Neural Networks, 12, 181–201.

Pavlidis,P., Furey,T., Liberto,M., Haussler,D. and Grundy,W. (2001)
Promotor region-based classification of genes. In Proceedings
PSB 2001. pp. 151–163.

Rabiner,L. (1989) A tutorial on hidden Markov models and
selected applications in speech recognition. Proc. IEEE, 77, 257–
285.

Roth,V. and Steinhage,V. (2000) Nonlinear discriminant analysis us-
ing kernel functions. In Solla,S., Leen,T. and Müller,K.-R. (eds),
Advances in Neural Information Processing Systems 12. MIT
Press, pp. 568–574.

Tipping,M. (1999) Deriving cluster analytic distance functions
from gaussian mixture models. In Willshaw,D. and Mur-
ray,A. (eds), Proceedings of ICANN’99. IEE Press, pp. 815–820.

Tsuda,K., Kawanabe,M., Rätsch,G., Sonnenburg,S. and Müller,K.-
R. (2002) A new discriminative kernel from probabilistic models.
Neural Comput., In press.

Watanabe,K., Nelson,J., Harayama,S. and Kasai,H. (2001) ICB
database: the gyrB database for identification and classification
of bacteria. Nucleic Acids Res., 29, 344–345.

Yeung,K. and Ruzzo,W. (2001) Principal component analysis for
clustering gene expression data. Bioinformatics, 17, 763–774.

S275

