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Recently, Jaakkola and Haussler (1999) proposed a method for construct-
ing kernel functions from probabilistic models. Their so-called Fisher
kernel has been combined with discriminative classi�ers such as support
vector machines and applied successfully in, for example, DNA and pro-
tein analysis. Whereas the Fisher kernel is calculated from the marginal
log-likelihood, we propose the TOP kernel derived from tangent vectors
of posterior log-odds. Furthermore, we develop a theoretical framework
on feature extractors from probabilistic models and use it for analyzing
the TOP kernel. In experiments, our new discriminative TOP kernel com-
pares favorably to the Fisher kernel.

1 Introduction

In classi�cation tasks, the purpose of learning is to predict the output y 2
f¡1, C1g of some unknown system given the input x 2 X based on the
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training samples fxi , yign
iD1. A feature extractor is a vector-valued function

f : X ! RD designed for converting the representation of data without
losing the information necessary for discrimination.

When X is a vector space like Rd, many feature extraction methods have
been proposed (Fukunaga, 1990). However, they are typically not applica-
ble when X is a set of sequences of symbols and does not have the structure
of a vector space as in DNA or protein analysis (Durbin, Eddy, Krogh, &
Mitchison, 1998). In such cases, the similarity (or proximity) between two
samples plays an important role (Cox & Ferry, 1993; Graepel, Herbrich,
Bollmann-Sdorra, & Obermayer, 1999; Hofmann & Buhmann, 1997). The
simplest method is to prepare several prototype samples and compose a
feature vector from the similarities to these samples (Graepel et al., 1999).
Alternatively in multidimensional scaling (MDS; Cox & Ferry, 1993), the
samples are mapped such that the given dissimilarity is approximated by
the Euclidean distance in feature space. However, similarities are often not
available, and to de�ne a “good” similarity measure in terms of the classi�-
cation task in feature space is therefore dif�cult and requires a fair amount
of prior knowledge.

Recently, the Fisher kernel (FK; Jaakkola & Haussler, 1999) was pro-
posed, which allows measuring distances between symbols by computing
features from probabilistic models p (x | µ) . At �rst, a parameter estimate
Oµ is obtained from the training examples. Then the tangent vector of the
log marginal likelihood log p(x | Oµ) is used as a feature vector. Fisher kernel
refers to the inner product in this feature space, but the method is effectively
a feature extractor (also since the features are computed explicitly). The FK
can be combined with discriminative classi�ers such as support vector ma-
chines (SVMs), and it has achieved excellent classi�cation results in several
�elds, for example in DNA and protein analysis (Jaakkola & Haussler, 1999;
Jaakkola, Diekhans, & Haussler, 2000). Empirically, it is reported that the FK-
SVM system often outperforms the classi�cation performance of a plug-in
estimate, that is, the pure probabilistic approach.1 Note that the FK is only
one possible member in the family of feature extractors fOµ (x) : X ! RD

that can be derived from a probabilistic model. We call this family model-
dependent feature extractors because different probabilistic models lead to
different feature vectors. Exploring this family is a very important and in-
teresting subject.

Since model-dependent feature extractors are newly developed, perfor-
mance measures for them have not yet been established. In this article, we
therefore propose two performance measures. Then we de�ne a new ker-
nel (or, equivalently, a feature extractor) derived from the tangent vector of
posterior log-odds, which we denote as the TOP kernel. We will analyze

1 In classi�cation by plug-in estimate, x is classi�ed by thresholding the posterior
probability Oy D sign(P (y D C1 | x, Oµ) ¡ 1

2
) (Devroye, Györ�, & Lugosi, 1996).
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the performance of the TOP kernel in terms of our performance measures.
Finally, the TOP kernel is compared—favorably—to the FK in experiments
with arti�cial data and protein data.

2 Performance Measures

To begin, let us describe the notations. Let x 2 X be the input point and
y 2 f¡1, C1g be the class label. X may be a �nite set or an in�nite set like Rd.
Let us assume that we know the parametric model of the joint probability
p (x, y | µ) , where µ 2 Rp is the parameter vector. Assume that the model
p (x, y | µ) is regular (Murata, Yoshizawa, & Amari, 1994) and contains the
true distribution. Then the true parameter µ¤ is uniquely determined. Let Oµ
be a consistent estimator (Devroye et al., 1996) of µ¤, which is obtained by
n training examples drawn independent and identically distributed (i.i.d.)
from p(x, y | µ¤) . Let @hi f D @f/@hi, rµ f D (@h1 f, . . . , @hp f ) >, and r2

µ f denote
the p £ p matrix, the Hessian, whose (i, j)th element is @2 f/ (@hi@hj) .

As the FK is commonly used in combination with linear classi�ers such
as SVMs, one reasonable performance measure is the classi�cation error
of a linear classi�er wTf Oµ (x) C b in the feature space RD, where w 2 RD

and b 2 R. Usually w and b are determined by a learning algorithm, so the
optimal feature extractor is different with regard to each learning algorithm.
To cancel out this ambiguity and make a theoretical analysis possible, we
assume the optimal learning algorithm is used. When w and b are optimally
chosen, the classi�cation error is

R (f Oµ ) D min
w2S,b2R

Ex,yW[¡y (w>f Oµ (x) C b) ], (2.1)

where S D fw | kwk D 1, w 2 RDg, W[a] is the step function, which is 1 if a >
0 and 0 otherwise, and Ex,y denotes the expectation with respect to the true
distribution p (x, y | µ¤) . R (f Oµ ) is at least as large as the Bayes error L¤ (Fuku-
naga, 1990) and R (f Oµ ) D L¤ only if the linear classi�er implements the same
decision rule as the Bayes optimal rule. From a geometrical point of view,
R (f Oµ ) ¡L¤ describes how linear the optimal boundary is in the feature space.

Now that we have a performance measure, it is natural to design a feature
extractor that minimizes R (f Oµ ) . This task is dif�cult because of the nondiffer-
entiable function W. So we construct another measure, which upper-bounds
R (f Oµ ) : we consider the estimation error of the posterior probability by a lo-
gistic regressor F (w>f Oµ (x) C b) , with F (t) D 1/ (1 C exp(¡t) ) :

D(f Oµ ) D min
w2RD ,b2R

Ex |F (w>fOµ (x) C b) ¡ P (y D C1 | x, µ¤) |. (2.2)

The relationship between D (fOµ ) and R (f Oµ ) is illustrated as follows: Let OL be
the classi�cation error rate of an arbitrary posterior probability estimator
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OP (y D C1 | x) . The following inequality is known (Devroye et al., 1996):

OL ¡ L¤ · 2Ex | OP (y D C1 | x) ¡ P (y D C1 | x, µ¤) |. (2.3)

When we use OP (y D C1 | x) :D F(w>f Oµ (x) C b) , this inequality leads to the
following relationship between the two measures:

R (f Oµ ) ¡ L¤ · 2D (f Oµ ) . (2.4)

By this bound, it is useful to derive a new feature extractor that minimizes
D(f Oµ ) , as will be done in section 4.

3 The Fisher Kernel

The Fisher kernel (FK) isde�ned2 as K (x, x0 ) D s (x, Oµ)>Z¡1 ( Oµ)s(x0 , Oµ) ,where
s is the Fisher score,

s (x, Oµ) D (@h1 log p (x | Oµ) , . . . , @hp log p (x | Oµ) ) > D rµ log p (x, Oµ) ,

and Z is the Fisher information matrix: Z (µ) D Ex[s (x, µ)s (x, µ) > | µ]. The
theoretical foundation of FK is described in the following theorem (Jaakkola
& Haussler, 1999): “A kernel classi�er employed the Fisher kernel derived
from a model that contains the label as a latent variable is, asymptotically, at
least as good a classi�er as the MAP labeling based on the model” (p. 491).
The theorem says that the FK can perform at least as well as the plug-in
estimate, if the parameters of linear classi�er are properly determined (cf.
appendix A of Jaakkola & Haussler, 1999). With our performance measure,
this theorem can be represented more concisely: R (fOµ ) is bounded by the
classi�cation error of the plug-in estimate Rp ( Oµ) :

R (f Oµ ) · Rp ( Oµ) D Ex,yW[¡y (P (y D C1 | x, Oµ) ¡ 1
2
) ]. (3.1)

Note that the classi�cation rule constructed by the plug-in estimate P (y D
C1 | x, Oµ) can also be realized by a linear classi�er in feature space. Property
3.1 is important since it guarantees that the FK performs better when the
optimal w and b are available. In the next section, we present a new kernel
that also satis�es property 3.1 and has a moreappealing theoretical property
as well.

2 In practice, some variants of the FK are used. For example, if the derivative of each
class distribution, not marginal, is taken, the feature vector of FK is quite similar to that
of our kernel. However, these variants should be deliberately discriminated from the FK
in theoretical discussions. Throughout this article, including experiments, we adopt the
original de�nition of the Fisher kernel from Jaakkola and Haussler (1999).
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4 The TOP Kernel

4.1 De�nition. Now we proceed to propose a new kernel. Our aim is to
obtain a feature extractor that achieves small D (f Oµ ) . When a feature extractor
f Oµ (x) satis�es3

w>f Oµ (x) C b D F¡1 (P (y D C1 | x, µ¤) ) for all x 2 X , (4.1)

with certain values of w and b, we have D(f Oµ ) D 0. However, since the true
parameter µ¤ is unknown, all we can do is to construct f Oµ , which approxi-
mately satis�es equation 4.1. Let us de�ne4

v(x, µ) D F¡1 (P (y D C1 | x, µ) )

D log(P (y D C1 | x, µ) ) ¡ log(P (y D ¡1 | x, µ) ) , (4.2)

which is called the posterior log-odds of a probabilistic model (Devroye et
al., 1996). By Taylor expansion around the estimate Oµ up to the �rst order,
we can approximate v (x, µ¤) as

v(x, µ¤) ¼ v(x, Oµ) C
pX

iD1

@hi v (x, Oµ) (h¤
i ¡ Ohi) . (4.3)

Thus, by setting

f Oµ (x) :D (v (x, Oµ) , @h1 v(x, Oµ) , . . . , @hp v(x, Oµ) )> (4.4)

and

w :D w¤ D (1, h¤
1 ¡ Oh1, . . . , h¤

p ¡ Ohp) >, b D 0, (4.5)

equation 4.1 is approximately satis�ed. Since a tangent vector of the pos-
terior log-odds constitutes the main part of the feature vector, we call the
inner product of the two feature vectors the TOP kernel:

K (x, x0 ) D f Oµ (x) >f Oµ (x0 ) . (4.6)

It is easy to verify that the TOP kernel satis�es equation 3.1, because we can
construct the same decision rule as the plug-in estimate by using the �rst
element only (w D (1, 0, . . . , 0) , b D 0).

3 Notice that F¡1 (t) D log t ¡ log(1 ¡ t).
4 One can easily derive TOP kernels from higher-order Taylor expansions. However,

we will deal only with the �rst-order expansion here, because higher-order expansions
would induce extremely high-dimensional feature vectors in practical cases.
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4.2 A Theoretical Analysis. In this section, we compare the TOP ker-
nel with the plug-in estimate in terms of performance measures. Later, we
assume that 0 < P (y D C1 | x, µ) < 1 to prevent |v(x, µ) | from going to
in�nity. Also, it is assumed that rµP (y D C1 | x, µ) and r2

µ P (y D C1 | x, µ)
are bounded. Substituting the plug-in estimate (denoted by the subscript
p ) into D (f Oµ ) , we have

Dp ( Oµ) D Ex |P (y D C1 | x, Oµ) ¡ P (y D C1 | x, µ¤) | .

De�ne Dµ D Oµ ¡ µ¤. By Taylor expansion around µ¤, we have

Dp ( Oµ) D Ex | (Dµ) >rµP (y D C1 | x, µ¤)

C
1
2

(Dµ)>r2
µP (y D C1 | x, µ0) (Dµ) |

D O (kDµk) , (4.7)

where µ0 D µ¤ C c Dµ (0 · c · 1) . When the TOP kernel is used,

D (f Oµ ) · Ex |F( (w¤) >f Oµ (x) ) ¡ P (y D C1 | x, µ¤) |, (4.8)

where w¤ is de�ned as in equation 4.5. Since F is Lipschitz continuous, there
is a �nite positive constant M such that |F (a) ¡ F (b) | · M|a ¡ b|. Thus,

D (f Oµ ) · MEx | (w¤) >f Oµ (x) ¡ F¡1 (P (y D C1 | x, µ¤ ) ) |. (4.9)

Since (w¤) >f Oµ (x) is the Taylor expansion of F¡1 (P (y D C1 | x, µ¤) ) up to the
�rst order, equation 4.3, the �rst-order terms of Dµ are excluded from the
right side of equation 4.9; thus, D (f Oµ ) D O (kDµk2 ) . Since both the plug-in
and the TOP kernel depend on the parameter estimate Oµ, the errors Dp ( Oµ)
and D(f Oµ ) become smaller as kDµk decreases. However,the rate of conver-
gence of the TOP kernel is much faster than that of the plug-in estimate if
w and b are optimally chosen.

This result is closely related to large sample performances. Assuming
that Oµ is a n1/2 consistent estimator with asymptotic normality (e.g., the
maximum likelihood estimator), we have kDµk D Op (n¡1/2) (Murata et al.,
1994), where Op denotes stochastic order (Barndorff-Nielsen & Cox, 1989).

We can directly derive the convergence order as Dp ( Oµ) D Op (n¡1/2) and

D(f Oµ ) D Op (n¡1 ) . By using the relation 2.4, it follows that Rp ( Oµ) ¡ L¤ D
Op (n¡1/2 ) and R (f Oµ ) ¡ L¤ D Op (n¡1 ) .5 Therefore, the TOP kernel has a much
better convergence rate in R (f Oµ ) . However, we must note that this fast rate is

5 For detailed discussion about the convergence orders of classi�cation error, see De-
vroye et al. (1996).
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possible only when the optimal linear classi�er is combined with the TOP
kernel. Since nonoptimal linear classi�ers typically have the rate Op (n¡1/2)
(Devroye et al., 1996), the overall rate is dominated by the slower rate and
turns out to be Op (n¡1/2) . But this theoretical analysis is still meaningful,
because it shows the existence of a very ef�cient linear boundary in the
TOP feature space. This result encourages practical efforts to improve linear
boundaries by engineering loss functions and regularization terms with
cross validation, bootstrapping, or other model selection criteria (Devroye
et al., 1996).

4.3 Exponential Family: A Special Case. When the distributions of the
two classes belong to the exponential family, the TOP kernel can achieve an
even better result than shown above. Distributions of the exponential family
can be written as q(x, ´) D exp(´>t (x) C y (´ ) ) , where t (x) is a vector-valued
function called suf�cient statistics and y (´) is a normalization factor (Geiger
& Meek, 1998). Let a denote the parameter for class prior probability of the
positive model P (y D C1). Then the probabilistic model is described as

p (x, y D C1 | µ) D aqC1 (x, ´C1 ) ,

p (x, y D ¡1 | µ) D (1 ¡ a)q¡1 (x, ´¡1 ) ,

where µ D fa, ´C1, ´¡1g. The posterior log-odds reads

v(x, µ) D ´>
C1tC1 (x) C yC1 (´C1 ) ¡ ´>

¡1t¡1 (x)

¡ y¡1 (´¡1) C log
a

1 ¡ a
. (4.10)

The TOP feature vector is described as

f Oµ (x) D (v (x, Oµ) , @av (x, Oµ) , r´C1
v(x, Oµ) >, r´¡1

v (x, Oµ) > )>,

where r´s v (x, Oµ) D s(ts (x) C r´s
ys ( Ó s ) ) for s D fC1, ¡1g. So, when

w D (1, 0, ´¤
C1

> ¡ Ó >
C1, ´¤

¡1
> ¡ Ó >

¡1) >

and b is properly set, the true log-odds F¡1 (P (y D C1 | x, µ¤) ) can be con-
structed as a linear function in the feature space 4.1. Thus, D (f Oµ ) D 0 and
R (f Oµ ) D L¤. Furthermore, since each feature is represented as a linear func-
tion of suf�cient statistics tC1 (x) and t¡1 (x) , one can construct an equivalent
feature space as (tC1 (x)>, t¡1 (x)> ) > without knowing Oµ.6 This result has
some importance because all graphical models without hidden states can
be represented as members of the exponential family, for example, Markov
models (Geiger & Meek, 1998).

6 It is well known that the Bayes optimal boundary of exponential family distributions
forms a hyperplane in the space of suf�cient statistics (Devroye et al., 1996).



2404 Koji Tsuda et al.

5 Experiment with Arti�cial Data

In this section, we present a classi�cation experiment with arti�cial data.
Here, the probabilistic model of each class is a mixture of two gaussians,

q (x, ») D bg(x, ´1 ) C (1 ¡ b ) g (x, ´2) , (5.1)

where » D [b, ´1, ´2] and g is the natural parameter representation of a
gaussian distribution

g (x, ´) D exp

(
g1kxk2 C

dX

iD1

xigiC1

C
dX

iD1

g2
iC1/ (4g1) ¡ d

2
log(¡p /g1)

)
. (5.2)

Notice that the natural parameter ´ corresponds to the conventional param-
eters (mean ¹ and standard deviation s) as g1 D ¡1/ (2s2 ) , gi D m i¡1 /s2

(i ¸ 2) . The true parameters of the two classes are de�ned as

¹1 D ¹2 D (0, . . . , 0) , s1 D 1, s2 D 1
2 , b D 1

2 (�rst class)

¹1 D ¹2 D ( 1
10 , . . . , 1

10
) , s1 D 4

5 , s2 D 2
5 , b D 1

2 (second class).

Also, the true class prior probability is de�ned as a D 1
2 . The derivatives in

TOP and FKs are calculated with respect to the parameters »C1, »¡1 in both
classes and the class prior probability a as well.

In this experiment, the dimensionality of the input space is set to 100.
The number of training samples is 30 in the �rst and 240 in the second ex-
periment. The performance is measured by the error rate on a test set with
1000 samples. We compared the TOP kernel with the FK. As subsequent
classi�er, an SVM is chosen, which has a regularization parameter C. As
candidate values of C, 10 equally spaced points in the log scale are taken
from [10¡6, 10¡1]. The value of the parameter C is chosen from the candi-
date values according to the error rate on a validation set (100 samples).7

The parameters »C1 and »¡1 are estimated by the expectation-maximization
algorithm (Bishop, 1995), and a is estimated by the ratio of training samples
of two classes.

The test errors over 30 different samplings of training, validation, and
test sets are shown in Figure 1. For reference, we also show the test errors
of the Bayes optimal classi�er and the test errors of the plug-in estimate. To
illustrate the difference of FK and TOP in a detailed way, Figure 2 shows

7 See Rätsch, Onoda, and Müller (2001)for details on how model selection is conducted
in this type of experiment.
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 OPT   P   FK   TOP  FK*  TOP*  W*  
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n=240

Figure 1: The error rates of various classi�ers in the arti�cial data experiment.
The top and bottom �gures correspond to the results when n D 30 and n D 240,
respectively. OPT: test errors of the Bayes optimal classi�er; P: probabilistic
models only; FK: the Fisher kernel with SVM; TOP: the TOP kernel with SVM;
FK¤: the Fisher kernel with the nearly optimal linear boundary constructed by a
suf�cient number of additional samples; TOP¤: the TOP kernel with the nearly
optimal linear boundary; W¤: the TOP kernel with the weight vector w¤.
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Figure 2: Comparison of error rates of SVMs with the Fisher kernel and the TOP
kernel in the arti�cial data experiment. Every point corresponds to one of the 30
different training, validation, and test sets. The upper two �gures correspond
to FK and TOP in Figure 1, and the lower two correspond to FK¤ and TOP¤.

comparativeplots of test errors. Clearly, the TOP kernel has the smaller error
rates in many cases. In order to investigate whether the differences in error
rates are signi�cant, two kinds of statistical tests are applied (see Table 1).
One is the t-test (T), which compares the averages of error rates under the
assumption that both distributions are gaussian. The other is the Wilcoxson
signed rank test (WX), which uses the rank of differences of error rates. This
is a nonparametric test, so it can be applied to any distribution. Because the
distributions of error rates seem to be skewed (see Figure 1), we favor this
test more than the t-test. When n D 30, both tests judged that the difference
between average error rates of TOP and FK is signi�cant, whereas when
n D 240, only the Wilcoxson signed rank test judged that the difference is
signi�cant. So it is observed that the TOP kernel is especially effective in
small sample cases.

So far, we have shown the performance of the combination of a feature
extractor (FK or TOP) and SVM. In order to focus on feature extraction per-
formance itself, it is desirable to observe the minimum achievable error by
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Table 1: P Values of Statistical Tests in the Arti�cial Data Experiment.

Methods Test n D 30 n D 240

TOP, FK T 0.0090¤¤ 0.12
WX 1.97 £ 10¡5¤¤ 0.031¤

TOP¤ , FK¤ T 2.2 £ 10¡5¤¤ 0.024¤

WX 2.1 £ 10¡6¤¤ 0.0082¤¤

Notes: The t-test is denoted as T and the Wilcoxson
signed ranks test as WX.
¤p < 0.05. ¤¤p < 0.01.

the optimal linear boundary. However, since it is dif�cult to derive the op-
timal boundaries analytically, a nearly optimal one is constructed by means
of 3000 additional training samples, which are used not in constructing fea-
tures but in determining linear boundaries. As the learning algorithm in
feature space, we used the linear discriminant analysis (Fukunaga, 1990)
without regularization. In Figures 1 and 2, these nearly optimal results are
shown as FK¤ and TOP¤. For reference, we also show the results of TOP
when the Taylor coef�cient w¤ (see equation 4.5) is used as the weight vec-
tor (W¤ in Figure 1).8

As seen in the test result (see Table 1), the difference between average er-
ror rates of TOP and FK is signi�cant in both cases (n D 30 and 240). Thus, we
are led to the conclusion that the TOP kernel extracts better discriminative
features—at least in this experiment.

6 Experiments on Protein Data

In order to illustrate that the TOP kernel also works well for real-world
problems, we present results on protein classi�cation. The protein sequence
data is obtained from the Superfamily web site, which provides sequence
�les with different degrees of redundancy �ltering.9 We used the one with
10% redundancy �ltering. Here, 4541 sequences are hierarchically labeled
into 7 classes, 558 folds, 845 superfamilies, and 1343 families according to
the SCOP(1.53) scheme. In our experiment, we determine the top category
classes as the learning target. The numbers of sequences in the classes are
listed as 791, 1277, 1015, 915, 84, 76, and 383. We use only the �rst four
classes, and six two-class problems are generated from all pairs among the

8 When n D 30, the error rates of W¤ are often larger than TOP¤ and have very large
variance, because the Taylor expansion, equation 4.3, has large higher-order terms when
the number of samples is small.

9 Available on-line at: http://stash.mrc-lmb.cam.ac.uk/SUPERFAMILY/.

http://stash.mrc-lmb.cam.ac.uk/SUPERFAMILY/
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four classes.10 The �fth and sixth classes are not used because the number of
examples is too small. Also, the seventh class is omitted because it is quite
different from the others and too easy to classify. In each two-class problem,
the examples are randomly divided into 25% training set, 25% validation
set, and 50% test set. The validation set is used for model selection.

As a probabilistic model for protein sequences, we train hidden Markov
models (HMMs; Durbin et al., 1998) with fully connected states11 by the
Baum-Welch algorithm. 12 To construct FK and TOP kernels, the derivatives
with respect to all parameters of the HMMs from both classes are included.
The derivative with respect to the class prior probability is included as well.
Let q(x, ») be the probability density function of an HMM.Then the marginal
distribution is written as p (x | Oµ) D Oaq (x, O»C1) C (1 ¡ Oa)q(x, O»¡1 ) , where a

is a parameter corresponding to the class prior. The feature vector of FK
consists of the following:

r»s
log p (x | Oµ) D P (y D s | x, Oµ)r»s

log q(x, O»s) s 2 f¡1, C1g (6.1)

@a log p (x | Oµ) D
1
OaP (y D C1 | x, Oµ) ¡

1
1 ¡ OaP (y D ¡1 | x, Oµ) , (6.2)

while the feature vector of TOP includes r»s v (x, Oµ) D sr»s
log q(x, O»s) for

s D §1.13 We obtained O»C1 and O»¡1 from the training examples of the re-
spective classes and set Oa D 1

2 . In the de�nition of the TOP kernel, equa-
tion 4.6, we did not include any normalization of feature vectors. However,
in practical situations, it is effective to normalize features for improving
classi�cation performance. Although it is dif�cult to determine a fair way
of normalization, we chose a simple way: each feature of the TOP and the
FK is normalized to have mean 0 and variance 1. Both the TOP kernel and
FK are combined with SVMs using a bias term. For calculation of feature
vectors from HMMs, see the appendix.

When classifying with HMMs, one observes the difference of the log-
likelihoods for the two classes and discriminates by thresholding at an ap-

10 When the TOP kernel is applied for separating two classes, the class-conditional
models of both classes need to be known. In contrast, the FK is often used in �ltering
problems where the model of only one class is known (Jaakkola & Haussler, 1999).

11 Several HMM models have been engineered for protein classi�cation (Durbin et al.,
1998). However, we do not use such HMMs because the main purpose of the experiment
is to compare FK and TOP. Furthermore, the performances achieved with plain HMM
models are lower than the ones presented here using discriminative training, which is
well in line with results by Jaakkola, Diekhans, et al. (2000).

12 We mainly followed the implementation of Durbin et al. (1998). For implementation
details, see Sonnenburg (2001).

13 Note that @av(x, Oh ) is a constant, which does not depend on x, so it is not included
in the feature vector.
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Table 2: P Values of Statistical Tests in the Protein Classi�cation Experiments.

Methods Test 1-2 1-3 1-4 2-3 2-4 3-4

P, FK T 0.95 0.14 0.78 0.0032¤¤ 0.79 0.12
WX 0.85 0.041¤ 0.24 0.0040¤¤ 0.80 0.026¤

P, TOP T 0.015¤ 1.7 £ 10¡8¤¤ 0.11 3.0 £ 10¡12¤¤ 0.059 5.3 £ 10¡5¤¤

WX 4.3 £ 10¡4¤¤ 6.1 £ 10¡5¤¤ 0.030¤ 6.1 £ 10¡5¤¤ 0.035¤ 3.1 £ 10¡4¤¤

FK, TOP T 0.0093¤¤ 2.2 £ 10¡4¤¤ 0.21 2.6 £ 10¡8¤¤ 0.079 0.0031¤¤

WX 8.5 £ 10¡4¤¤ 6.1 £ 10¡5¤¤ 0.048¤ 6.1 £ 10¡5¤¤ 0.0034¤¤ 1.8 £ 10¡4¤¤

Notes: The t-test is denoted as T and the Wilcoxson signed ranks test (as WX).
¤p < 0.05. ¤¤p < 0.01.

propriate value. Theoretically, this threshold should be determined by the
(true) class prior probability, which is typically unavailable. Furthermore,
the estimation of the prior probability from training data often leads to poor
results (Durbin et al., 1998). To avoid this problem, the threshold is deter-
mined such that the false-positive rate and the false-negative rate are equal
on the test set. This threshold is determined in the same way for FK-SVMs
and TOP-SVMs.

The hybrid HMM-TOP-SVM system has several model parameters: the
number of HMM states, the pseudo count value (Durbin et al., 1998), and
the regularization parameter C of the SVM. We determine these parameters
as follows. First, the number of states and the pseudo count value are deter-
mined such that the error of the HMM on the validation set (i.e., the valida-
tion error) is minimized. Based on the chosen HMM model, the parameter
C is determined such that the validation error of the TOP-SVM is mini-
mized. Here, the number of states and the pseudo count value are chosen
from f3, 5, 7, 10, 15, 20, 30, 40, 60g and f10¡10, 10¡7, 10¡5, 10¡4, 10¡3, 10¡2g,
respectively. For C, 15 equally spaced points on the log scale are taken from
[10¡4, 101]. Note that the model selection is performed in the same manner
for the FK as well.

The error rates over 15 different training, validation, and test divisions
are shown in Figures 3 and 4. The results of statistical tests are shown
in Table 2 as well. In several settings (i.e. 1-3, 2-3, 3-4), the FK performed
better than the plug-in estimate with signi�cant difference in average error
rates. This result partially agrees with observations in Jaakkola and Haussler
(1999). However, our TOP approach outperforms the FK. According to the
Wilcoxson signed ranks test, the TOP kernel was better in all settings with
signi�cant difference. Also, the t-test judged that the difference is signi�cant
except for 1-4 and 2-4. This indicates that the TOP kernel was able to capture
discriminative information better than the FK could.
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Figure 3: The error rates of SVMs with two feature extractors in the protein clas-
si�cation experiments. The labels P, FK, and TOP denote the plug-in estimate,
the Fisher kernel, and the TOP kernel, respectively. Each graph is labeled with
the two protein classes used for the experiment.

7 Conclusion

In this study, we presented the new discriminative TOP kernel derived from
probabilistic models. We proposed two performance measures to analyze
such kernels and gave bounds and rates to gain a better insight into model-
dependent feature extractors from probabilistic models. Experimentally, we
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Figure 4: Comparison of the error rates of the SVMs with two feature extractors
in protein classi�cation experiments. Every point corresponds to one of the 15
different training, validation, and test set splits. Each graph is labeled with the
two protein classes used for the experiment.

showed that the TOP kernel compares favorably to FK and the plug-in esti-
mator on toy data and in a realistic protein classi�cation experiment. Future
research will focus on constructing small sample bounds for the TOP kernel
to extend the validity of this work. Since other nonlinear transformations F
are available for obtaining different and possibly even better features, we
will consider learning the nonlinear transformation F from training sam-
ples. An interesting point is that so far, TOP kernels perform local linear
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approximations; it would be interesting to move in the direction of local
or even global nonlinear expansions. Recently, it was reported that the FK-
based classi�ers can be understood in the Bayesian framework of maximum
entropy discrimination (Jaakkola, Meila, & Jebara, 2000; Jaakkola, Meila, &
Jebara, 1999) when the prior distribution of parameters is chosen in an ap-
propriate way. It is therefore interesting to explore the relationship between
the techniques established in this work for the TOP kernel and such Bayesian
inference methods.

Appendix: Derivatives with Respect to HMM Parameters

We will illustrate how to compute derivatives of the likelihood with respect
to HMM parameters (Rabiner, 1989; Durbin et al., 1998). Let n and m be
the number of states and the number of symbols in the alphabet of HMM,
respectively. Typically, HMM has the following parameters:

� a 2 Rn£n: the transition matrix (aij denotes the probability of a transi-
tion from state i to j).

� b 2 Rn£m: the emission matrix (bik denotes the probability of emitting
symbol k in state i)

� p 2 Rn: the initial state distribution (pi denotes the probability of the
HMM to start in state i)

� q 2 Rn: the terminal or end state distribution (qi denotes the probability
of the HMM to terminate in state i)

Let us de�ne ¸ D fa, b, p, qg for convenience. Let o denote an observed
sequence of length T:

o D (o0, . . . , oT¡1 ) , 1 · oi · m.

Then the probability that the sequence o is generated by the HMM is de-
scribed as

Pr[o | ¸] D
X

s
ps0bs0o0

Á
T¡2Y

tD0
aststC1 bstC1otC1

!

qsT¡1 , (A.1)

where
P

s denotes the sum over all possible state sequences s0, . . . , sT¡1:P
s D

Pn
s0D1 ¢ ¢ ¢

Pn
sT¡1 D1. We will describe the derivative of Pr[o | ¸] with

respect to ¸ using forward and backward variables, where the forward
variable ai

t is de�ned as

ai
t :D Pr[o0, o1, . . . , ot, st D i | ¸],

and the backward variable b i
t is described as

b i
t :D Pr[otC1, otC2, . . . , oT¡1 | st D i, ¸].
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These variables are ef�ciently computed by the standard forward-backward
algorithm (Durbin et al., 1998). Then the derivatives with respect to param-
eters are obtained as follows:

@Pr[o | ¸]
@pk

D bk o0b
k
0 (A.2)

@Pr[o | ¸]
@qk

D ak
T¡1 (A.3)

@Pr[o | ¸]
@akl

D
T¡2X

tD0

ak
t bl otC 1b

l
tC1 (A.4)

@Pr[o | ¸]
@bkl

D
T¡1X

tD0

I (ot D l)
ak

t b k
t

bkot

, (A.5)

where I (ot D l) D 1 if ot D l and 0 otherwise. The parameters in standard
HMMs must satisfy the stochasticity conditions:

nX

jD1

aij D 1,
mX

jD1

bij D 1,
nX

jD1

pj D 1,
nX

jD1

qj D 1.

For computations of FK and TOP, we use the derivatives with respect to
unconstrained parameters ¸0 as in Jaakkola, Diekhans, et al., 2000. These
unconstrained parameters are related to the original ones as

pi D p0
i/

nX

jD1

p0
j ,

where other parameters a0
ij, b0

ij, q0
i have the same relations (the formulas are

not shown for brevity). By the chain rule, the derivative with respect to p0
i

at the point p0
i D pi is obtained as

@Pr[o | ¸]
@p0

i
D

@ Pr[o | ¸]
@pi

¡
nX

jD1

pj
@Pr[o | ¸]

@pj
. (A.6)

The derivatives with respect to other unconstrained parameters can be ob-
tained in the same way.
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