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ABSTRACT
Motivation: A promising way to make sense out of gene
expression profiles is to relate them to the activity of
metabolic and signalling pathways. Each pathway usually
involves many genes, such as enzymes, which can
themselves participate in many pathways. The set of
all known pathways can therefore be represented by a
complex network of genes. Searching for regularities in the
set of gene expression profiles with respect to the topology
of this gene network is a way to automatically extract active
pathways and their associated patterns of activity.
Method: We present a method to perform this task, which
consists in encoding both the gene network and the set
of profiles into two kernel functions, and performing a
regularized form of canonical correlation analysis between
the two kernels.
Results: When applied to publicly available expression
data the method is able to extract biologically relevant
expression patterns, as well as pathways with related
activity.
Contact: Jean-Philippe.Vert@mines.org

INTRODUCTION
The microarray technology is a crucial tool to elucidate
the genetic regulation mechanisms in a cell. By simultane-
ously monitoring the quantity of messenger RNA of virtu-
ally all genes of an organism submitted to various condi-
tions, one should in principle be able to reconstruct some
parts of the regulatory network at the transcription level,
and much effort has been devoted to this task recently
(de Jong, 2002). However the complexity of the mecha-
nisms involved in genetic regulation, metabolic and sig-
nalling pathways, together with the still limited amount
of expression data available, have limited the successes of
genetic regulation reconstruction from microarray data to
specific pathways or small numbers of genes.

On the other hand, many signalling and metabolic path-
ways have been experimentally characterized and recently

∗To whom corespondence should be addressed.

integrated into databases such as KEGG (Kanehisa et al.,
2002). While still far from being complete, such curated
databases contain the state-of-the-art of our knowledge
about biochemical pathways. It is therefore natural to put
in parallel these known pathways with the gene expression
data obtained from microarray experiments, in order to
validate the pathways, find new candidate pathways or
check the quality of expression data. For example, it is
possible to map gene clusters obtained from microarray
data onto known metabolic networks to find pathways
of interest (van Helden et al., 2000); pathway scoring
methods have been developed (Zien et al., 2000) to assess
the validity of candidate pathways in terms of expression
data; more recently, methods were proposed to integrate
expression data and pathway network at an early stage
in order to extract clusters of genes which have similar
expression profiles and participate in common pathways
in the same time (Hanisch et al., 2002).

In this report we study a different and possibly com-
plementary approach which consists in looking for corre-
lations between known genetic networks and microarray
data. While expression data characterize each gene by a
profile, i.e. a vector of real numbers, the pathway database
provides a graph representation where genes are nodes and
where two genes are linked when then catalyze succes-
sive reactions in some known pathway. The term ‘correla-
tion’, usually used to assess the relationship between two
random variables, must therefore be generalized to assess
the relationship between two different random elements:
a node of a graph on the one hand, a profile on the other
hand.

In this paper we propose a method to give a sense to
the term ‘correlation’ in this context, using the theory
of kernel methods (Schölkopf and Smola, 2002) and
spectral graph theory (Chung, 1997). Because of space
limitations we present the technicalities of the approach in
a companion paper (Vert and Kanehisa, 2002) and focus
in this report on the possible applications of the methods
to make sense out of expression data.

ii238 Bioinformatics 19(Suppl. 2) c© Oxford University Press 2003; all rights reserved.



Extracting active pathways from gene expression data

METHOD
In this section we briefly describe an algorithm to extract
correlations between nodes of a graph and real-valued vec-
tors. The reader interested in the details and justifications
of the method is referred to the companion paper (Vert and
Kanehisa, 2002).

We model the set of genes by a discrete set X of
cardinality |X | = n. Each gene x ∈ X is supposed to be
characterized by an expression profile e(x) ∈ R

p, where
p is the number of measurements available (supposed to
be the same for all genes). By subtracting the mean profile
from all genes, we suppose in the sequel that the set of
profiles is centered, i.e.

∑
x∈X e(x) = 0.

Independently of the gene expression profiles, we
assume that a gene network has been extracted from a
database of known biochemical pathways. More pre-
cisely, genes are nodes of this network, and two genes
are linked whenever they encode proteins which have
the possibility to catalyze two successive reactions in a
pathway. This is mathematically represented by a simple
graph � = (X , E), with the genes as vertices.

The main goal of our method is to automatically find
profiles which exhibit some coherence with respect to the
topology of the network. Formally speaking, a profile is
a vector v ∈ R

p. We don’t require v to be any actual
gene expression profile, but rather use it to represent
some more abstract or hidden information, such as the
quantity of some substance in the cell, or the activity of
a pathway. Intuitively, if v represents the evolution of such
a biological quantity, then expression profiles of genes
participating in or affected by this event should exhibit
some form of correlation with v.

For a zero-mean candidate profile v ∈ R
p (i.e.∑p

i=1 vi = 0), let us therefore call fv(x)
�= vT e(x) the

correlation between v and e(x). Typically, if v represents
the activity level of a pathway where gene x plays a central
regulatory role, then fe(x) is likely to be either strongly
positive or strongly negative.

We now turn our attention to the problem of assessing
how likely a candidate profile v is to be biologically
relevant, and define two independent criteria which both
reveal some form of relevance.

First of all, as microarray data are known to be noisy,
and as the profiles v we are looking for are likely to be
correlated to several genes, a statistical criterion such as
the normalized variance of a feature fe(.), defined by:

V ( fe) =
∑

x∈X fe(x)2

||v||2 , (1)

quantifies how much a profile v explains the variations
among expression profiles. This criterion only involves the
set of expression profiles, and is maximized in principal
component analysis (PCA). The larger V ( fe), the more

v explains the variations between profiles, and the more
likely it is to correspond to some hidden biological event
which influences many genes.

Second, and independently of the quantity (1), a crite-
rion can be defined to assess how much the feature fe(.)

correlates with the topology of the graph �. The criterion
we choose to quantify is the smoothness of the feature
with respect to the graph topology, i.e. how much fe(.)

varies between adjacent nodes. Indeed, if a profile v corre-
sponds to a biological event involving a pathway, then the
linear feature fe(.) should exhibit some form of smooth-
ness at least in the part of the gene network concerned by
the event.

The smoothness of a feature can be quantified through
its discrete Fourier transform (Chung, 1997). As an

example, if f̂ =
(

f̂1, . . . , f̂n

)
is the discrete Fourier

transform of a feature fe(.), then the smoothness of this
feature can be measured by the following quantity which
is large when f̂ has a lot of energy at high frequency:

S( fe) =
n∑

i=1

eτλi f̂ 2
i , (2)

where τ is a parameter and λi is the i-th eigenvalue of
the graph Laplacian, which can be thought of as a discrete
version of the frequency corresponding to the i-th element
of the Fourier basis. The smoother fe, the smaller S( fe).

Using (1) and (2), we can now reformulate the profile
extraction problem as follows: find a profile v such that
V ( fe) be as large as possible, and S( fe) as small as
possible. While this can be translated in many ways
mathematically, we now present an approach derived
from the theory of reproducible kernel Hilbert spaces
(Schölkopf and Smola, 2002) which leads to a well-posed
algorithm. The main trick to obtain such an algorithm is
to express features, smoothness and variations in a dual
form.

First of all, it can be shown that any profile of interest
can be rewritten as a linear combination of expression
profiles in the form:

v =
∑
x∈X

α(x)e(x), (3)

where α(.) is called the dual coordinate of v. If we call
K the n × n matrix defined by Kx,y = e(x)T e(y), then a
simple computation shows that the variation (1) captured
by the feature fe is given by:

V ( fe) = αT K 2α

αT Kα
. (4)

Second, let K ′ be the diffusion kernel Gram matrix of
the graph � (Chung, 1997; Kondor and Lafferty, 2002),
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i.e. the n × n matrix given by:

K ′ = exp(−τ L),

where L is the Laplacian matrix of the graph, τ > 0
is a parameter, and ‘exp’ denotes the matrix exponential
operation. K ′ being invertible any feature f can be
uniquely written as f = K ′β, or more explicitly:

f (.) =
∑
x∈X

β(x)K ′(x, .). (5)

With these notations, it can be shown that the smoothness
functional S( f ) defined in (2) is equal to:

S( f ) = βT K ′β
βT K ′2β

. (6)

Using the dual formulations (4) and (6), we can now
formulate the correlation extraction problem as follows.
Find dual coordinates α and β which maximize the
functional:

γ (α, β)
�= αT K K ′β(

αT
(
K 2 + δK

)
α
) 1

2
(
βT

(
K ′2 + δK ′) β

) 1
2

,

(7)

where δ is a trade-off parameter. The maximization of (7)
leads to a profile v given by (3), a corresponding feature
fe and a feature f ′(.) given by (5), such that:

• V ( fe) be large,

• S( f ′) be small,

• fe and f ′ be as correlated as possible,

where δ controls the trade-off between these contradictory
conditions. Indeed, when δ = 0, the functional maximized
in (7) is equal to the correlation coefficient between f =
Kα and f ′ = K ′β. When δ increases, the correlation
is penalized by αT Kα and βT K ′β, which forces the
solutions of (7) to have small S( f ′) and large V ( f ), by
(4) and (6).

It turns out that (7) can be seen as a regularized form of
canonical component analysis, equivalent to the following
generalized eigenvalue problem:

(
0 K K ′

K ′K 0

) (
α

β

)

= ρ

(
K 2 + δK 0

0 K
′2 + δK ′

) (
α

β

)
(8)

As pointed out in (Bach and Jordan, 2002; Vert and
Kanehisa, 2002) this problem can be solved efficiently and
results in a series of pairs of features:

{(αi , βi ) , i = 1, . . . , n}
with decreasing values of γ (αi , βi ).

DATA
In order to test the method presented in the previous
section we conducted experiments on publicly available
expression data for the yeast S.cerevisiae using a curated
database of metabolic pathways.

The gene graph was downloaded from the LIGAND
database of chemical compounds of reactions in biological
pathways (Goto et al., 2002). This graph contains 774
nodes which represent 774 genes of the budding yeast
S.Cerevisiae, linked through 16 650 edges, where two
genes are linked when they code for proteins which have
the possibility to catalyze two successive reactions in the
LIGAND database (i.e. two reactions such that the main
product of the first one is the main substrate of the second
one).

We confronted this gene graph with two publicly
available sets of expression data, downloaded from the
Stanford Microarray Database (Sherlock et al., 2001). The
first data set is a collection of 18 measurements for 6198
yeast genes, collected every 7 minutes after cells were
synchronized in G1 by addition of α factor (Spellman et
al., 1998). The analysis is restricted to the 756 genes of
the LIGAND graph with an expression profile in this set.
The second data set is a 7 time point series measured for
6199 yeast genes during the transition of an anaerobic
growth to aerobic respiration, called diauxic shift (DeRisi
et al., 1997). Among these genes, 669 are present in
the LIGAND graph. Following classical works (Eisen et
al., 1998) we work with the normalized logarithm of
the ratio of expression levels of the genes between two
experimental conditions. Missing values were estimated
with the program KNNimput (Troyanskaya et al., 2001).
Each profile was then centered to zero mean and scaled to
unit norm.

The generalized eigenvalue problem equivalent to (7)
was solved with the free and publicly available program
Octave†. Following experiments detailed in (Vert and
Kanehisa, 2002) the regularization parameter δ of (7) was
set to 0.01.

RESULTS
Alpha factor release dataset
This dataset was used in (DeRisi et al., 1997) to detect
genes whose expression exhibits periodicity related to the
cell cycle. The profiles contain 18 points, hence 17 pairs
or features with dual coordinates (αi , βi )i=1,...,17 were ex-
tracted. The correlations between the corresponding pairs
of features ( fi , f ′

i )i=1,...,17 range from 0.62 to 0.36 (where
fi = Kαi and f ′

i = K ′βi ). This shows that the regu-
larization parameter δ = 0.01 is high enough to impose
strong smoothness and relevance constraints on the fea-

† Available at http://www.octave.org
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Fig. 1. First 2 profiles extracted (α factor data set).

tures. Indeed, δ = 0 (no smoothness or relevance con-
straint) would correspond to perfectly correlated features
(all correlations being equal to 1), and the decrease from
1 to the actual correlations is the price to pay to ensure
the smoothness of f ′

i and the relevance of fi in terms of
variation captured.

Figure 1 shows the first two profiles extracted, and
Table 1 contains a list representative of the genes with
highest or lowest correlation with each profile, as well as
the pathways they participate in in the KEGG database.

The first extracted profile is essentially a strong signal
immediately following the begining of the experiment.
Several pathways positively correlated with this pattern
are involved in energy metabolism (oxidative phospho-
rylation, TCA cycle, glycerolipid metabolism), while
pathways negatively correlated are mainly involved in
protein synthesis (aminoacyl-tRNA biosynthesis, RNA
polymerase, pyrimidine metabolism). Hence this profile
clearly detects the sudden change of environment, and
the priority to fuel the start of the cell cycle with fresh
energetic molecules rather than to synthesize proteins.

The second extracted profile exhibits a strong sinusoidal
shape corresponding to the progression in the cell cycle.
Two cell cycles took place during the experiment, but the
first one is more visible than the second one because the
synchronization in the yeast colony decreased while the
experiment progressed. Several genes directly involved in
DNA synthesis (YNK1, RNR2, POL12) can be recognized
in the list of genes anticorrelated with the second feature
(corresponding to maximum expression in the S phase).
Some pathways such as the starch metabolism have
genes which exhibit either strong correlation or strong
anticorrelation with the second profile, corresponding
to the various regimes in the normal cell cycle (e.g.

periods of energy storage alternate with periods of energy
consumption).

Diauxic shift data set
We performed a similar analysis of the diauxic shift
data set (DeRisi et al., 1997). Figure 2 shows the first
four extracted profiles. We recover several typical curves
already observed in (DeRisi et al., 1997). The first feature
f1 is typical of an event which suddenly starts when all
the glucose in consumed (between time points 5 and 6).
f2 corresponds to an event which progressively increases
until time point 6, and suddenly decreases at the last time
point (at the end of the diauxic shift), contrary to f1. f3
corresponds to a regular increase from the beginning until
the last point, and can be thought of as an indicator of
the diauxic shift progression. We also displayed feature 4,
which is similar to feature 2 with the difference that the
increase between points 1 and 6 is replaced by a two-stage
process.

Table 2 shows the main pathways involved when
one lists the set of genes with the highest and lowest
50 scores for each of the first 3 extracted features.
As observed in (DeRisi et al., 1997), we recover the
activation of the TCA cycle (positive correlation with
f1 and f3) used to oxidize pyruvate after all glucose
is consumed, as well as the simultaneous activation of
the urea cycle and the modification in the glycolysis
and gluconeogenesis pathways studied in (DeRisi et al.,
1997). Observe that the correlation between f2 and the
TCA cycle is not detected here, which shows that the
behavior at the last time point is an important difference
between f1 and f2. Other observations include the fact
that the porphyrin metabolism maps is also positively
correlated with the third feature, at it is well known that
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Table 1. Pathways and genes with highest and lowest scores on the first 2 features extracted

Feature Correlation Main pathways and genes

1 + Glycolysis / Gluconeogenesis (PGK1, GPM2, ALD4,6), TCA cycle (CIT2, MDH1,2, SDH1, LSC1), Pentose phosphate pathway
(RBK1, SOL4, ZWF1, YGR043C), Glycerolipid metabolism (GPD1,2,3, ALD4,6), Glyoxylate and dicarboxylate metabolism
(MDH1,2, CIT2, ICL2), Sulfur metabolism (MET2,14,16,17).

1 - Pyrimidine metabolism (RPA12,34,49,190, RPB2,5, RPC53, DUT1, TRR1, POL5, URK1, MIP1, PUS1), Purine metabolism
(RPA12,34,49,190, RPB2,5, RPC53, CDC19, APT2, POL5, MIP1), Aminoacyl-tRNA biosynthesis (ILS1, FRS2, MES1,
YHR020W, GLN4, ALA1, CDC60), Starch and sucrose metabolism (MPS1, HPR5, SWE1, HSL1, EXG1).

2 + Pyrimidine metabolism (DEG1, PUS1,3,4, URA1,2, CPA1,2,FCY1), Folate biosynthesis (ENA1,5, BRR2, HPR5, FOL1), Starch
and sucrose metabolism (ENA1,5, BRR2, HPR5, PGU1), Phenylalanine, tyrosine and tryptophan biosynthesis (TRP2,3,4,
ARO2,7), Sterol biosynthesis (ERG7,12, HGM1,2).

2 - Starch and sucrose metabolism (CDC7, ENA1, GIN4, HXK2, HPR5, SWE1, UGP1, HSL1, FKS1, MEK1), Purine and
pyrimidine metabolism (POL12, ADK2, DUT1, RNR2, HYS2, YNK1, CDC21), Fructose and mannose metabolism (MNN1,
PMI40, SEC53, HXK2), Cell cycle (CDC7, GIN4, SWE1, HSL1).
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Fig. 2. First 4 features extracted (diauxic shift data set).
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Table 2. Pathways and genes with highest and lowest scores on the first features extracted (diauxic shift data set)

Feature Correlation Main pathways and genes

1 + TCA cycle (SDH1,2,3,4, LSC1,2, YJL045W, YLR164W, YMR118C), Oxidative phosphorylation (SDH1,2,3,4, ISP, Cytc1,
COR1, QCR2,6,7,8,9), Urea cycle and metabolism of amino groups (ARG3,4,5,8, CAR1,2, SPE1)

1 - Sterol biosynthesis (ERG1,7,8,12, HMG1), Purine metabolism (ADE1,5,6,7,8, AAH1, ADE2), N-Glycans biosynthesis (ROT2,
ALG5,7, SEC59, DPM1), Aminoacyl-tRNA biosynthesis (ILS1, YDR341C, YER087W, MES1, FRS1, WRS1), Phenylalanine,
tyrosine and tryptophan biosynthesis (TRP2,3,4, FRS1).

2 + Glycolysis / Gluconeogenesis (GPM1,2,3, PGK1, TPI1), Glycerolipid metabolism (CRD1, TPI1, CHO1, DAK1,2, PCT1,
GUT1), Pyrimidine metabolism (DUT1, TRR2, DCD1, CDD1, URA4, CDC21), Biotin metabolism (BPL1, YFR006W, BIO2,
SPC3, RCE1)

2 - Urea cycle and metabolism of amino groups (ARG3,5,8, SPE1), Glutamate metabolism (URA2, CPA1,2, GLN4), Phenylalanine,
tyrosine and tryptophan biosynthesis (TRP2,3,4, ARO2,7), Starch and sucrose metabolism (ENA1,5, BRR2, HPR5, PGU1)

3 + TCA cycle (SDH1,2,3,4, LSC1,2, YJL045W, YLR164W, YMR118C), Porphyrin metabolism (HEM2,4,14,15, CYC3).

3 - Urea cycle and metabolism of amino groups (SPE1,3,4, PRO3, ARG8), Aminoacyl-tRNA biosynthesis (ILS1, YDR341C,
YER087W, FRS1,2, VAS1, TYS1, YHR020W, THS1, MST1, ISM1, CDC60), Phenylalanine, tyrosine and tryptophan
biosynthesis (TRP2,3,5, FRS1,2, TRP3,5, ARO2,7), Arginine and proline metabolism (YDR341C, PRO3, YER087W,
YHR020W, SPE1,2,3,4), Pyrimidine metabolism (TRR1,2, DEG1, CDD1, PUS1,4), Valine, leucine and isoleucine biosynthesis
(ILS1, VAS1, ILV1, ISM1, CDC60).

HEM2,4,14,15 and CYC3 participate in the porphyrin
pathway which generates cytochrome c oxidase (which
enhances the capability of yeast to produce ATP in the
respiratory chain). In parallel, several pathways involved
in biosynthesis of various molecules (sterol biosynthesis,
purine and pyrimidine metabolism) exhibit a strongly
negative correlation with profiles increasing along time,
corresponding to the adaptation of the cell to a lower
level of activity following the decrease of glucose in the
environment.

DISCUSSION AND CONCLUSION
The method presented in this paper provides a way to
compare a graph and a set of profiles. We focused on
its ability to extract meaningful profiles of expression, as
well as the corresponding metabolic pathways, in a fully
automated way. It can therefore be used as a data mining
tool, to automatically make sense out of expression data in
terms of pathway activity.

A second possible application of this method is dimen-
sionality reduction of microarray data. Indeed profiles
which ‘make sense’ with respect to the graph topology
are automatically detected: as a result, dimensionality
reduction can be performed by simply keeping the first k
extracted features, where k is smaller than the total num-
ber of points available, and representing a gene expression
profile e(x) by the smaller vector ( f1(x), . . . , fk(x)).

This approach is explored in the companion paper (Vert
and Kanehisa, 2002).

One particularity of our method is that it is able, up
to some extent, to deal with noise and errors as well in
the graph as in the expression data. Indeed, by looking
for correlated features, the particularities of single genes
disappear behind general trends of sets of genes. For
example, if some edges are wrongly placed in the gene
graph, the smoothness of features might still be detected
as long as the topology of the graph in not too much
modified. We plan to investigate in the future how the
tools developed here can be used to automatically remove
wrong edges or add new ones in the gene network, which
is of particular importance as well for pathway analysis as
for other networks such as protein interaction networks.

Finally, the algorithm presented in this paper should
be considered as a first step toward integration of var-
ious kinds of data using kernel methods. Indeed, on
an technical point of view, the only data required to
perform our analysis are the diffusion kernel matrix K ′
computed from the graph on the one hand, and the Gram
matrix of expression profiles inner products K . In other
words, the graph topology as well as the set of expression
profiles are encoded in a similar form (a Gram matrix
of a kernel function), and a generalized form of CCA
is performed between the two kernels. It turns out that
many kernels for various types of gene representations
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(different from expression profiles and nodes of a graph)
have been developed in the last few years, including but
not limited to kernels for aminoacid sequences (Jaakkola
et al., 2000), for phylogenetic profiles (Vert, 2002) or
for promoter regions (Pavlidis et al., 2001). Using such
kernels in the place of K and K ′ gives a way to extract
correlations not only between gene networks and expres-
sion data, but also with protein sequences, phylogenetic
profiles or promoter regions. Moreover, as pointed out
in (Bach and Jordan, 2002), the notion of correlation
can be extended to more than two variables, so one can
imagine looking for correlations between all these kinds
of data simultaneously. A first attempt in this direction
is presented in (Yamanishi et al., 2003) for the purpose
of operon detection in bacterial genomes, and we are
currently investigating further extensions of this ideas.
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