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Abstract—Glycans, or carbohydrate sugar chains, which play a number of important roles in the development and functioning of
multicellular organisms, can be regarded as labeled ordered trees. A recent increase in the documentation of glycan structures,
especially in the form of database curation, has made mining glycans important for the understanding of living cells. We propose a
probabilistic model for mining labeled ordered trees, and we further present an efficient learning algorithm for this model, based on an
EM algorithm. The time and space complexities of this algorithm are rather favorable, falling within the practical limits set by a variety of
existing probabilistic models, including stochastic context-free grammars. Experimental results have shown that, in a supervised
problem setting, the proposed method outperformed five other competing methods by a statistically significant factor in all cases. We
further applied the proposed method to aligning multiple glycan trees, and we detected biologically significant common subtrees in
these alignments where the trees are automatically classified into subtypes already known in glycobiology. Extended abstracts of parts
of the work presented in this paper have appeared in [35], [4], and [3].

Index Terms—Biology and genetics, machine learning, data mining, mining methods and algorithms.

1 INTRODUCTION

LABELED ordered trees are drawing considerable attention
as essential semistructured data and they have ap-
peared in several major data mining applications such as
text mining, Web mining, and bioinformatics. A tree-
structured text format called XML has become a popular
method for storing documents and has been extensively
used recently [2], especially on the World Wide Web. With
larger XML documents stored on the web, mining XML
documents has become an important data mining domain.
Thus, a number of approaches, including mining frequent
patterns [13], [33], [38], mining data-streams [6], and
detecting fraud [12] have been developed for data sets of
labeled ordered trees. Kernels for labeled ordered trees
have also been developed in the last few years [24].
Semistructured data also appear in biological domains.
Glycans, or carbohydrate sugar chains, are well-known as
the third major class of biological molecules, subsequent to
DNA and proteins, and the recent advent of glycome
informatics has generated an increasing number of glycan
structure and annotation data [5]. Glycans are rooted tree
structures, whose nodes are labeled by monosaccharides,
the molecular base units of glycans. Furthermore, the
siblings in glycans, labeled by monosaccharides, are
ordered, so we may consider glycans as labeled ordered
trees. Because of the difficulty in determining the structure
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of glycans in detail due to technical challenges inherent in
the biology of glycans, there remains much to learn about
these glycans essential to the development and function of
complex multicellular organisms [9]. Since glycans are
known to be used as identifiers for enzymes as well as for
recognition by microbes and pathogens [10], there seems to
be some underlying complex pattern inherent in the
structure of glycans, making our model very well suited
for this domain.

The importance of labeled ordered trees in a variety of
domains is very clear as shown above, and probabilistic
modeling and learning is a standard approach in machine
learning and data mining. However, only a few probabil-
istic models have been developed for labeled ordered trees.
Considering semistructured data, a probabilistic model,
called the hidden Markov model (HMM) [8], has been
successfully applied to numerous applications such as
speech recognition [32] and bioinformatics [17]. A variety
of models, such as the hierarchical hidden Markov model
(HHMM) [18], [36], stochastic context-free grammars
(SCEG) [7], [26], and probabilistic tree grammars [1], have
already been proposed to extend HMMs in the context of
probabilistic models and graphical modeling, but all of
these models are only applied to sequence data. That is,
each of these models uses a latent variable corresponding to
a hidden dependency in a sequence to capture long-range
interactions over a sentence. The only extension of HMM
known to the best of our knowledge for modeling labeled
trees is the hidden tree Markov model (HTMM) [14], [16]
(or tree hidden Markov model), which captures a hidden
relationship between a vertex and its parent. This depen-
dency is equivalent to that of HMMs, where there exists a
dependency between two adjacent letters (labels) in a
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TABLE 1
Extensions of HMM to the Proposed Model

Models Dependency relation

HMM Two adjacent labels in a sequence

HTMM Parent-child in a tree

Proposed model | Parent-child and two adjacent siblings in a tree

sequence. On the other hand, a labeled ordered tree has
ordered siblings, and so there must be a dependency
between siblings as well. For labeled ordered trees, we need
another model to capture not only parent-child dependen-
cies but also those between siblings.

We therefore propose a probabilistic model for labeled
ordered trees by extending HTMM to a model in which a
vertex depends on its immediately elder sibling as well as
on its parent. This extension considers the dependencies
between ordered siblings as well as parent-child relation-
ships in a tree, which is enough for capturing various types
of patterns in labeled ordered trees. Table 1 summarizes
these two extensions from HMM to the proposed model.

We also propose a learning algorithm based on the
Expectation-Maximization (EM) algorithm [15] for our
proposed model. The time and space complexities of our
learning algorithm are roughly O(|T|- IS]*-|V|) and
O(|S|* - |V]), respectively, where |T)| is the number of trees
in a given data set, |S| is the number of states in the model,
and |V] is the maximum number of nodes of any tree in T.
We note that this algorithm has several very nice properties
in terms of complexity. First, our proposed model may be
considered a Bayesian belief network [31], belonging to its
computationally intractable subclass called a multiply-
connected Bayesian network [31]. A standard learning
algorithm for this subclass has an extra step of modifying
a given network into a data structure called a junction tree,
although the computational complexity of this step may
reach O(|T|-|S|® - |V]). Furthermore, the space complexity
of this algorithm reaches O(|T|- |S|’ - |V]), whereas that of
our proposed algorithm is O(|S|* - |V|), which is indepen-
dent of the number of trees. Therefore, because our model is
constrained within a subset of Bayesian belief networks
such that it can focus on labeled ordered trees, we could use
an efficient EM algorithm for learning/mining labeled
ordered trees. Second, the corresponding computation time
for both HMM and HTMM is roughly O(|T|- IS)% - V).
Although they are faster by a factor of |S|, we claim that our
method provides far richer expressive power, which cannot
be compared to this increase in computation time. More-
over, third, this increase in time by the proposed model is
negligible since learning the proposed model is more
efficient than learning SCFG, which has been used
practically in a number of applications such as natural
language processing [26]. The time complexity of learning
SCFG is O(|T| - |S|* - [V[*) time,* where |V| is the maximum

1. It is well-known that the time for learning SCFG is reducible to O(|T| -
IR| - |V|*) time, where |R| < |S|® is the number of rules in an SCFG. In a
manner similar to SCFG, we can modify the learning procedure for our
proposed model to one that only takes O(|T| - |R| - [V]) time, where |R| is the
number of possible state transitions.

length of the given sentences. We then claim that the
proposed model has reasonable efficiency in practice.

We experimentally evaluated the effectiveness of our
proposed method, using a variety of experiments and data
sets, including real data sets of glycans. We first evaluated
the performance of the proposed method by comparing it
with other probabilistic methods in a supervised manner
using classification. More concretely, we checked the
performance of discriminating positive examples from
randomly generated negatives, and we examined the
performance of each of the methods by three measures,
area under the ROC (AUC), prediction accuracy, and
precision. Experimental results show that our proposed
method outperforms all of the other methods compared by
a statistically significant factor in all cases. We further
applied our method to aligning multiple glycans and
analyzed the results obtained. We first automatically found
common subtrees (i.e., patterns of glycans) from aligned
glycans and confirmed that these subtrees match biologi-
cally known motifs in glycans. Further empirical findings
include the automatic classification of trees into three types
using the most likely state transitions, where, in fact, these
three types correspond to three biologically well-known
types of glycans. Overall, these results confirm that the
proposed model is especially effective for mining glycans, a
complex biological example of labeled ordered trees.

The rest of this paper is organized as follows: In Section 2,
we describe the notations used in this paper as well as the
probabilistic structure and a learning algorithm of HTMM.
In Section 3, we describe the details of our probabilistic
model and algorithms to compute the likelihood of given
examples, to compute the most likely transition, and to
estimate the probability parameters of our model from a
given set of trees. In Section 4, we show the experimental
results obtained by applying our method to synthetic data
as well as to actual glycan data sets and the performance
advantage of our proposed method over other competing
methods. We further show the biological findings obtained
by applying our method to real data sets of glycans. Finally,
we conclude in Section 5.

2 PRELIMINARIES
2.1 Notations

We first describe notations that will be used throughout this
paper. A tree is an acyclic connected graph. In this paper, we
refer to a vertex of a tree as a node of the tree. A rooted tree is
a tree that has a special node called the root. Any node = on
a unique path from the root to a node y is called an ancestor
of node y, in which case y is called a descendant of . Each of
the closest descendants of = (that is, a node that is only
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Fig. 1. Notations for labeled ordered trees. (a) Labeled ordered tree T,,.
(b) Indices for a parent and its children.

one edge away from node z) is called a child of x, in which
case z is called the parent of the child. We call nodes = and
y siblings if « and y have the same parent. We call a node
having no children a leaf. A subtree of tree T is a tree
consisting of all descendants of a node. An ordered tree is a
rooted tree in which the children of each node are ordered.
A labeled tree is a tree in which a label is attached to each
node. We will often simply use the term tree in place of an
ordered, labeled, and rooted tree.

Let T = {T1,...,Tjr} be a set of labeled ordered trees,
where T, = (V,,E,) and V,(={z¥,.. .,.r"“vul}) and E, C
V. x V, are a set of nodes and a set of edges, respectively.
Let z} be the root of tree T, and |V|=max,|V,|. We
assume that nodes are indexed by level order, which can
be done by traversing the tree in breadth-first order. An
example of trees with their indices is shown in Fig. 1.
From this indexing of nodes, for a node j, we can refer to
the immediately elder and younger siblings of j as j—1
and j + 1, respectively. Let ¢,(i) be a subtree of T, having
z} as the root of ¢,(i). Let 2 (p) and =", (p) be the eldest
and youngest children of node p, respectively. Let
Cu(p) €{1,...,|Vi|} be a set of indices of children of z;
in T, |C| = max,, |Cy(p)|, and Y, (p) = C,(p)\{¢} such that
¢ =2 . Each node x; has label o;?' €Y, where X =
{o1,...,0p5} is a set of labels on nodes. For simplicity, we
will often use node j instead of z} and p as a parent
node, if understood from the context.

Let 0 denote a set of parameters of a probabilistic model.
For simplicity, we may use 6 = {61,...,60,} as a set of
parameters, such that 0; = {0;,...,0;,} and ZL@I 0ij=1
for i=1,...,n. A probabilistic model has a “state”
corresponding to a node, and each state has a probabilistic
parameter which probabilistically generates a label at a
node. Let 5 = {s1,..., )5} be a set of states and 2/ € S be a
state for node j in a tree. For simplicity, we may also use j
instead of 2% and ¢ as the state of a parent node, if

J
understood from the context.

2.2 Hidden Tree Markov Model

We review an existing probabilistic model called the hidden
tree Markov model [16] (or hidden Markov tree model [14])
for labeled trees and its learning algorithm. In this model,
the state of a node depends only on the state of its parent
and, in this sense, this model is a straightforward extension
of a hidden Markov model for sequences to a model for
labeled trees. Fig. 2 illustrates the dependencies in HTMM
for the tree in Fig. 1. HTMM has three types of probability
parameters, m, a, and b. The initial state probability =[l](=
P(z} = s;;0)) is the probability that the state 2} of the root
node i is s;. The state transition probability a[l,m] is the

1053

Fig. 2. Graphical representation of HTMM for tree T, in Fig. 1.

conditional probability that the state of a node is s,, given
that the state of its parent is s;. The label output probability
bll, o4)(= P(0} = on|2} = s;;0)) is the conditional probability
that the output label of a node is o, given that the state of
this node is s;. Note that >, #n[l| =1, > all,m] =1, and
Subllon] =1

To compute these probabilities efficiently, we define an
upward probability (1, )(= P(t.(4)]2} = s1;0)), which is
the probability that the labels of subtree t,(j) are all
generated and that the state of node z{ is s;. Note that the
upward probability at node j can be calculated from the
upward probability at each of the children of j and the
probability parameters of HTMM. This can be formulated
as follows:

bl o] if Cu(p) =0,
ay(l,p) = S ) .
bll, o] H Z a[l, m]aw,(m, j)  otherwise.
JeCulp) m=1

To obtain the upward probabilities for each of the nodes of a
given tree, we use a bottom-up dynamic programming
procedure. That is, we recursively compute the upward
probability at each node from the leaves to the root of the tree.

We then compute the likelihood L(7,;0) for T,, which is
given by HTMM as follows:

El
L(T;0) =Y wlllau(l, 1).
=1

We can finally compute the likelihood for a given set of
trees as follows:

IT| IT| 1S

L(T30) = [T 2Tu:0) = TT 3 wlllena 1),

u=1 I=1

A standard criterion for estimating the probability
parameters of HTMM is the maximum likelihood (ML),
in which parameters are estimated to maximize the above
likelihood for a set of given trees. We can use a general
scheme called the EM (Expectation-Maximization) algo-
rithm [15] to obtain the ML estimation of HTMM. In the
EM algorithm for HTMM, we define a downward
probability £,(l,7), which is the probability that all labels
of tree T,, except for those of subtrees ¢,(i), are generated
and that the state of node ¢ is s;. By using the downward
probability as well as the upward probability, we can
implement the EM algorithm for HTMM in a manner
similar to the Baum-Welch algorithm in HMM. Therefore,
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Fig. 3. Graphical representation of PSTMM for tree T, in Fig. 1.

HTMM would take O(|T] - |S|* - [V|-|C]) time to calculate
the likelihood.

HTMM can be used for modeling labeled trees when a
dependency exists between a node and its parent in a tree.
However, if there is a dependency in ordered siblings in a
labeled ordered tree, it cannot be captured by HTMM.

3 PROPOSED MODEL AND ALGORITHMS

We propose a new probabilistic model for labeled ordered
trees which we hereafter call probabilistic sibling-dependent
tree Markov model, or PSTMM for short. In HTMM, the state
of a node depends on the state of its parent only, whereas in
PSTMM, the state of a node depends on the state of its
immediately elder sibling as well as the state of its parent.
Fig. 3 illustrates the dependencies in PSTMM embedded in
the tree of Fig. 1. We emphasize that incorporating this
dependency on the immediately elder sibling drastically
improves the performance of HTMM in finding patterns in
labeled ordered trees. Recall that HMMSs can capture a
distant (long-range) dependency in a sequence indirectly if
a state transition can be set to capture such a dependency.
Similarly, HTMM can capture a long-range dependency in a
tree indirectly, but this indirect dependency is limited to the
one between a node and its descendant. On the other hand,
PSTMM can capture a variety of complex dependencies in a
tree as well as the descendant dependency. For example, a
dependency between distant siblings may be found by
PSTMM indirectly. Furthermore, an indirect dependency
between a node and its distant sibling’s descendant may
also be captured by PSTMM.

PSTMM has three types of probability parameters, , a,
and b, where m and b are the same as those defined in
HTMM. However, we note that a differs between HTMM
and PSTMM. The state transition probability a[{q,},m](=
P(2} = splzy = 54, 2) = 5130)) is newly defined as the con-
ditional probability that the state of a node is s,, given that
the states of its parent and the immediately elder sibling are
s, and s;, respectively. Note that erf‘:l al{g,1},m] =1.

Most applications of PSTMM can be summarized as the
following three problems as done for HMMs [32]:

1. Likelihood computation: computing the likelihood
of a given tree,

2. Parsing (Prediction): finding the most likely state
transition for a given tree, and
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3. Learning: estimating probability parameters from a
set of given trees.
Thus, in the following sections, we will explain our efficient
algorithm of PSTMMs for each of these problems.

3.1 Likelihood Computation

To compute the likelihood of a given tree, we define a
backward probability as well as an upward probability. The
upward probability U, (g, p) is the probability that all labels
of subtree t,(p) are generated and the state of node p is s,.
The backward probability B,(g,!,j) is the probability that,
for node j, all labels of a subtree for each of the elder
siblings and node j are generated, the state of j is s;, and the
state of parent p is s,.

We can compute these two probabilities, from leaves to
the root, using a bottom-up dynamic programming proce-
dure similar to that used in HTMM. This computation can
be formulated as follows:

blg, 0]
b[q,o}f] Zi‘:l al{q,—}m]B,(g,;m,j)(s.t. xJL::Z'fL)

if Cyu(p) =0,

otherwise,

(1)

Uu(q,p) = {

Uu(m.) i 2 = 2% (p)
Uy (m,j) ‘li‘l al{g,m},l| B,(q,l,j+1) otherwise.

Bu(g,m,j) = {
(2)

The likelihood for a given tree T, is obtained by using
U,(l,1), U at the root of the tree, in a manner similar to
HTMM, as in the following equation:

S|
L(T,;0) =Y #[(U.(1,1).
1=1
The likelihood for a given set of trees is defined as a product
of the likelihood for each tree in the set:

IT| [T| 15|
L(T;0) = [T L(T;0) = [T >_~l0a( 1),
u=1 u=1 [=1
In HTMM, the upward probability a at a node is
iteratively computed from the as at its children. On the
other hand, in PSTMM, the upward probability U at a node
is computed using the backward probability B of the eldest
sibling, and B at a node is iteratively computed using the U
at the node. Figs. 4a and 4b depict the recursive calculation
of U and B, respectively. Time and space complexities of
this algorithm are shown in Table 2.

3.2 Parsing

We can find the most likely state transition of a given tree
by taking the U and B probability parameters and
modifying them to calculate two new probabilities,
¢u(q,p) and ¢p(q,m, 7). pv(g, p) is the maximum probability
that, for a state transition from node p, all labels of subtree
t.(p) are generated and the state of node p is s,. Similarly,
(g, m,j) is the maximum probability that, for a state
transition from node j, the state of j is s, and all the labels of
the subtrees for each of the younger siblings and node j are
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Bu(q, l, ])

U“(mvj)

Bu(g,l,j+1)

Fig. 4. Updating (a) U,(q,p) and (b) B,(q,m, j). The sparse shaded node is p for U,(q,p) and j for B,(q,m, j). Dense shaded areas are used for

updating.

generated. These probabilities are obtained by replacing
in (1) and (2) with max, as follows:

if Cu(p) :03

otherwise,

3)

@m%p>:{bw*4, B

max,, b[q,v}ﬁ]u[{q,f},m] op(gm,j)(s.t. .’IT}L:‘LH (p))

if 2 = 2 (p),
otherwise.

¢B(q7 m7]) — { ¢U(7nvj)

du (m.j) max; a[{g;m} o p(g.lj+1)

(4)

We then need to retrieve a state transition which gives

these values, and so we use 7y(q,p) and 75(g, m,j) which

can be computed by the following equations, slightly
modified from (3) and (4) above, as follows:

B 0 if C,(p)=0,
(a:p) = { arg max, blg.0la[{g,~},mlop(q.m.j)(s.t. 2¢=2" (p) otherwise,
ra(gm. ) = {0 if 2§ = 2 (p),

argmax; ¢y (m.j)al{g;m}l)¢s(ql,j+1) otherwise.

We now define P*, which is the probability that all labels
are outputted along the most likely state transition. P* can
be computed using ¢;; above, as follows:

P = m;axw[l]gby(l, 1)
We further define qj, which is the most likely state at

node j for a given tree. We can compute ¢; by tracing the
states giving the maximum probability at each node z;

TABLE 2
Time and Space Complexities

Time Space
U, du, v O(IT[-[S]”- 1V | O(S]- VD)
B, ¢5, 18 O(IT[-[S]*-[V]) | O(SF - V])
F O(|T]-|S|?-|V]) | O(SI*- |[V])
D O(T|-|ISP- V) | O(S|-|V])
1i(a) o(T[- ISP - V]-1C]) O([S%)
fu(b) o(T|-|S[- V] | O(S]-1=])
() o(|T]-1|S] - V.) 0(|S))
i O(T[-IST) | O(SP)
b o(T[-|S[- V] | Oo(S|- =D
T o(T[-|5]) o(s))

(j=2,...,|V4]) over the tree using 7y and 7p above, as

follows:

gi = argmax )y (1, 1),

4; = (g, if z; == (p),

q; = 75(¢;_,) otherwise.

From all of these computations, we can finally obtain the
most likely state transition for the given tree T, as the
resulting set of states Z,. = {qj,...,qj, }- Time and space
complexities of this parsing algorithm are shown in Table 2.

3.3 Learning: Maximum Likelihood

As we mentioned for HTMM, the maximum likelihood is a
general criterion used to estimate the probability para-
meters of a probabilistic model from given training
examples. We use an EM algorithm [15], a general and
popular scheme to maximize the likelihood for a given set
of examples.

3.3.1 An EM Algorithm

In addition to the two probabilities U and B defined
already, we define the forward probability F,(g,[, j) and the
downward probability D,(l,j). The forward probability
F.(q,1,j) is the probability that, for node j, all labels of the
subtrees at each of the elder siblings and node j are
generated, the state of node j is s;, and the state of parent p
is s,. The downward probability D, (l,j) is the probability
that all labels of tree T,,, except for those of subtree ¢,(j), are
generated and that the state of node z} is s;.

We can compute these probabilities F,(qg,, j) and D,(l, j)
as follows:

w5 J) = ‘;:‘:1 F,(g;m,j—1)U,(m,j—1)a[{g;m},]] otherwise,
Dy(l,5) =
[l if j=1,
2 Dulap)blac)Fu(am.) if 2= a" (p),

IS

. otherwise.

! al{gm}blBu(gm,j+1)

m=1

Du(g:p)bla,04] Fu(q,0.7)

Figs. 5a and 5b illustrate the recursive calculation of F
and D, respectively.

Note that, for any node 1, the likelihood of a tree can be
computed using the upward and downward probabilities at
node 7 as follows:

L(T,;0) = > Uu(l,§)Du(l, ).
l
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S .
LT 1m0

|
Bulg, 1,j+1)

Fig. 5. Updating (a) F.(q,!,7) and (b) D,(l,j). The sparse shaded node is j, and dense shaded areas are used for updating.

E-step. For each probability parameter, compute the
expectation values ., (a[{g, m},1]), pu.(b][m, o3]), and p, (7[m])
using the above four probabilities, U, B, F', and D.

H’u(a[{qv _}7 l]) =

LS Dulap)ble,olal{e, ~ 1, UBu(a, 1),

L(T0) i

pu(al{q,m}, 1)) =

1
TIT .0\ Z D?L(Q7p)b[qa O;H Z Hu(q7m:laj)7
L(Ti0) .5 FjeY.(p)

Where Hu(q7 m, l7 ]) = Fu(q7 m, Z)Uu(mv Z)a[{qv m}7 l]Bu(q7 lv j)/
1

tu(blm, op]) = LT 0) Z_: Dy (m,i)Uy(m, 1),
1
pru(m[m]) = m”[m]%(m, 1),

where j' is such that zj, = 2" (p).
M-step. Update the probability parameters using the
expectation values computed in the E-step:

Zﬂu(a[{%_}vl])
a[{q7 _}’ l} = ZZMu(a[{(L _}7 l/D 7

U U

Z,Uu(a[{%m}’ lD
a , al = S ’
{a,m},1] S5 lal{a,m}, V)

u

Z i (b[m, o)
Z Z Mt(b[m: ‘71]) ’
Zﬂu(w[m})

~ u

e S WETT Sl

u

bim, o] =

We repeat these E and M-steps alternately until a certain
convergence criterion is satisfied.> A possible criterion is
that the increase of the likelihood at an iteration is less than
a certain small constant.

2. Note that it has been proven that the EM algorithm theoretically
converges to a local maximum solution [29].

Fig. 6 shows a sample pseudocode of this EM algorithm
for PSTMM. At the initialization step, each parameter is
initialized randomly (lines 1-2). We then iterate the E and
M-steps of the EM algorithm (lines 4-22) until a certain
stopping condition is satisfied (line 21). In the E-step, we
first initialize each expectation value for a given data set to
zero (line 6), and we then loop through each tree in the data
set, calculating each value by summing the expectation
values for each tree (line 7). Specifically, for each tree, we
first compute U and B using bottom-up and right-to-left
dynamic programming (lines 8-10), compute F using
bottom-up and left-to-right dynamic programming
(lines 11-15), and compute D using top-down and left-to-
right dynamic programming (lines 16-17). We then compute
the expectation value of each of the parameters (line 18) for
the given tree and add it to the expectation value for the
entire data set (line 19). In the M-step, we update each
parameter by these expectation values (line 20). After the
EM iteration, we output the estimated parameters (line 22).

3.3.2 Time and Space Complexities

Table 2 summarizes the time and space complexities of all
our algorithms, which include the algorithms for comput-
ing the likelihoods, parsing trees, and learning the
parameters. Regarding the time complexity, the most
time-consuming part is computing g, (a[{g,m},!]), which
is O(|T| - |S|* - [V - |C]). In fact, for this part, we have to take
O(|V] - |C]) time to compute each combination of ¢, m, and [
and then repeat this O(|S *) times for all possible combina-
tions of states. As for the space complexity, we note that we
can initialize the memory space each time the computations
for each tree are finished. The space complexity is then
upper-bounded by O(|S I |V]), which is independent of | T|
for a given data set. In summary, the time and space
complexities of our EM algorithm are upper-bounded by
O(|T|-|S? - [V]) and O(|S|® - |V]), respectively.

We can regard PSTMM as a type of a Bayesian belief
network [31]. More precisely, PSTMM belongs to a
computationally intractable subclass of Bayesian networks
called multiply-connected Bayesian networks. We emphasize
that our EM algorithm is more efficient than the most
popular learning method for a multiply-connected Bayesian
network. This subclass is defined as those networks that
contain more than one path between any two nodes.
Obviously, PSTMM satisfies this, because, for example,
there are two paths 2} — 2§ — 24 and 2} — 2} from 2} to 2}
in Fig. 3. The current general approach for estimating the
parameters of a multiply connected Bayesian network is the
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1: for each 91%) do
2: initialize 9&) randomly s.t. Z‘je':"ll Hl(ylj) for any ;
3: L(T|#®) := —o0; t :=0;
4: repeat
- ti=t4-15
6: for each Gft; do usum(f)gf}) =
7 for v :=1to |T| do
8: for j :=|V,| downto 1 do /* bottom-up and right-to-left DP */
9: for each ¢ € S do calculate U,(q, j);
10: for each (¢,m) € S x S do calculate B,(q,m,j);
11: for j = |V,| downto 1 do /#* bottom-up and left-to-right DP */
12: if C\,(y) 7é () then
13: for j' :=i downto k s.t. z¥ =
14: for each (¢,l) € S x S do calculate F,(q,1,5);
15: for each (¢,1) € S x S do calculate F,(q,l,1);
16: for j :=1 to |V,| do /* top-down and left-to-right DP */
17: for each q € S do calculate D,(q,j);
18: for each 9 do calculate p,(6; L)),
19: for each 971 do ug,,m(()( >) = uwm(H( >) + ,LL“(H ))
20 for each 0 ;; do update 9” with ,ubum(F)”) )as >, pu(f t))
21: until L(T|0®) — L(T|9¢ V) < ¢
22: output 6%,

z* (p) and 2 = 2* (p) do

Fig. 6. Pseudocode of the EM algorithm for PSTMM. 95‘) stands for a parameter at tth iteration.

junction tree algorithm [27]. The time complexity of this
algorithm is O(|T| - |S|* - |V|), which is equivalent to our
algorithm for PSTMM. However, we note that the junction
tree algorithm requires extra computation time to construct
and store for each tree a specific data structure called a
junction tree. Furthermore the space complexity of this
algorithm is O(|T|- |S]* - |V]), while ours is O(|S* - |V]).
Therefore, our algorithms are rather efficient in comparison
to the existing algorithm.’

4 EXPERIMENTAL RESULTS

We first evaluated the performance of our approach by
comparing it with those of five simpler probabilistic
models, including HTMM. The data sets used in this
evaluation are synthetic data sets as well as real glycan data
sets. We then further evaluated our approach by aligning a
given set of multiple glycans to find common subtrees in
the given set. We further checked the validity of those
common subtrees from a biological viewpoint.

4.1 Simple Probabilistic Models Used
in Experiments

To illustrate the advantage of PSTMM, we used four simple
probabilistic models, which we call a label model (LM), a
mixture? of label models (MLM), a label pair model (LPM),
and a mixture of label pair models (MLPM), in addition to
HTMM. We note that all of these simpler models do not
consider any dependencies between siblings. Learning

3. To be more precrse the space complexity for the junction tree
algorithm is O(|T|-|S® - |V’|), where |V'| is the number of nodes in a
junction tree converted from a given tree. However, in general, we claim
that there is no upper bound for |V’| better than |V].

4. For details on mixture models, we refer the reader to [30].

algorithms of these models are given in Supplementary
Information 2 in the Appendix which can be found on the
Computer Society Digital Library at http://computer.org/
tkde/archives.htm.

LM is defined only with the label output probability
wlop], which is the probability that label o}, is outputted at a
node, where )", w[oy,] = 1. In this model, labels at different
nodes are outputted independently. MLM is a mixture of
LMs, each of which we here call a component. Let ¢ be a
component and Z be the number of components. Each
component is assigned different probability parameter
values, and we have two probability parameters, w(c, oy]
(>=, wle,04] =1 for each ¢) and v[c] (3, v[c] = 1). Thus, we
have defined two models that cannot capture the probabil-
istic dependencies between a parent and a child. MLM
contains a hidden variable Z, and we then use the
EM algorithm as given in Supplementary Information 2 in
the Appendix (which can be found on the Computer Society
Digital Library at http://computer.org/tkde/archives.htm)
to estimate the parameters of MLM.

LPM captures a dependency between labels on a node
and on its child. This model has two parameters, w{oy, o)]
(Cpwlon, o] =1) and wlh] (G, 7wlon] =1). wlon, on](=
P(o;‘ = 03,0, = o)) is the label pair probabllity, or the
probability that label oy, is outputted at a node given that
label o3, is outputted at its parent node, and [o}] is the
probability that the root label is ¢,. MLPM has three
probability parameters, w(c, oy, 0n], 7c,on], and v]c] such
that ), wlc,04,04] =1 for any ¢ and oy, Y, wc,04] =1
for any ¢, and >’ v[c] = 1. wle, o4, 0x](= P(o] = oylc, 0y =
o)) is the conditional probability that oy, is outputted at a
node given that o, is outputted at its parent node for
component c. wlc,op] (= P(o} = op|c)) is the probability
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TABLE 3
Comparison between Models for Labeled Trees and Sequences

For labeled trees | For sequences
LPM P1IMM
MLPM MP1MM
HTMM HMM

that oy, is outputted at the root node for component c. As
in MLM, MLPM also contains a hidden variable Z, and its
parameters are also estimated by the EM algorithm as
described in Supplementary Information 2 in the Appen-
dix (which can be found on the Computer Society Digital
Library at http://computer.org/tkde/archives.htm).

Let us compare these models for trees with models for
sequences. First, a hidden Markov model (HMM) corre-
sponds to an HTMM for labeled trees. In HMM, a letter
emitting probability is attached to each state and state
transitions may occur between any letter regardless of its
position in the sequence. If each state outputs only one
particular symbol in HMM, this model can be considered to
be a model having no hidden variables. This simpler model
is usually called a probabilistic first-order Markov model
(PIMM), which corresponds to LPM for labeled trees. We
can naturally consider a mixture of PIMM (MP1IMM),
which corresponds to MLPM for labeled trees. Table 3
summarizes these relations between models for trees and
models for sequences.

Note that, for capturing sequence patterns based on the
first-order Markov property, MP1MM has representational
power equal to that of HMM and, as such, MP1IMM has
been frequently used for obtaining multiple sequence
patterns from sequences such as in Web access patterns
[11]. Similarly, this equivalence can be applied to MLPM
and HTMM for capturing multiple parent-child relation-
ship in a given set of trees.

4.2 Performance Evaluation by Classification

We evaluated each model in a supervised manner. More
concretely, we first generated training and test examples,
consisting of positive examples only, and we trained each
model with the generated training examples. We then
generated negative test examples such that their distribu-
tion of parent-child pair labels was equal to that of the
positive test examples. We evaluated each of the five
models by their ability to discriminate positives from
negatives in each test data set. Note that since the
distribution of parent-child pair labels was made the same
for both positive and negative examples, it was a difficult
task for the simpler probabilistic models, LM, MLM, LPM,
MLPM, and HTMM, to discriminate positives from nega-
tives. We performed a five-fold cross-validation for each of
the data sets. That is, we divided each data set into five
blocks of roughly equal size and, in each of the five trials, a
different block was selected as the test set while the
remaining four were used for training. We finally repeated
this process five times. The results were then averaged over
the 25(= 5 x 5) runs. We evaluated the performance of each
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of the models by the following three measures: AUC,
prediction accuracy, and precision at recall of 30 percent.

The AUC is the area under the ROC (Receiver Operating
Characteristic) curve. The ROC curve is a curve plotting
recall against the false positive rate for different classifica-
tion thresholds from —co to oo [20], where the recall is the
proportion of the number of correctly predicted examples to
the total number of positive examples, and the false positive
rate is the proportion of the number of false positives to the
total number of negative examples. Let G denote a classifier.
The AUC [20] of G is calculated by

o0

AUC(G) = / HG, 2)dr (G, ),

T=—00
where z is a threshold, f(G, z) is the recall of G given z, and
(G, z) is the false positive rate of G given z. AUC takes on a
value between 1 and 0, with a larger value indicating better
performance.

We computed the prediction accuracy for each of the six
models by choosing a threshold that discriminates the
positives from the negatives such that the threshold
maximizes the discrimination accuracy. In order to find
this threshold, we evaluated the discrimination accuracy for
all possible thresholds. To be more precise, we first sorted
the examples in descending order of their computed
likelihoods (or scores). Then, the threshold can be found
between the pair of consecutive examples from the sorted
list of scores such that the positives above the threshold and
the negatives below are most discriminated. The prediction
accuracy takes a value between 1 and 0, with a larger value
indicating higher accuracy.

We also used precision and recall. Precision is the
proportion of the number of correctly predicted examples to
the number of those examples predicted to be positives. If
we actually check the true label of a predicted example
whose label is unknown, we will choose a relatively small
subset for which a reasonably high precision can be
achieved. For our experiments, we chose 0.3 as a reasonable
recall value.

We further used the pairwise mean significance statis-
tical test of “t” values to statistically compare the
performance of PSTMM with each of the other models.
The t values are calculated using the following formula:

‘ lave(A)|
var(A) ’

n

where A denotes the difference between the performance
measures of the two models for each data set in our five
trials, ave(W) is the average of W, var(W) is the variance of
W, and n is the number of data sets (five in our case). For
n=>5, if ¢ is greater than 4.604, then it is more than
99 percent statistically significant that PSTMM performs
better.

All of our experiments were performed on a Linux
machine with dual Intel Xeon 3.0 GHz processors and
8 GBytes of main memory.
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Fig. 7. Six patterns of tree fragments used in our experiments.

4.2.1 Synthetic Data Sets

In our experimental setting for synthetic data, each positive
example was embedded with tree fragment patterns, and
each negative example was simply randomly generated
from the parent-child distribution of the positive examples.
To embed such tree fragment patterns into each positive
example, we first randomly generated five instances of a
pattern with different labels. We then randomly generated
tree structures and labels, where each tree contained
20 nodes, and then we randomly selected five nodes from
each generated tree and embedded each of the generated
patterns into each of the selected nodes. We used six types
of tree fragment patterns in our experiments. For all of the
tree examples tested, we fixed the parameters of the models
in our experiments to the following:® | T| = 200 for training
(400 for test), |S| =10, |V,| =20, |£| =10, |C| =5, and Z =
10 in MLM and MLPM. We claim that these models were
tested under similar conditions since they approximately
have the same number of parameters. That is, the sizes of
the parameters in PSTMM and MPLM are equivalent in this
setting; the sizes of the initial state probabilities 7, the state
transition probabilities a, and the label output probabilities
b in PSTMM are 10, 1,000 (=10 x 10 x 10), and 100,
respectively, and the sizes of the component selection
probabilities v, the initial state probabilities 7, and the label
output probabilities w in MPLM are 10, 100, and 1,000,
respectively.

HTMM and MLPM took less time than PSTMM to find
the maximum likelihood estimation due to the lack of
dependencies among the siblings in the trees. MLM is much
simpler than PSTMM, HTMM, and MLPM, so the algo-
rithms for MLM ran faster than those for the above three
models. LM and LPM required the least amount of time
since these models have no hidden variables, and estima-
tion of these parameters is done by counting the number of
labels in the given data set just once, while the other four
models need to update their parameters iteratively.

From the time complexities of the algorithms, recall that
all six of the models are scalable in terms of the size of the
data set since any of their corresponding learning algo-
rithms are able to update parameters in time linear to the
size. However, we note that PSTMM is able to capture the
most complex patterns, and its time complexity of O(|T| -
|S|> - [V]) is within the well-known practical computational
upper limit, set by such probabilistic models as SCFGs.

5. Experiments using different parameter settings were also performed,
particularly in changing the number of states used by PSTMM. Note that, in
all cases we tested, the performance advantage advantage of PSTMM over
other methods was consistent with what is presented in this paper.
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Therefore, we claim that its expressive power significantly
outweighs the increase in time complexity, especially
considering its scalability.

The most important feature of our proposed model is
that the dependency between siblings is considered. Five of
our six patterns (abbreviated Q1 through Q6) contain two or
more siblings, as illustrated in Fig. 7. In this figure, each
label in a pattern is attached to a solid circle. Q1 is the most
standard pattern, which contains a parent and two siblings.
Q2 is a simpler pattern (subfragment of Q1), which contains
only two siblings. We can thus check the performance of
our model when the dependency of a child on its parent is
removed. Q3, an extension of Q2, has three consecutive
siblings, so we can check whether or not this consecutive
pattern can be captured by PSTMM. Q4 is a combination of
Q1 and Q2, where node j of Q2 is node p of Q1. Q5 is a
pattern between a node and its immediately younger
sibling’s child. Finally, Q6 is a modification of Q3, where
the label of node j of Q3 is set randomly. Both Q5 and Q6
contain distant nodes, so as to check whether or not such
distant relationships in a tree can be captured by PSTMM.

Tables 4, 5, and 6 show AUC performance, prediction
accuracies, and precisions (at recall of 0.3), respectively, for
the six models tested on these six patterns. In each of these
tables, t-values are added in parentheses. As shown in these
tables, PSTMM outperformed all of the other methods at a
statistically significant level. The results show that Q3 is the
easiest pattern for which PSTMM can discriminate between
positives and negatives, Q2 and Q1 are the second and the
third easiest, respectively, and Q5 is the most difficult. In
our experimental setting, the distribution of parent-child
pairs is set the same for both positives and negatives and,
thus, the results indicate that patterns consisting of siblings
can be more easily captured by PSTMM. For patterns Q5
and Q6, each of which does not contain any direct
dependencies (parent-child or between siblings), PSTMM
achieved a high performance, and so we can claim that
PSTMM can be applied to find such patterns consisting of
indirect, long-range dependencies. The t-values for Q4 are
the smallest among all the patterns, since Q4 (and Q1)
contains parent-child relationships, making it the easiest
pattern for HTMM, MLPM, and LPM, all of which attempt
to capture parent-child pairs of labels.

4.2.2 Real Data Sets: Glycans

We further used data sets of glycans, which were all obtained
from the KEGG GLYCAN database [23], [5]. Glycans are
branched tree structures with various types of linkages. The
basic component of glycans is the monosaccharide unit, of
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TABLE 4
AUC and tValues (in Parentheses) for Synthetic Data
Pattern | PSTMM HTMM MLPM LPM MLM LM
Q1 87.6 |56.9 (13.0) | 71.8 (12.5) | 50.7 (40.0) | 49.9 (64.0) | 57.6 (40.9)
Q2 89.1 51.4 (24 4) | 48.5 (32.8) | 58.7 (27.6) | 52.6 (39.0) | 53.9 (33.9)
Q3 96.1 | 53.0 (55.0) | 51.2 (75.2) | 58.4 (36.8) | 55.6 (37.8) | 56.3 (31.2)
Q4 80.0 48 9 (10.3) | 58.9 (6.2) | 60.3 (6.5) | 49.9 (9.7) | 54.2 (8.9)
Q5 70.3 5(13.1) | 51.8 (16.1) | 50.0 (18.3) | 49.9 (21.7) | 47.1 (16.2)
Q6 84.5 o() 3 (48.4) | 49.1 (21.5) | 51.5 (39.1) | 49.9 (29.6) | 49.8 (27.4)
TABLE 5
Prediction Accuracies and t-Values (in Parentheses) for Synthetic Data
Pattern | PSTMM HTMM MLPM LPM MLM LM
Q1 80.9 58.1 (14.9) | 66.8 (10.7) | 52.9 (30.4) | 50.0 (35.0) | 58.3 (21.8)
Q2 83.8 53.5 (30.0) | 51.2 (47.5) | 58.0 (32.7) | 58.6 (26.9) | 55.9 (31.6)
Q3 90.7 54.3 (29.9) | 53.2 (43.4) | 58.7 (37.4) | 60.7 (35.0) | 56.5 (25.9)
Q4 73.9 52.2 (8.1) | 58.1 (5.97) | 59.5 (4.86) | 50.0 (8.73) | 56.6 (6.27)
Q5 66.1 52.5 (16.5) | 53.3 (10.4) | 52.0 (15.1) | 50.0 (18.5) | 52.2 (12.9)
Q6 78.2 52.3 (36.2) | 51.4 (18.7) | 52.9 (30.2) | 50.0 (25.1) | 53.3 (20.1)
TABLE 6
Precisions at Recall of 0.3 and t-Values (in Parentheses) for Synthetic Data
Pattern | PSTMM HTMM MLPM LPM MLM LM
Q1 99.2 | 53.5 (22.0) | 76.8 (14.0) | 49.7 (28.3) | 50.0 (123.5) | 54.3 (28.8)
Q2 95.3 | 50.3 (37.1) | 48.8 (61.5) | 59.2 (35.4) | 46.9 (75.0) | 50.0 (38.4)
Q3 99.0 | 51.2(46.2) | 53.8 (39.1) | 64.0 (13.7) | 48.8 (55.7) | 55.8 (36.4)
Q4 87.3 | 47.6 (7.3) | 59.1 (4.64) | 57.8 (6.44) | 50.0 (6.99) | 51.2 (7.03)
Q5 75.7 | 51.0 (16.9) | 51.6 (14.8) | 48.9 (13.2) | 50.0 (13.6) | 45.4 (13.9)
Q6 88.2 | 50.0 (31.6) | 49.2 (19.0) | 52.5 (44.2) | 50.0 (29.2) | 47.4 (28.4)

which a handful are most
oligosaccharides (See Table 7).

Glycans are classified based on their biological proper-
ties, and we selected four of the major classes, called “N-
Glycans,” “O-Glycans,” “Glycosaminoglycans,” and
“Sphingolipids,” as our data sets. For each class, we
selected those structures that contained at least one sibling
pair to be included in the data sets for our experiment. The
parameters used in this experiment were as follows: |T| =
200 for training,® |S| = 10, |2| =19, |C| =5, and Z = 10 in
MLM and MLPM. Since the trees in our data sets vary in
size, the likelihood for a given tree drastically changes
depending on the number of nodes in the tree. In order to
correct for this discrepancy, each probability parameter
value was multiplied by its size. That is, for example, we
multiplied a[{sy, sn.},s:] by |S|. We used these corrected
parameter values to calculate the likelihood of each tree
and, thus, used the corrected likelihood as the score for each
tree to evaluate each model. Table 8 shows the AUC,
prediction accuracies, and precisions (at recall of 0.3) for the
six models tested on our data sets. t-values are added in
parentheses in this table. The results show that PSTMM
clearly outperformed the other five models tested in all
cases by a statistically significant margin. The performance
results obtained by PSTMM for N-Glycan are higher than

common in higher aminal

6. Two hundred examples were randomly chosen from the training
blocks, and the test size depended on the data set.

those for O-Glycan most likely due to the larger tree sizes
The HTMM
performance on the Sphingolipid data set was rather high
compared to those of the other classes using the same
model. This may be attributed to the fact that the structures
of Sphingolipids tend to be generally linear. In fact, more
than half of the Sphingolipid structures in our database are
strictly linear, meaning they do not contain even one sibling
pair. Because we selected those structures containing at
least one sibling pair, we may assume that the majority of

and increased number of sibling pairs.

TABLE 7
Common Monosaccharide Names, Their Abbreviations,
and Their Symbols

Monosaccharide name Abbr.  Sym.
Glucose Gle A
Galactose Gal ®
Mannose Man @)
N-acetyl neuraminic or sialic acid NeuNAc @
N-acetylglucosamine GleNac N
N-acetylgalactosamine GalNAc [
Fucose Fuc A
Xylose Xyl v
Glucuronic acid GlcA &
Iduronic acid IdA @
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TABLE 8
Experimental Results Listing Prediction Accuracy, Precision, and AUC Performance for Glycan Data Sets:
(a) N-Glycans, (b) O-Glycans, (c) Glycosaminoglycans, and (d) Sphingolipidsa

PSTMM | HTMM MLPM LPM MLM LM
AUC | 92.0 |66.7(29.7) 67 8 (28.5) | 55.1 (45.5) | 58.9 (38.2) | 51.2 (57.8)
a Acc. | 85.5 |64.4(26.0)|64.5(22.5) | 55.4 (33.6) | 58.1 (31.6) | 52.9 (39.2)
Prec. | 95.6 | 68.4 (22.5) 66 8 (29.2) | 55.7 (39.8) | 58.2 (46.3) | 50.8 (62.2)
AUC | 80.1 |62.4 (11.9) |64.9 (11.4) | 54.9 (24.4) 01 1(29.4) | 49.4 (31.8)
b Acc. | 75.3 |62.1 (11.1) | 63.8 (10.5) | 57.1 (19.2) | 54.7 (24.5) | 53.4 (24.6)
Prec. | 84.1 |61.9 (11.4) | 62.7 (13.5) | 55.0 (20.1) 01 3 (23.2) | 49.5 (25.6)
AUC | 91.9 |50.7 (23.1) | 69.6 (10.3) | 48.7 (24.0) | 56.7 (19.7) | 50.7 (23.8)
¢ Acc. | 86.4 |55.7(22.6)|67.2 (11.3) | 53.7 (23.6) | 57.6 (20.3) | 54.4 (22.6)
Prec. | 96.3 |54.6 (18.5) | 72.4 (9.6) | 48.9 (24.4) | 60.2 (18.1) | 53.7 (28.1)
AUC| 883 |71.2(11.6) | 65.1 (14.3) | 59.0 (28.0) | 55.2 (25.9) | 49.4 (39.8)
d Acc. | 83.1 |70.1(10.2) | 65.0 (12.8) | 61.7 (19.0) | 57.6 (20.0) | 54.1 (26.2)
Prec. | 92.9 | 73.0 (10.5) | 64.1 (14.5) | 61.3 (19.3) | 56.6 (20.2) | 51.2 (29.8)

The PSTMM performance is statistically significant in all classes, implying that complex, sibling-dependent patterns indeed exist in these glycan

classes.

those selected had exactly one, thus explaining the higher
performance of the structures in this class using the HTMM
model compared to other classes. Of course, PSTMM still
outperforms HTMM in this class by a significant margin. As
for the Glycosaminoglycans, these structures also tend to be
highly sulfatized linear structures, where for the majority,
only sulfates branch off the main “backbone” by single
edges, and only a few structures contain siblings, which
tend to exist off the root node. Thus, it is not surprising that
HTMM performs along the lines of the LM and MLM
models. PSTMM, on the other hand, was able to capture
some dependency in Glycosaminoglycans because of the
siblings at the root; we may assume that there is some
dependency existing across the breadth of these structures
that could not be captured whatsoever by HTMM. Fig. 8
includes the ROC curves for N-Glycans and O-Glycans,
clearly illustrating the significant performance increase of
PSTMM over the other models. Overall, these results are
almost equal to those obtained from our synthetic data sets,
implying that there must be some complex pattern that is
not limited to parent-child (or, more generally, ancestor-
descendant) relationships, in the real data sets of glycans.
Furthermore, the extremely high performance of PSTMM
over all classes of glycans clearly illustrate the importance

e o
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o
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Fig. 8. ROC curves for (a) N-Glycans and (b) O-Glycans.

of being able to capture more complex relationships in
biological data.

4.3 Most Likely State Transition for New Patterns
and Multiple Tree Alignment

The next step was to analyze the probabilities of the states
learned from our data sets and to find the most likely state
transitions. By doing so, we would be able to find common
patterns in the data sets as well as to perform so-called
multiple tree structure alignment. Fig. 9 illustrates three
N-Glycan tree structures that PSTMM found to have similar
patterns. The state transition model learned from these
structures is given below each glycan structure. In this
figure, we can see that we would find ambiguities in
aligning these structures simply by looking at the mono-
saccharides. By using the states learned by PSTMM,
however, the multiple tree alignment is clear in that there
is only one way to match the branches to one another. More
specifically, we notice that the three mannoses in the center
of all three structures each are assigned different states.
Clearly, the parent-sibling relationship has been captured in
this known core-structure of N-Glycans. Second, despite the
fact that each of the child mannoses have similar children
and grandchildren (i.e., the same O — e pair in sequence),

Sensitivity
o o o
> o ")

=
N

o

0 02 04 06 08 1
False positive rate

(b)



1062

o
=

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 8, AUGUST 2005

=
= o-um

534—53"56>S 534—534-56\ Ss<—S3<-Sﬂ\
5
S1+Ss S3<—S1<-Sx/ss Ss<—Sl<-Ss/S5
/So*Ss«S«: Ss 4_514_58\ /So<-Ss<-S4 534_514_58\ /So<-So
7
S3 <-SI<-38/S S3 <-Ss<-S6/S7 S/ S3<-S¢s/S7
(a) (c)

Fig. 9. Example of a glycan tree alignment of three similar glycan structures. Note how the leaves are exactly alike according to monosaccharide

chains, but their state paths differ to enable them to be distinctly aligned.

no two state sequences originates from the same parent.
Thus, the more complex pattern across siblings has been
captured. One may regard an entire glycan structure as one
unique pattern considering their compact sizes.

It was interesting to run this prediction procedure
another time to see how different state transitions were
learned. For example, Figs. 10, 11, and 12 come from a
different prediction run. Looking at the state transitions
of these figures, we see the pattern of Sy — S — .5, at the
root portions of the trees (on the right-hand side) in
Fig. 10. A similar pattern can be seen in the trees in
Fig. 11 except with an extra Sy for the Fucose. At first
glance, one would assume those in Fig. 12 would also be
the same as in Fig. 11, but, in fact, the former turns out to
contain a completely different state path of Sy — S5 — Sy
plus an S;. From an overall perspective, we can see how
this comes about, and a biological explanation even exists.
The three types of patterns on the right-hand side of

So+—=Ss5< Spe—Ss Ss\
S1+S2<S> - S1«S2« 5>
S5>S4/ So< So >S4/
So<+S4 So<+ So

Fig. 10. High-mannose N-Glycan type where groups of mannoses
cluster together.

S1+Ss+—S; S3¢Ss+—S;5
AYE AR SR S1+S2+S>
Ss
~c P
/S4 Sy/ So+S4 S/
S4

Fig. 11. Hybrid N-Glycan type where both triple-mannose groups and
GlcNAcs exist.

these structures actually correspond to known vertebrate
N-Glycan diversification types. There are three N-Glycan
subtypes: high-mannose, hybrid, and complex [37], which
are defined by the patterns across the leaves of the
structures. The high-mannose N-Glycan subtype is char-
acterized by groups of mannoses clustered together, the
hybrid N-Glycan subtype has a combination of both
triple-mannose groups and GIcNAcs, and the complex
N-Glycan type has GlcNAcs linked to the triple-mannose
core. Amazingly, PSTMM was able to capture these three
types despite the fact that all three have the same core
structures. That is, we see again that the 0 — e sequence
appears in some of these structures, and this time, they
are assigned one of the S35 —Ss or S; — S, state paths. In
this run, however, a complex pattern concerning the large
number of mannoses has been found. We see that, in a
consecutive sequence of mannoses, if a mannose has no
mannose child and has a younger sibling, it will be
assigned S;. Otherwise, it will be S; and the mannose
child Sy. There may be further complex rules associated
with these state transition paths estimated in this run,
which may be an interesting route for future research.
One may then deduce that other patterns which have yet
to be discovered may be found by our model.

5 CoONCLUDING REMARKS

We have proposed a probabilistic model, called PSTMM,
and its effective learning algorithm for mining labeled

S

S3+—S3+S6 S3«Ss

. ~
S.3<—SJ<-Sﬁ/S5\ S.M-Sﬁ/ss\
S3+Si+S2 So«S5+S1 §1eSi+S8: So+Ss+Ss

7 S/ >S7/ s

Si+Ss S1<+Si+Ss

Fig. 12. Complex N-Glycan type where GlcNAcs are linked to the triple-
mannose core.
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ordered trees, and we have experimentally shown the
effectiveness of our approach by using a variety of
experiments using real-world glycan data sets. We empha-
size again that our learning algorithm has a very nice
complexity order, which is right within a practically well-
known computational limit. We also note that, due to the
nature of the EM algorithms, it is straightforward to
modify our learning algorithm for special data sets such as
large-scale data sets and data streams. Details of these
modified algorithms are shown in Supplementary Informa-
tion 1 in the Appendix (which can be found on the
Computer Society Digital Library at http://computer.org/
tkde/archives.htm). Possible future work of this approach
is to apply PSTMM to align a variety of multiple glycans in
a database and to find biologically new patterns embedded
in them.

The performance of PSTMM was evaluated in a
supervised learning manner in our experiments, but only
positive examples were given for training. The incorpora-
tion of both positive and negative examples as training
examples to discriminate positives from negatives is a
general supervised learning task, popular, and important in
machine learning. The recent high-performance supervised
learning method comes in the form of kernel methods, such
as support vector machines. A kernel is a distance measure
between two examples, and an important theme in current
machine learning research is to develop a kernel which is
best suited to the given examples. For example, a graph
kernel capable of computing the distance between two
given input graphs is one important and popular problem
in which the performance of kernels is being investigated
[19], [25], [28], [21]. It would thus be interesting to develop a
kernel for labeled ordered trees based on PSTMM, as was
done for strings based on HMMs [22], [34].
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