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ABSTRACT

ChIP-Seq technology, which combines chromatin
immunoprecipitation (ChIP) with massively parallel
sequencing, is rapidly replacing ChIP-on-chip for
the genome-wide identification of transcription
factor binding events. Identifying bound regions
from the large number of sequence tags produced
by ChIP-Seq is a challenging task. Here, we present
GLITR (GLobal Identifier of Target Regions), which
accurately identifies enriched regions in target
data by calculating a fold-change based on
random samples of control (input chromatin) data.
GLITR uses a classification method to identify
regions in ChIP data that have a peak height and
fold-change which do not resemble regions in an
input sample. We compare GLITR to several recent
methods and show that GLITR has improved sensi-
tivity for identifying bound regions closely matching
the consensus sequence of a given transcription
factor, and can detect bona fide transcription
factor targets missed by other programs. We also
use GLITR to address the issue of sequencing
depth, and show that sequencing biological repli-
cates identifies far more binding regions than
re-sequencing the same sample.

INTRODUCTION

Chromatin immunoprecipitation, or ‘ChIP’, allows for
the capture of the binding events between transcription
factors or other DNA binding proteins and their targets
in vivo at the moment of biochemical cross-linking. With
the development of ‘ChIP-on-chip’ technology, the
near genome-wide location analysis of binding sites for
transcription factors became a reality (1). While this tech-
nology has greatly improved our understanding of tran-
scriptional regulation in mammals, it is limited by the type
of microarray platform used for the hybridization, in

terms of spatial resolution and genomic regions that can
be covered (1–3). ChIP-Seq technology addresses these
issues, providing sequences for target regions anywhere
in the genome with dramatically improved spatial resolu-
tion (2–9).
While ChIP-Seq technology offers many advantages

over ChIP-on-chip, the large amount of data produced
from each run (>1 Gb of sequence) poses a challenge
for the accurate identification of transcription factor bind-
ing sites (3,8). Over the last few months, a number of new
methods have been released which attempt to address
these challenges (8–17). Many initial approaches did not
employ control (i.e. input derived) datasets to eliminate
falsely called binding regions that occur due to sequencing
biases (6,10,11,15). More recent methods enable the user
to specify a control data set to eliminate false positive
regions that result from these biases (8,9,12–14,16,17).
For instance, the CisGenome software system uses a con-
ditional binomial model to identify enriched regions when
a control data set is provided and includes an option for
incorporating sequence strand information (16). MACS
(Model-based Analysis of ChIP-Seq) uses the control
dataset to model the tag distribution across the genome
using the Poisson distribution (�BG) (14). After identifying
candidate peaks that are significantly enriched over �BG,
a local � is estimated using windows around each peak
to eliminate local biases (14). The PeakSeq algorithm is
a two-step process that first identifies regions enriched
compared to a null background model, and then returns
regions that are statistically significant after taking
‘genome-mappability’ and control data into account
(17). QuEST (Quantitative Enrichment of Sequence
Tags) employs control data sets to eliminate false positive
regions, and also to estimate a false discovery rate (FDR)
(13). QuEST first calculates a ‘peak shift’ based on profiles
generated from forward and reverse sequence tags reads.
Once the shift is estimated, profiles are combined and
peaks are called based on the enrichment of ChIP
sequence tags to control sequence tags in the same
region. The default parameter settings for QuEST are
very stringent, yielding very small numbers of targets if
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the antibody used for ChIP provides only weak to mod-
erately enriched regions. The SISSRS (Site Identification
from Short Sequence Reads) algorithm utilizes sequence
strand information to identify binding sites, which elimi-
nates false positives. However, this approach may be too
stringent for some applications, as only the strongest bind-
ing sites will contain sufficient sequence tags to fit the
SISSRS model. When ChIP-Seq is used to identify binding
regions for a transcription factor that has not been well
studied, adjusting parameters without knowing the
expected number of binding sites and without knowing
the affinity of the antibody can be a difficult task.
Here, we introduce a novel method, termed GLITR

(GLobal Identifier of Target Regions), to address some
of the important issues with ChIP-Seq analysis. GLITR
randomly samples sets of control sequence tags to accu-
rately estimate a fold-change for each region identified in
a target dataset. Following fold-change calculation,
GLITR uses a classification method that incorporates
two values, peak height and fold-change, to identify
regions that are enriched above a specified FDR, which
is calculated by comparing ChIP classification results to
pseudo-ChIP (a sample of control sequence tags) classifi-
cation results. By combining two attributes of a region
GLITR greatly improves the ability to distinguish signal
from noise in ChIP-Seq data. This is important because
solely using peak height to identify targets leads to inclu-
sion of multiple false-positives corresponding to regions
that are also sequenced in control samples. Likewise, rely-
ing only on fold-change values is problematic, because
a high-fold change cutoff eliminates many targets while
a low fold-change, which is common in pseudo-ChIP
data, drastically increases the number of false positives.
After discussing the importance of using control DNA
in ChIP-Seq experiments, we establish that sequencing
input DNA from different tissues yields comparable
results. We then compare the ability of GLITR to identify
binding regions in ChIP-Seq data, obtained from sequen-
cing Foxa2 ChIP material from adult mouse liver, to
current published methods. We show that while all meth-
ods are able to identify regions that have the strongest
Foxa2-binding sites, when moving deeper into a target
list only GLITR continues to discover regions with a
strong match to the Foxa2 consensus. Additionally, we
show that the experimental design used to obtain sufficient
sequencing tags greatly influences the regions identified as
occupied by a transcription factor.

MATERIALS AND METHODS

Software availability

The GLITR software and the data described in this study
are available at http://web.me.com/kaestnerlab1/GLITR/.

ChIP-Seq library construction and sequencing

ChIP was performed as described previously (18). ChIP-
Seq libraries were prepared for four ChIPs performed
on four mouse livers. The libraries were prepared as
per Illumina’s instructions (http://www.illumina.com).
Briefly, ChIP sample DNA fragments were blunted,

phosphorylated, and ligated to library adapters provided
through Illumina. For input DNA preparation, 10 ng of
starting material was used. Following ligation, size selec-
tion was performed by gel electrophoresis by excising
DNA fragments at 200� 25 base pairs. Following gel pur-
ification, PCR amplification was performed [30 s at 988C;
(10 s at 988C, 30 s at 658C, 30 s at 728C)� 18 cycles; 5min
at 728C]. Amplified material was run on the Agilent 2100
bioanalyzer using the DNA 1000 Kit to ensure proper size
selection, and was subsequently diluted to a concentration
of 10 nM. These products were sequenced on the Illumina
1G Genome Analyzer at a concentration of 3–4 pM.

Data processing

Genome Analyzer sequencing output was analyzed using
the Genome Analyzer Pipeline provided by Illumina.
Sequence tags that aligned uniquely to the mouse
genome build MM8 with zero, one, or two mismatches,
according to the ELAND alignment algorithm, were used
for further analysis.

GLITR algorithm

GLITR was developed using the framework of the
ChIPSeq Peak Finder (http://woldlab.caltech.edu/html
/chipseq_peak_finder versions 0.9 and 1.6) (5). While the
method used for binding region identification is signifi-
cantly different from the method used by ChIPSeq Peak
Finder, a small set of variable names remain unchanged.
All Perl and Python scripts needed to run GLITR are
called from the main script, GLITR.pl. As input,
GLITR requires a file containing the chromosome, start
coordinate and strand for every uniquely aligned sequence
tag in a ChIP data set and a control data set. GLITR
extends sequence tags to the expected fragment length,
as specified by the user. GLITR then chooses a set of
pseudo-ChIP tags from the control data, which has the
same number of tags as ChIP data. These tags are
removed from the control set, which is then used as back-
ground. A directory is created for ChIP data as well as
pseudo-ChIP data, and a Perl script is run to separate files
by chromosome to increase efficiency. Overlapping sets of
tags, where the number of tags must be at least three, are
grouped into regions, and regions are split and trimmed if
there is only one tag at any base in the region. Following
region identification in ChIP and pseudo-ChIP data, a
script is called that randomly samples background tags
into datasets that are the same size as the ChIP data.
For each of these background samples, the fold-change
is calculated for every ChIP and pseudo-ChIP region.
The fold-change reported is the average fold-change for
the entire region, and is calculated by taking the average
of the number of ChIP (or pseudo-ChIP) tags divided by
the number of tags in the sampled background set at each
position in the region. The median fold-change over each
background sample is used for further analysis.

FDR calculation

Each ChIP region and pseudo-ChIP region is assigned a
pair of coordinates, which correspond to the log2 of peak
height and median fold-change value. Before calculating
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the Euclidean distance between coordinates, peak height
values are variance-normalized by dividing them by the
standard deviation of all values. Fold-change values are
also variance-normalized. For every ChIP region, the
k-nearest neighbors, whether a ChIP or pseudo-ChIP
point are identified. A region is considered bound if n
out of k nearest neighbors are also ChIP points. These
bound points are considered true positives. Using the
same n, every pseudo-ChIP point is ‘swapped’ for a
random ChIP point, and is considered bound, or a false
positive, if n out of its k nearest neighbors are ChIP
points. The FDR is then calculated as the false positive
proportion divided by the true positive proportion.

Background sequence generation

For de novo motif analysis, as well as generation of recei-
ver operating characteristic (ROC) curves, background
sequences are required. To generate background sequence
sets, target sequences are binned in a two dimensional
array by floor (log2) of both GC% and length of the
region. For every target sequence in every bin, three back-
ground sequences that fall into the same bin are selected
randomly from the genome.

De novo motif analysis

When performing de novo motif analysis, a background
sequence set specific to the target sequence set was gener-
ated as described above. For all de novo motif analysis,
Bioprospector was run 100 times, and a boot-strapping
approach was employed using the top scoring motif to
generate the positional weight matrix (PWM) used in
scanning. For a position to be used in the final PWM,
it was required that Bioprospector report it in 90 out of
100 runs.

Quantifying PWM enrichment

PWMs generated through de novo motif analysis were
scanned as described previously (18). Scanning was
performed on target regions as well as background
regions, generated as described above. Enrichment of
PWMs was quantified by calculating the area under the
ROC curve (AUC), as described previously (18). An AUC
of 0.5 corresponds to no enrichment.

Comparison of ChIP-Seq analysis methods

To compare GLITR to other methods, we used approxi-
mately a 1.5% FDR, which corresponds to 4051 target
regions. To rank these regions by peak height and
median fold-change simultaneously, we used a 2D rota-
tion across the best-fit linear regression line of these
points, and then sorted by the transformed x-coordinates.
We ran MACS using default cutoff parameters, and sorted
regions according to the FDR. Because the default cutoff
parameters in SISSRS returns 2040 regions, we increased
the E-value to 1000 and p-value to 0.5, to obtain 7662
regions. These regions were sorted by p-value, and only
the top 4000 were used for comparative analysis. Because
the default cutoff parameter settings for QuEST returns
only 34 regions, we decreased the ChIP threshold from

0.61 to 0.08. Again, only the top 4000 were used for com-
parative analysis and QuEST regions were sorted by the
reported ‘locmax’ value. CisGenome was run using default
cutoff parameters, and were already in sorted format.
Default cutoff parameters for PeakSeq returned 2994
regions, and in order to obtain enough regions for com-
parative analysis we set a p-value of 0.095. PeakSeq
regions were sorted by q-value.

Quantitative RT-PCR

Real-time PCR reactions were assembled using SYBR
GreenER (Invitrogen). Reactions were performed using
the Mx3000 PCR System (Stratagene). The enrichment
of target genes was calculated using the 28S rRNA locus
as a reference for non-specific DNA, and was calculated
by comparing input (sheared genomic DNA) to ChIP
material. Primer sequences are provided in Supplementary
Table 1.

RESULTS

Analysis method: the GLITR algorithm

We performed ChIP-Seq using a Foxa2-specific antibody
on four adult mouse livers. After library preparation,
cluster generation and sequencing, we used only those
sequence reads that mapped uniquely to the genome for
further analysis. After pooling data from all four repli-
cates, we obtained 12 190 018 tags as our ChIP data set.
Similar to QuEST, GLITR utilizes a large number of con-
trol tags (input DNA), which are sequences from sheared
genomic DNA carried through the library preparation
protocol. We pooled input sequencing reads from several
runs to obtain 48 867 305 tags as the control data set.
The first step of the GLITR algorithm is to filter each

dataset such that each start coordinate is represented
once, to reduce the effect of tags that are sequenced
repeatedly because of sequencing biases caused by ampli-
fication or non-random shearing of DNA (8,9,14). This
reduced our ChIP data set to 9 627 691 tags and our
control data set to 44 344 055 tags. Following data set
reduction, GLITR creates a ‘pseudo-ChIP’ sample by
randomly sampling the same number of tags from the
filtered control set as are contained in the filtered ChIP
dataset. The remaining control tags are used as back-
ground to estimate the fold-change for candidate regions
as well as to estimate the FDR. All tags are extended
based on the average fragment length (typically around
108 bp), which is estimated from the chromatin fragment
size used in the preparation of the library sequenced
minus the adaptor length. Both the ChIP and pseudo-
ChIP datasets are grouped into ‘regions’, which are
chains of overlapping extended tags. Each region is
assigned a peak height, which is the maximum number
of overlapping tags in the region. Then random samples
of background tags, each with the same number of tags
as the ChIP dataset, are used to calculate the fold-change
of the ChIP and pseudo-ChIP regions (Figure 1A).
By default, GLITR performs the fold-change calcula-
tion using 100 samples of background tags, to ensure
an accurate median fold-change value (Supplementary
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Figure 1). To reduce computation time, the number of
samples may be reduced. Using the background data
allows for elimination of regions that are amplified due
to sequencing bias or sequencing errors, and random
sampling of this data prevents losing regions where by
chance one particular background sample contains many

input tags in a bound region (Figure 1B). In addition, the
large set of background data allows for a model-free
analysis. As described previously, model-free approaches
will remain robust as additional experimental and bio-
logical factors that effect ChIP-Seq sequence data are
uncovered (13).

Figure 1. The GLITR algorithm for identifying binding regions in ChIP-Seq data. (A) A pseudo-ChIP sample, which contains the same number of
tags as the ChIP-Seq sample, is randomly selected from a large number of control tags obtained from multiple sequencing runs of sheared input
chromatin. Overlapping regions of tags are identified in the ChIP and pseudo-ChIP samples and a median fold-change is then calculated for each of
these regions, based on the fold-change to several random samplings of background tags. (B) Example of FoxA2 ChIP-Seq data in the Apoa2
promoter region. FoxA2 ChIP-Seq tags (blue) align over a known Foxa2 binding site in Apoa2 promoter. Since one sequencing lane of input is not
enough to cover the entire genome, the background tags that are sequenced could by chance be in the region of a Foxa2 binding site. Sampling a
large background set for the same number of tags used in the ChIP sample prevents artificial compression of fold-changes in these regions by more
accurately estimating the background rate in each area of the genome. The complete set of background tags, as well as one random sample of these
tags, is shown in red.

e113 Nucleic Acids Research, 2009, Vol. 37, No. 17 PAGE 4 OF 10



A scatter plot of the median fold-change and peak
height for all of the ChIP and pseudo-ChIP regions
yielded insight into the problem with using each attribute
separately. First, many regions had a high peak height,
but low fold-change in both the ChIP and pseudo-ChIP
samples (Figure 2A). Additionally, the high density of
pseudo-ChIP regions with low fold-change and low peak
height are valuable for identifying ChIP regions that are

above a background signal. By using both the fold-change
and peak height as a signature for each region, we could
better distinguish a truly bound region from one that
is likely to occur by chance in background data. We also
note a small set of points in the ChIP data that have very
high peak heights and medium fold-changes. Specifically,
38 points have a peak height greater than fifteen and a
fold-change between three and four. Ninty-five percent of
these regions are within a satellite repeat or rRNA repeat
and are not enriched for the Foxa2 consensus site, which
indicates they are likely false-positives resulting from the
ChIP procedure. GLITR employs a k-nearest neighbors
classification method to make the distinction between
truly bound regions versus those that are likely false-
positives. For every ChIP region GLITR identifies the k
(default=100) closest points in the peak height versus
fold-change plot. A region is considered bound if at
least n of the k neighboring points are also ChIP regions.
To estimate the FDR for a given n, the process is repeated
for the pseudo-ChIP data points, treating each pseudo-
ChIP point as a ChIP point. If at least n of the nearest
neighbors are ChIP points, then the pseudo-ChIP point is
considered a false-positive. Thus, for any given n, GLITR
calculates the ratio of the proportion of points that are
falsely called bound in the pseudo-ChIP set to the propor-
tion of points called as bound in the ChIP data set as an
estimate of the FDR. To increase the FDR, the size of the
minimum number of ChIP regions (n) needed among
the k nearest neighbors may be decreased. GLITR reports
the FDR for all values where N� n� k (Figure 2B). The
exact choice of k is not critical, because the number
of regions identified with different values of k but the
same proportion of n/k is comparable (Supplementary
Figure 2). When we employed a 1.5% FDR cutoff,
which corresponded to n/k=92/100, we obtained 4051
regions that are bound by Foxa2. We also ran GLITR
after disabling the steps used to filter data such that
each start coordinate is represented once in order to
assess the importance of this first step of the algorithm.
Supplementary Figure 3 compares regions identified at a
1.5% FDR with and without filtering data for unique start
coordinates, and demonstrates that the filtering step is
critical in eliminating thousands of false-positive regions.

Input DNA as a control

Because input DNA covers all of the mappable portions of
the genome, a large number of sequence tags are necessary
to obtain an accurate distribution of tags across the
genome. GLITR utilizes the large set of tags by sampling
sets that are equal in size to the ChIP data set, as described
above. Our starting set of control tags had approximately
four times the number of ChIP tags. To assess the sensi-
tivity of the results to the number of control tags used, we
ran GLITR five times using different background datasets
that have three times the number of ChIP tags (3� con-
trol), and five times using different background datasets
that have four times the number of ChIP tags (4� con-
trol). Plotting the average number of regions across all five
runs identified for various values of n (described above)
shows that at higher values of n (corresponding to lower

Figure 2. FDR estimation. (A) A plot of peak height versus fold-
change (pseudo-ChIP tags—grey and FoxA2 ChIP-Seq tags—red)
shows that both variables provide valuable information for determining
if a region is likely to be bound. Using a height cutoff alone leads to
inclusion of multiple false positives corresponding to regions that are
also sequenced in control samples. Likewise, use of a high fold-change
cutoff alone may be too stringent, whereas use of a low fold-change
would increase the number of false positives. (B) The k-nearest neigh-
bor classification method is used to determine if a region is considered
bound, where a region is considered bound if a majority of at least n
of the k closest regions are ChIP regions. The method is repeated
on pseudo-ChIP data in order to estimate a FDR. Here, k is 100
and as the majority threshold (n) used in classification decreases, the
FDR increases.
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FDR’s), which are more typically used in identifying truly
bound regions, the use of more control tags will aid
in identifying more regions (Supplementary Figure 4).
We further analyzed regions at a 1.5% FDR, and found
that 307 regions were identified in all five runs using the
4� control sets that were not found in all of the runs using
the 3� control sets. These regions were also enriched for
the Foxa2 consensus site, but represent an increase in
target number of <10% (Supplementary Figure 4). We
recommend running GLITR with a control set that con-
tains at least three times the number of ChIP tags, to
ensure that a pseudo-ChIP data set can be selected, and
several samples may be used for fold-change calculations.
It has been reported that separate controls are needed

for different cellular conditions (17), and in contrast that a
control must only be sequenced once for the same organ-
ism as long as fragmentation conditions for each library
are similar (8,17). To address this issue, we compared
input libraries generated from adult mouse liver chroma-
tin, adult mouse islet chromatin, and chromatin isolated
from the mouse pancreas at embryonic day 14.5.
Chromatin from each tissue was isolated on different
days, from different mice, using the same fragmentation
conditions. In one comparison, we identified regions in the
e14.5 pancreas input data, and then calculated the fold-
change for each region relative to liver input tags. Plotting
the peak-height versus fold-change shows that all fold-
change values are low, including those for regions that
have a high peak height (Figure 3). The same is true
when comparing islets to liver, and embryonic pancreas
to islets (Supplementary Figure 5). Since we had far more

liver input tags compared with islet or embryonic pan-
creas, we ran GLITR using the liver input tag set as our
control and the islet input or embryonic pancreas input
data sets as the ‘ChIP’ dataset. In both cases, GLITR did
not identify any significant regions. It is apparent from
our data that large peaks arising because of sequencing
bias, chromatin preparation, or IP protocol are the same
in all tissues investigated. Similarity of smaller peaks may
not be addressed until full coverage of the mappable
genome is achieved with different tissues. However, in
our FDR calculation, the input region data is treated as
a cloud of points and the exact location of the small peaks
is not relevant for this purpose. Our pooled input data set
is available on the GLITR website, and may be used for
any experiment using mouse DNA as long as fragmenta-
tion conditions are similar to those described in the
‘Materials and Methods’ section.

Comparison to other methods

We compared GLITR to five recent programs that allow
incorporation of an experimentally derived background
model. Because each method calculates thresholds differ-
ently, we sorted the scored regions identified by each pro-
gram and overlapped them with the GLITR-identified
regions using sets of the top 1000, 2000, 3000 and 4000
regions. We used the enrichment of matches to the Foxa2
PWM as determined by the area under the ROC curve as
our measure of peak quality. To determine the level of
enrichment in the non-overlapping regions, we first per-
formed de novo motif analysis using Bioprospector (19) on
half of the overlapping regions. While de novo motif ana-
lysis returns similar PWMs in each of the analyses, we
wanted to ensure that the PWM used for scanning was
not biased towards a particular dataset. For each set of
1000 to 4000 regions, the PWM was scanned on the half of
the overlapping regions that were not used in de novo
motif analysis, as well as the regions that were unique to
GLITR, or unique to CisGenome, MACS, PeakSeq,
QuEST, or SISSRS when compared to GLITR. While
regions unique to the other programs are enriched for
the Foxa2 PWM when the top 1000 regions are analyzed,
the enrichment decreases substantially as more regions are
included, whereas enrichment remains high for regions
unique to GLITR (Figure 4A–E). Several targets that
were identified uniquely by GLITR were randomly
selected and tested for occupancy by Foxa2 in vivo using
ChIP followed by quantitative RT–PCR. Eleven of the
thirteen sites tested showed an enrichment of more than
four-fold in the ChIP sample compared to input, confirm-
ing that GLITR can identify bona fide transcription factor
binding sites missed by the other programs (Figure 4G).

Because SISSRS and QuEST tend to return smaller
region windows than GLITR, we extended the regions
identified by each program by 108 base pairs (the expected
fragment length) on each side from its center and then
repeated the program comparisons. Because the method
we used for choosing background sequences is based on
region width, the trend in area under the curve (AUC) was
similar to what was presented in Figure 4 (Supplementary
Figure 6). We also derived the optimal motif from regions

Figure 3. Comparing input DNA from different tissues. Chromatin was
isolated from e14.5 pancreas and adult mouse liver on different days,
using the same fragmentation conditions. Regions were identified from
e14.5 input sequence tags, and the peak height was plotted against the
fold-change, which was calculated relative to liver input sequence tags.
All regions have a low fold-change and are not considered significant
by GLITR.
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Figure 4. Comparing GLITR to other methods for the analysis of ChIP-Seq data. Regions identified by CisGenome (A), MACS (B), PeakSeq (C),
QuEST (D), SISSRS (E) and GLITR were ranked and analyzed in groups of the top 1000, 2000, 3000 and 4000 regions. For each of these groups, a
training set was randomly selected from regions that overlap between each program and GLITR. The training set was used to derive a PWM which
was then employed to scan the remaining regions that overlap, as well as the regions that were unique when comparing each program and GLITR.
Regions unique to GLITR are more enriched for the Foxa2 PWM especially as more regions are incorporated into the analysis. The number of
overlapping regions in each dataset is shown in parentheses. (F) Default regions returned by each program were overlapped with GLITR default
regions (4051). Regions that were unique to each program and GLITR remained more enriched for the Foxa2 PWM. Bold blue numbers are
the number of regions returned using default parameters for each program. The number of overlapping regions in each dataset is shown in black.
(G) Quantitative RT-PCR confirmation of randomly selected Foxa2 target regions identified by GLITR but none of the other programs. Abundance
of the target sequences was compared between Foxa2 ChIP from liver (n=3) and liver input DNA.
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that were identified by all six programs. Scanning this
motif against all datasets also produced similar results
(Supplementary Figure 7).
Because some programs return more regions than

GLITR and some return fewer using the default cutoff
settings, we also compared GLITR to each of the datasets
produced using default cutoff parameters specified by each
program, as these are the cutoff settings with which the
programs will most commonly be executed. Again, in each
comparison, regions that are unique to GLITR are more
strongly enriched for the Foxa2 consensus site than
regions that are found uniquely by other programs
(Figure 4F). We also carried out the ranking analysis
described above, but rather than calculating the AUC
until 4000 regions have been identified, which is close to
the number returned by GLITR, we only calculated the
AUC for 1000 region increments until the default value
for the comparison program was reached (Supplementary
Figure 8). In all cases, target regions identified by GLITR
were more enriched for the Foxa2 consensus site than
those of any other program. This indicates that GLITR
is more sensitive in identifying regions strongly enriched
for the Foxa2 consensus site when moving deeper into the
dataset.

Technical replicates versus biological replicates

In order to identify enriched regions in ChIP-Seq data,
sufficient sequencing reads must be obtained, and often
one sequencing lane does not provide enough data for
reliable peak detection. To acquire a large number of
sequence tags, one can sequence the same ChIP sample
several times (technical replicates), or sequence multiple
samples once each (biological replicates). To determine
which of these methods is more appropriate for the iden-
tification of transcription factor binding sites, we
sequenced one technical replicate four times to compare
to the dataset obtained from four biological replicates
(starting at the earliest point in the process, i.e. by using
livers taken from multiple animals) sequenced once each,
described above. The total number of reads that align
uniquely to the genome was comparable between the
two datasets (12 190 018 tags for biological replicates
and 15 521 648 tags for technical replicates). When
GLITR filtered these datasets so that each start coordi-
nate was represented only once, the biological replicate
dataset had fewer tags removed (2 562 327 tags removed
from biological replicates and 9 352 597 tags removed
from technical replicates). This was expected, since when
re-sequencing the same sample there is a higher chance of
sequencing the same tag multiple times.
We ran GLITR on both the biological replicate and

technical replicate datasets, and compared the enriched
regions identified at several FDR thresholds. At the
most stringent FDR, which is <0.5% for both datasets,
the data set derived from four biological replicates identi-
fied 2348 more targets than the technical replicate dataset
(Figure 5A). We performed de novo motif analysis on the
regions that were common to both datasets to obtain the
Foxa2 consensus motif (Figure 5B). We then calculated
the enrichment of the match to the Foxa2 PWM in the

regions that were unique to either the biological replicate
or technical replicate data sets by computing the area
under the Foxa2 ROC curve. Regions that were unique
to the biological replicate dataset were much more
enriched for the Foxa2 PWM than regions that were
unique to the technical replicates dataset (Figure 5C).
The trend was similar when GLITR was run using a
subset of tags from the filtered biological replicate data
set, which was equal to the number of tags in the filtered
technical replicate data set (Supplementary Figure 9). This
is likely due to sequencing additional tags in a region
where the antibody bound to DNA non-specifically.
Therefore, biological replicates are a more efficient use
of sequencing capacity and are valuable for the identifica-
tion of thousands of additional bona fide binding regions,
as well as for the elimination of noise resulting from
non-specific binding in one particular ChIP.

DISCUSSION

GLITR randomly samples sets of tags from a background
set of sheared input chromatin to accurately identify
enriched regions in the ChIP-Seq data. Each sequence
tag is extended to the expected fragment length, and
grouped into regions of overlapping tags. Each candidate
region is assigned a peak height and a fold-change, based
on the median fold-change to random samples of back-
ground tags. A classification method is then used which
compares the peak height and fold change of the ChIP
data set to the peak height and fold-change of a pseudo-
ChIP set to distinguish regions that are likely to occur
by chance from those where the transcription factor is
actually bound.

The requirement of a large set of control tags can be
daunting in terms of the time and cost necessary to
sequence a ChIP-Seq library. We show that under similar
fragmentation conditions, it is appropriate to combine
input sequence tag data from different tissues, and thus
reuse this information to identify bound regions for mul-
tiple ChIP-Seq libraries. It has been previously reported
that in order to identify binding sites accurately, sufficient
sequencing depth must be obtained (14). We used GLITR
to identify Foxa2 targets in adult mouse liver and compare
sequence data obtained from re-sequencing one ChIP
sample four times to sequence data obtained from
sequencing four biological replicates. We demonstrated
that simply re-sequencing a single ChIP sample is not suf-
ficient to capture all binding sites, and can even lead to the
inclusion of a significant number of false positives.
Additionally, we compared GLITR to other methods
that incorporate background tags into binding site identi-
fication and show that GLITR more accurately identifies
regions that contain a strong match to the consensus bind-
ing site of Foxa2. While strong binding sites are easily
identified by all programs, GLITR brings us a step
closer to obtaining a truly genome-wide list of binding
sites, by identifying regions with lower tag counts that
still have a strong match to the Foxa2 consensus site. It
is important that these ‘weaker’ binding sites are included
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when biological inferences are made from ChIP-seq data
sets.

While several programs have been released for the ana-
lysis of ChIP-Seq data, each method has pros and cons,
and a standardized approach has not yet been established.
As more data become available in different organisms
and tissues, one can better assess the similarities between
control data sets in different conditions. Also as these
datasets become available, more experimental or biologi-
cal factors that effect data analysis will be uncovered,
which will allow for fine-tuning of all current methods
and will result in a more accurate list of binding sites
across the genome.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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