
Entire Regularization Paths for Graph Data

Koji Tsuda koji.tsuda@tuebingen.mpg.de

Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tübingen, Germany

Abstract

Graph data such as chemical compounds and
XML documents are getting more common in
many application domains. A main difficulty
of graph data processing lies in the intrinsic
high dimensionality of graphs, namely, when
a graph is represented as a binary feature
vector of indicators of all possible subgraph
patterns, the dimensionality gets too large
for usual statistical methods. We propose
an efficient method to select a small num-
ber of salient patterns by regularization path
tracking. The generation of useless patterns
is minimized by progressive extension of the
search space. In experiments, it is shown that
our technique is considerably more efficient
than a simpler approach based on frequent
substructure mining.

1. Introduction

Graphs are general and powerful data structures that
can be used to represent diverse kinds of objects. Much
of the real world data is represented not as vectors,
but as graphs including sequences and trees, for exam-
ple, biological sequences, semi-structured texts such
as HTML and XML, chemical compounds, RNA sec-
ondary structures, and so forth. In supervised learning
for graph data, one can rely on the similarity measures
derived from graph alignment (Sanfeliu & Fu, 1983)
or graph kernels (Kashima et al., 2003). However, one
drawback is that the features used in learning are im-
plicitly defined, and the derived prediction rules are
hard to interpret. Another approach is based on graph

mining, where a set of small graphs (i.e., patterns)
is used to represent a graph (Figure 1). The graph
mining approach is especially popular in chemoinfor-
matics, where the task is to predict activity values of
chemical compounds (Kazius et al., 2006; Helma et al.,

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

(0,...,0,1,0,...,0,1,0,...)
B

A

A

B
A

AA

B

A

APatterns

Figure 1. Feature space based on subgraph patterns. The
feature vector consists of binary pattern indicators.

2004), because it is crucial to understand which parts
of the compound contribute to its activity.

For interpretability of prediction rules, it is required
to select a small number of salient patterns necessary
for a given learning task. A naive approach is to first
use a frequent substructure mining algorithm such as
gSpan (Yan & Han, 2002a) or Gaston (Nijssen & Kok,
2004) to collect frequently appearing patterns, and
then apply a conventional feature selection algorithm.
Actually, this approach was employed by Helma et al.
(2004) and Kazius et al. (2006), where a linear sup-
port vector machine is used for feature selection. A
frequent substructure mining algorithm has two pa-
rameters: minimum support (minsup) and maximum
pattern size (maxpat). The output of graph mining is
the set of all patterns satisfying the following two con-
straints: (1) the number of edges is less than maxpat,
and (2) the pattern is included in more than minsup

graphs in the database.

In principle, salient features should be selected from
the full set of patterns, i.e., the set of all subgraphs
of the graphs in the database. However, in the naive
approach, one needs to restrict the pattern set a priori
using minsup and maxpat constraints, because it takes
a prohibitive amount of time to enumerate the full
pattern set. Too much restriction can result in the loss
of informative patterns and poor prediction accuracy.
Another practical problem is that appropriate values
of the parameters are data-dependent, and one has to
devise a reasonable procedure to set them.

In this paper, we propose an efficient algorithm for

Entire Regularization Paths for Graph Data

pattern selection based on a regularization path track-
ing algorithm, called LAR-LASSO (Efron et al., 2004).
LAR-LASSO is a forward feature selection algorithm
that adds or removes a numerical feature in each step.
Instead of numerical features, a pattern is added or
removed in our case. The central issue is how to im-
plement the two kinds of feature searching steps con-
tained in the algorithm. We present a method based
on the data structure called DFS Code Tree (Yan &
Han, 2002a). Especially, an effective tree pruning con-
dition is proposed, which results in efficient discovery
of optimal patterns. Our algorithm draws the entire
regularization path in a very high dimensional space
of pattern indicators. In experiments, we show that
the computational cost is kept small, even if patterns
are selected from the full set.

For pattern selection in supervised learning tasks, sev-
eral filter-type methods have been proposed (Morishita
& Sese, 2000; Bringmann et al., 2006). They can se-
lect the patterns with high correlation to the output
variable quickly. However, salient patterns depend on
the optimal parameters of the subsequent learning al-
gorithm, and it is difficult to obtain a small number of
features informative for any learning algorithm (Ko-
havi & John, 1997). Our algorithm is more related to
graph boosting methods (Nowozin et al., 2007; Saigo
et al., 2006) that select features by the L1-norm reg-
ularizer with a prespecified regularization parameter.
Our novelty is in that the whole regularization path is
obtained efficiently.

This paper is organized as follows. In Section 2, the
LAR-LASSO algorithm is briefly reviewed. Section 3
and 4 explain how to solve the pattern search prob-
lems efficiently. In Section 5, we show experimental
results about the computational cost of our method.
We conclude this paper in Section 6.

2. Path Tracking Algorithms

The entire regularization path (ERP) algorithms of-
fer a principled way of feature selection (Efron et al.,
2004; Rosset & Zhu, 2003). The idea is to trace the
solution vector of the L1-norm regularized regression
algorithm LASSO (Tibshirani, 1996), as the regular-
ization parameter moves from infinity to zero.

Denote by X ∈ <n×d the design matrix and by y ∈ <n

the target variables. A learning problem with the L1
regularization is written as

β(λ) = argmin
β

L(y, Xβ) + λ‖β‖1. (1)

where β ∈ <d is a weight vector. In this paper, we

assume that the loss function is quadratic1,

L(y, Xβ) =
1

2

∑

i

(yi − β>xi)
2. (2)

Due to the sparsity inducing property of the L1 norm,
most of the weights are exactly zero. Denote by A the
active set, i.e., the set of indices of nonzero weights
in β. If the regularization strength λ is set to infin-
ity, the active set is empty. As λ is decreased towards
zero, the number of elements in the active set gradu-
ally increases to d. This trajectory β(λ) is called the
regularization path. Efron et al. (Efron et al., 2004)
pointed out that this path is piecewise linear if the loss
function is piecewise quadratic (Figure 2). Therefore,
to draw the entire path, one does not need to take
infinitesimally small steps in λ.

The active set changes itself as the regularization pa-
rameter decreases. At a given parameter value, either
of the two events can happen: (1) inclusion of a feature
to the active set, (2) exclusion of a feature from the
active set. The ERP algorithm captures each event of
feature inclusion and exclusion so that the entire path
of solutions is obtained.

To solve the LASSO problem (1) with a fixed regu-
larization parameter, one needs to solve a quadratic
program. In machine learning literature, it is often
the case that a grid search is performed to find the
optimal regularization parameter in terms of, e.g., the
cross validation error. To obtain a better regulariza-
tion parameter, one has to repeat parameter learnings
to try many candidate values, which is quite time con-
suming. By using the path tracking algorithm, one
can find exactly the best regularization parameter in
a relatively small computational cost.

The path tracking algorithm is shown in Algorithm 1.
The derivative of the loss in the pseudo code is de-
scribed as

∇L(β) = −
n

∑

i=1

(yi − β>xi)xi. (3)

First of all, the first element of the active feature set
A is found by the initial search and the initial direc-
tion vector γ is set (lines 1 and 2). Next, one has to
determine the step length d. As the weight β is moved
to the direction of γ, one of the following two events
can occur: (1) inclusion of a new feature, or (2) ex-
clusion of an existing feature. The search at line 4 is

1To apply our algorithm to other loss functions, it is
necessary to extend the algorithm considerably. Especially,
we need a new pruning condition for the search tree (see
Theorem 1).

Entire Regularization Paths for Graph Data

λ=λ1

λ=λ2

λ=λ3

λ=λ4
γ

Figure 2. Schematic figure of the regularization paths in
the space of the weight vector β(λ). To follow the path
from the starting point λ = λ1, the direction vector γ and
the step size d are computed and then one jumps to the
next turning point. By repeating this, one can follow the
entire regularization path without taking small steps.

performed to determine the step size that the first in-
clusion event occurs. Due to the Karush-Kuhn-Tucker
(KKT) condition, every element in the active set A
has the same gradient value (Rosset & Zhu, 2003),

∇L(β + dγ)j = ∇L(β + dγ)j′ , ∀j, j′ ∈ A,

where ∇L(·)j denotes the derivative with respect to
the j-th variable. This constant is denoted as ∇L(β +
dγ)A. The direction γ is called an equiangular direc-
tion.

We also need to determine the step size d2 that the first
exclusion event occurs (line 5). If d1 < d2, then the
next event is inclusion, otherwise exclusion. Then, the
actual step is taken (line 7), the active set is updated
(lines 8,9), a new direction is set for a new iteration.

3. Main Search

In applying LAR-LASSO to graph data, one has to
solve two kinds of pattern search problems: the initial
search (line 1) and the main search (line 4). The main
search is called many times while the initial search is
done only once. Thus, in this section, we focus on the
main search problem that mainly affects the overall
computational time.

Let us define some notations. Given a graph database
G = {Gi}

n
i=1, let T denote the set of all patterns, i.e.,

the set of all subgraphs included in at least one graph
in G. Then, each graph Gi is encoded as a feature
vector xi = (xit)t∈T ,

xit = I(t ⊆ Gi),

where t ⊆ Gi denotes that t is a subgraph of Gi, and
I(·) is 1 if the condition inside is true and 0 otherwise.

In the main search problem, we need to find the op-
timal pattern t that attains the minimum value of dt,

A B

A B C D A B

Tree of Substructures

A

B C

Figure 3. Schematic figure of the tree-shaped search space
of graph patterns (i.e., the DFS code tree)

implicitly defined as

|∇L(β + dtγ)t| = |∇L(β + dtγ)A|. (4)

The right hand side is equal for any element inA due to
the KKT condition. The above equation is rewritten
as

|
n

∑

i=1

wixit − dt

n
∑

i=1

vixit| = |ρ0 − dtη0| (5)

where
wi = (yi − β>xi), vi = γ>xi,

and ρ0 =
∑

i wixik, η0 =
∑

i vixik for any k ∈ A. The
equation (5) has the solution,

dt = min
+

{

ρ0 −
∑

i wixit

η0 −
∑

i vixit

,
ρ0 +

∑

i wixit

η0 +
∑

i vixit

}

. (6)

where min+ stands for the operation of taking mini-
mum among strictly positive elements.

3.1. Search Algorithm

Our search strategy requires a canonical search space
in which a whole set of patterns are enumerated with-
out duplication. As the search space, we adopt the
DFS code tree (Yan & Han, 2002a). The basic idea
of the DFS code tree is to organize patterns as a tree,
where a child node has a supergraph of the parent’s
pattern (Figure 3). A pattern is represented as a text
string called the DFS (depth first search) code. The
patterns are enumerated by generating the tree from
the root to leaves using a recursive algorithm. To
avoid duplications, node generation is systematically
done by rightmost extensions. Algorithm 2 shows the
pseudo code for the recursive algorithm. See Appendix
for details about the DFS code and the rightmost ex-
tension.

Entire Regularization Paths for Graph Data

Algorithm 1 The LAR-LASSO algorithm

1: β = 0, A = argmaxj |∇L(β)|j . . Initial Search
2: γA = −sgn(∇L(β))A, γAC = 0.
3: while max |L(β)| > 0 do

4: d1 = min{d > 0 : |∇L(β + dγ)j | = |∇L(β + dγ)A|, j /∈ A} . Main Search
5: d2 = min{d > 0 : (β + γ)j = 0, j ∈ A}.
6: Find step length: d = min(d1, d2)
7: Take step: β ← β + dγ

8: If d = d1 then add the variable attaining the minimum to A.
9: If d = d2 then remove the variables such that βj = 0 from A.

10: C = 1

2

∑

i xA,ix
>
A,i

11: γA = C−1sgn(βA),γAC = 0.
12: end while

Algorithm 2 Finding the Optimal Step Size d1

1: procedure Optimal Stepsize

2: d1 =∞
3: for t ∈ DFS codes with single nodes do

4: project(t)
5: end for

6: return d1

7: end procedure

8: function project(t)
9: if t is not a minimum DFS code then

10: return
11: end if

12: if pruning condition (7) holds then

13: return
14: end if

15: Calculate dt as (6)
16: if dt < d1 and dt 6= 0 then

17: d1 = dt

18: end if

19: for t′ ∈ rightmost extensions of t do

20: project(t′)
21: end for

22: end function

For efficient search, it is important to minimize the size
of the search space. To this aim, tree pruning is cru-
cially important: Suppose the search tree is generated
up to the pattern t and denote by d∗

t the minimum
dt among the ones observed so far. If it is guaranteed
that dt′ of any supergraph t′ is not smaller than d∗

t , we
can avoid the generation of downstream nodes without
losing the optimal pattern.

We propose the following pruning condition.

Theorem 1. Let us define

bw = max

{

∑

wi<0

|wi|xit,
∑

wi>0

|wi|xit

}

.

If the following condition is satisfied,

bw + d∗
t bv < |ρ0| − d∗

t |η0|, (7)

the inequality dt′ > d∗
t holds for any t′ such that t ⊂ t′.

(proof) Let us rewrite the equation (5) for dt′ ,

|

n
∑

i=1

wixit′ − dt′

n
∑

i=1

vixit′ | = |ρ0 − dt′η0|. (8)

The right hand side of (8) is bounded from below as

|ρ0 − dt′η0| ≥ |ρ0| − dt′ |η0|. (9)

The left hand side of (8) is bounded from above as

|

n
∑

i=1

wixit′−dt′

n
∑

i=1

vixit′ | ≤ |

n
∑

i=1

wixit′ |+dt′ |

n
∑

i=1

vixit′ |

(10)
Each term on the right hand size of (10) is further
bounded as

|

n
∑

i=1

wixit′ | ≤ max

{

∑

wi<0

|wi|xit′ ,
∑

wi>0

|wi|xit′

}

≤ max

{

∑

wi<0

|wi|xit,
∑

wi>0

|wi|xit

}

The second inequality is derived from the fact t ⊂ t′.
So we have

|

n
∑

i=1

wixit′ − dt′

n
∑

i=1

vixit′ | ≤ bw + dt′bv. (11)

For the equation (8) to have a solution, the two ranges
(9) and (11) must intersect. If (7) holds, no solution
exists in the domain dt′ ≤ d∗

t , because the two ranges
have no intersection.

Entire Regularization Paths for Graph Data

3.2. Reusing the Search Space

In LAR-LASSO, the main search problem is solved re-
peatedly with different parameters wi, vi, ρ0, η0. Since
the search spaces have large overlap, it is more efficient
to reuse the generated search space in next iterations.
The whole tree of patterns is kept in the memory, and,
in each iteration, the search space is progressively ex-
tended.

For less memory consumption, each search can be
performed independently without reusing the search
space. But in this case, the computation time would
be larger by orders of magnitude. In the search algo-
rithm, the most time consuming part is the minimum
DFS code check (line 9). The required time is expo-
nential to the size of pattern t (Yan & Han, 2002a).
If the search space is not reused, one has to check the
minimality of the same DFS code many times.

4. Initial Search

In the initial search (line 1 in Algorithm 1), the task
is to find the first pattern to get into the active set. It
is proven (Rosset & Zhu, 2003) that the first pattern
is found by maximizing the following gain function:
argmaxt∈T gt, where

gt =

∣

∣

∣

∣

∣

∑

i=1

yixit

∣

∣

∣

∣

∣

. (12)

The search is conducted basically in the same way,
but with a different pruning condition. We used the
following pruning condition that has been previously
employed in graph boosting (Kudo et al., 2005).

Theorem 2. For any t′ such that t ⊂ t′, gt′ < g∗t , if

g∗t > max

{

∑

yi<0

|yi|xit,
∑

yi>0

|yi|xit

}

. (13)

For the proof, see (Kudo et al., 2005).

5. Experiments

First, we illustrate how our method works using the
estrogen receptor dataset from the Endocrine Disrup-
tors Knowledge Base2. It contains 131 chemical com-
pounds suspected to work as environmental hormones,
and our task is to predict its toxicity. The first 10
events of LAR-LASSO are shown in Figure 4. As it
is just the beginning of the regularization path, most
events are inclusions. However, within this short pe-
riod, an exclusion happens at the 7th event. The evo-
lution of weight parameters is shown in Figure 5. The

2http://edkb.fda.gov

0 2 4 6 8 10

-0.1

-0.05

0

0.05

0.1

0.15

Event

Figure 5. Solution paths for the EDKB dataset. Each
curve shows the evolution of the weight parameter of a
pattern. A curve can be terminated by an exclusion event.
For example, the green curve emerging from the 2nd event
disappears at the 7th event.

excluded pattern corresponds to the green curve that
converges to zero at the 7th event.

Next, the computation cost of our progressive method
is compared with that of the naive method, where
all patterns satisfying minsup and maxpat constraints
are enumerated first, and LAR-LASSO is applied sub-
sequently. To show the difference clearly, we used
a larger chemical dataset called CPDB with 683
graphs (Helma et al., 2004). This is a classification
dataset, but we used the quadratic loss, and the two
classes are represented as -1 and 1 in the target vari-
able y. The dataset is divided into 90% training set
and 10% validation set. In each event of LAR-LASSO,
the classification error in the validation set is measured
and the event index that achieves the smallest error is
recorded (Figure 6). As mentioned in Section 3.2, the
number of nodes grows as the algorithm proceeds (Fig-
ure 7). In real situations, the LAR-LASSO algorithm
is terminated shortly after the minimum error point
to avoid overfitting. In this experiment, we recorded
the computation time and the number of nodes at the
minimum error point.

The computation time and the size of search space
are summarized in Table 1. Here the minimum sup-
port constraint is not used in both methods, but the
maxpat parameter is changed from 5 to ∞. When
the maxpat parameter is set to ∞, the full set is used
as a source of pattern selection. As observed in the
table, the search space of the naive method grows
rapidly as the maxpat parameter is increased. On the
other hand, our progressive method can always keep

Entire Regularization Paths for Graph Data

C

C

C

C

C

C
O C

C

C

C

C

C

OC

C

C

C

C

O

O

C

C

O

C

C

C

C
CO

C

C

C

C

C

C

C

C

O

C
C

C

C

C

C

C

C

C

C

C

C

C

C

OC

C
C

C
C

C
C

C

C

C

O

C

C C

C

C

C

C

O C

C

C

O

C

Figure 4. Patterns included or excluded in the first 10 events for the EDKB dataset. The 7th event (indicated by a red
line) is an exclusion event.

0 50 100 150 200
0.2

0.4

0.6

0.8

1

Event

V
al

id
at

io
n

E
rr

or

Figure 6. Validation errors of LAR-LASSO for the CPDB
dataset (maxpat=10). The red vertical line indicates the
event that achieved the smallest validation error.

the search space very small. Even if the full pattern
set is used (maxpat=∞), the computational time is
only about 3 seconds. A main reason of this efficiency
is that the search space is pruned by the condition im-
posed by the regression algorithm (Theorem 1). Com-
pared to the naive approach, we have the target values
y as an extra information source that can be exploited
for tree pruning.

6. Conclusion

We have presented an algorithm for applying LAR-
LASSO to graph data. Our algorithm is designed such
that the search space is pruned autonomously, not by
external constraints. It consists of two tightly-coupled
components: the machine learning part (Algorithm 1)
that updates the weight parameters and the graph
mining part (Algorithm 2) that searches for optimal

0 50 100 150 200 250
0

0.5

1

1.5

2
x 10

4

Event

#N
od

es

Figure 7. Number of nodes in the search space for the
CPDB dataset (maxpat = 10). The red vertical line indi-
cates the event that achieved the smallest validation error.
In Table 1, the number of nodes at that point is shown.

patterns. This paper has shown that the integration
of graph mining and machine learning leads to signifi-
cant improvement in speed.

Naturally, our idea can be applied to any subclass of
graphs. If tree mining is employed instead of graph
mining, the computational time will be much shorter.
The tree-based method would be useful for, e.g., semi-
structured texts and phylogenetic trees.

Appendix: DFS Code Tree

In Algorithm 2, we need to find the optimal pattern
which optimizes a score function. To this end, we need
an intelligent way of enumerating all subgraphs of a
graph set. This problem is highly nontrivial due to

Entire Regularization Paths for Graph Data

Table 1. Number of nodes in the search tree and compu-
tation time against the maximum pattern size constraint
(maxpat). The minimum support constraint is not used.
The computation time is measured on a standard 3GHz
PC with 1GB memory. The last row shows the computa-
tional cost when no constraints are imposed. In this case,
the results of the naive method are not available due to
memory overflow.

Naive Progressive
maxpat #nodes time #nodes time

5 2142 0.51 1171 0.38
6 5717 1.39 2111 0.67
7 14309 3.79 3614 1.36
8 33862 9.93 4936 1.90
9 75814 25.64 6605 2.42
10 161858 65.60 7961 2.80
11 332553 164.20 8613 3.00
12 665202 397.95 8857 3.12
13 1302273 931.61 8964 3.11
∞ N/A N/A 9088 3.15

� �

�

� �

A

B

C D � �

�

� �

A

B

C D � �

�

� �

D

B

A C

0

1

2 3

0

1

2 3

(a) (b) (c)

Figure 8. Depth first search and DFS code of graph. (a) A
graph example. (b), (c) Two different depth-first-searches
of the same graph. Red numbers represent the DFS indices.
Bold edges and dashed edges represent the forward edges
and the backward edges respectively.

loops: One has to avoid enumarating the same pat-
tern again and again. In this section, we present a
canonical search space of graph patterns called DFS

code tree (Yan & Han, 2002b), that enumerates all
subgraphs without duplication. In the following, we
assume undirected graphs, but it is straightforward to
extend the algorithm for directed graphs.

DFS Code The DFS code is a string representation
of graph G based on depth first search (DFS). Ac-
cording to different starting points and growing edges,
there are many ways to perform the search. Therefore,
the DFS code of a graph is not unique. To derive a
DFS code, each node is indexed from 0 to n−1 accord-
ing to the discovery time in the DFS. Denote by Ef

the forward edge set containing all the edges traversed

in the DFS, and by Eb the backward edge set contain-
ing the remaining edges. Figure 8 show two different
indexings of the same graph.

After the indexing, an edge is represented as a pair
of indices (i, j) together with vertex and edge labels,
e = (i, j, li, lij , lj) ∈ V × V × LV × LE × LV , where
V = {0, . . . , n − 1}, LV and LE are the set of vertex
and edge labels, respectively. The index pair is set as
i < j, if it is an forward edge, and i > j if backward.
It is assumed that there are no self-loop edges. To de-
fine the DFS code, a linear order ≺T is defined among
edges. For the two edges e1 = (i1, j1) and e2 = (i2, j2),
e1 ≺T e2 if and only if one of the following statements
is true:

1. e1, e2 ∈ Ef , and (j1 < j2 or i1 > i2 ∧ j1 = j2)

2. e1, e2 ∈ Eb, and (i1 < i2 or i1 = i2 ∧ j1 < j2).

3. e1 ∈ Eb, e2 ∈ Ef , and i1 < j2.

4. e1 ∈ Ef , e2 ∈ Eb, and j1 ≤ i2.

The DFS code is a sequence of edges sorted according
to the above order.

Minimum DFS Code Since there are many possi-
ble DFS codes, it is necessary to determine the min-
imum DFS code as a canonical representation of the
graph. Let us define a linear order for two DFS codes
α = (a0, . . . , am) and β = (b0, . . . , bn). By comparing
the vertex and edge labels, we can easily build a lexi-
cographical order of individual edges ai and bj . Then,
the DFS lexicographic order for the two codes is de-
fined as follows: α < β if and only if either of the
following is true,

1. ∃t, 0 ≤ t ≤ min(m,n), ak = bk for k < t, at < bt.

2. ak = bk for 0 ≤ k ≤ m and m ≤ n.

Given a set of DFS codes, the minimum code is defined
as the smallest one according to the above order.

Right Most Extension As in most mining algo-
rithm, we form a tree where each node has a DFS code,
and the children of a node have the DFS codes corre-
sponding to the supergraphs. The tree is generated
in a depth-first manner and the generation of child
nodes of a node is done according to the right most
extension (Yan & Han, 2002b). Suppose a node has
the DFS code α = (a0, a1, · · · , an) where ak = (ik, jk).
The next edge an+1 is chosen such that the following
conditions are satisfied:

Entire Regularization Paths for Graph Data

1. If an is a forward edge and an+1 is a forward edge,
then in+1 ≤ jn and jn+1 = jn + 1.

2. If an is a forward edge and an+1 is a backward
edge, then in+1 = jn and jn+1 < in.

3. If an is a backward edge and an+1 is a forward
edge, then in+1 ≤ in and jn+1 = in + 1.

4. If an is a backward edge and an+1 is a backward
edge, then in+1 = in and jn < jn+1.

For every possible an+1, a child node is generated and
the extended DFS code (a0, . . . , an+1) is stored. The
extension is done such that the extended graph is in-
cluded in at least one graph in the database.

DFS Code Tree The DFS code tree, denoted by T,
is a tree-structure whose node represents a DFS code,
the relation between a node and its child nodes is given
by the right most extension, and the child nodes of the
same parent is sorted in the DFS lexicographic order.

It has the following completeness property. Let us
remove from T the subtrees whose root nodes have
non-minimum DFS codes, and denote by Tmin the re-
duced tree. It is proven that all subgraphs of graphs
in the database are still included in Tmin (Yan & Han,
2002b). This property allows us to prune the tree as
soon as a non-minimum DFS code is found. In Algo-
rithm 2, the minimality of the DFS code is checked in
each node generation, and the tree is pruned if it is
not minimum (line 9). This minimality check is basi-
cally done by exhaustively enumerating all DFS codes
of the corresponding graph. Therefore, the computa-
tional time for the check is exponential to the pattern
size. Techniques to avoid the total enumeration are de-
scribed in Section 5.1 of (Yan & Han, 2002b), but still
it is the most time consuming part of the algorithm.

Acknowledgments

I would like to thank Taku Kudo for offering his im-
plementation of the DFS Code Tree. Discussions with
Sebastian Nowozin and Hiroto Saigo were especially
helpful.

References

Bringmann, B., Zimmermann, A., Raedt, L. D., & Nijssen,
S. (2006). Don’t be afraid of simpler patterns. 10th Eu-
ropean Conference on Principles and Practice of Knowl-
edge Discovery in Databases (PKDD) (pp. 55–66).

Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R.
(2004). Least angle regression. Ann. Statist., 32, 407–
499.

Helma, C., Cramer, T., Kramer, S., & Raedt, L. (2004).
Data mining and machine learning techniques for the
identification of mutagenicity inducing substructures
and structure activity relationships of noncongeneric
compounds. J. Chem. Inf. Comput. Sci., 44, 1402–1411.

Kashima, H., Tsuda, K., & Inokuchi, A. (2003). Marginal-
ized kernels between labeled graphs. Proceedings of the
20th International Conference on Machine Learning (pp.
321–328). Menlo Park, CA, AAAI Press.

Kazius, J., Nijssen, S., Kok, J., & Ijzerman, T. B. A.
(2006). Substructure mining using elaborate chemical
representation. J. Chem. Inf. Model., 46, 597–605.

Kohavi, R., & John, G. H. (1997). Wrappers for feature
subset selection. Artificial Intelligence, 1-2, 273–324.

Kudo, T., Maeda, E., & Matsumoto, Y. (2005). An ap-
plication of boosting to graph classification. In L. Saul,
Y. Weiss and L. Bottou (Eds.), Advances in neural in-
formation processing systems 17, 729–736. Cambridge,
MA: MIT Press.

Morishita, S., & Sese, J. (2000). Traversing itemset lattices
with statistical metric learning. Proceedings of ACM
SIGACT-SIGMOD-SIGART Symposium on Database
Systems (PODS) (pp. 226–236).

Nijssen, S., & Kok, J. (2004). A quickstart in frequent
structure mining can make a difference. Proceedings
of the 10th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (pp. 647–652).
New York: ACM Press.

Nowozin, S., Tsuda, K., Uno, T., Kudo, T., & Bakır, G.
(2007). Weighted substructure mining for image anal-
ysis. CVPR ’07: Proceedings of the 2007 IEEE Com-
puter Society Conference on Computer Vision and Pat-
tern Recognition. to appear.

Rosset, S., & Zhu, J. (2003). Piecewise linear regularized
solution paths (Technical Report). Stanford University.

Saigo, H., Kadowaki, T., & Tsuda, K. (2006). A linear
programming approach for molecular QSAR analysis.
International Workshop on Mining and Learning with
Graphs (MLG) (pp. 85–96).

Sanfeliu, A., & Fu, K. (1983). A distance measure be-
tween attributed relational graphs for pattern recogni-
tion. IEEE Trans. Syst. Man Cybern., 13, 353–362.

Tibshirani, R. (1996). Regression shrinkage and selection
via LASSO. J. R. Stat. Soc. Ser. B Stat. Methodol., 58,
267–288.

Yan, X., & Han, J. (2002a). gspan: Graph-based sub-
structure pattern mining. Proceedings of the 2002 IEEE
International Conference on Data Mining (ICDM) (pp.
721–724). IEEE Computer Society.

Yan, X., & Han, J. (2002b). gSpan: graph-based substruc-
ture pattern mining (Technical Report). Department
of Computer Science, University of Illinois at Urbana-
Champaign.

